dt prototype
This commit is contained in:
parent
99dfa56d8d
commit
f76f0c2639
150
main.py
150
main.py
@ -46,6 +46,156 @@ menu = Context.fromstring(''' |meat|salad|meal|drink|cold|hot |
|
||||
|
||||
#print(func_output)
|
||||
|
||||
'''
|
||||
def uniq_val_from_data(rows, col):
|
||||
return set([row[col] for row in rows])
|
||||
|
||||
|
||||
def class_counts(rows):
|
||||
counts = {}
|
||||
for row in rows:
|
||||
label = row[-1]
|
||||
if label not in counts:
|
||||
counts[label] = 0
|
||||
counts[label] += 1
|
||||
return counts
|
||||
|
||||
|
||||
def isnumer(value):
|
||||
return isinstance(value, int) or isinstance(value, float)
|
||||
|
||||
|
||||
header = ...
|
||||
|
||||
class Question():
|
||||
|
||||
def __init__(self, column, value):
|
||||
self.column = column
|
||||
self.value = value
|
||||
|
||||
def compare(self, example):
|
||||
val = example[self.column]
|
||||
if isnumer(val):
|
||||
return val >= self.value
|
||||
else:
|
||||
return val == self.value
|
||||
|
||||
def __repr__(self):
|
||||
condition = "=="
|
||||
if isnumer(self.value):
|
||||
condition = ">="
|
||||
return "Is %s %s %s?" % (header[self.column], condition, str(self.value))
|
||||
|
||||
|
||||
def partition(rows, quest):
|
||||
t_rows, f_rows = [], []
|
||||
for rows in rows:
|
||||
if quest.compare(row)
|
||||
t_rows.append(row)
|
||||
else:
|
||||
f_rows.append(row)
|
||||
return t_rows, f_rows
|
||||
|
||||
|
||||
def gini(rows):
|
||||
counts = class_counts(rows)
|
||||
impurity = 1
|
||||
for lbl in counts:
|
||||
prob_of_lbl = counts[lbl] / float(lem(rows))
|
||||
impurity -= prob_of_lbl**2
|
||||
return impurity
|
||||
|
||||
|
||||
def info_gain(l,r, current_uncertainty):
|
||||
p = float(len(l)) / (len(l) + len(r))
|
||||
return current_uncertainty - p*gini(l) - (1-p)*gini(r)
|
||||
|
||||
|
||||
def find_best_q(rows):
|
||||
best_gain = 0
|
||||
best_quest = None
|
||||
current_uncertainty = gini(rows)
|
||||
n_features = len(rows[0]) - 1
|
||||
|
||||
for col in range(n_feat):
|
||||
values = set([row[col] for row in rows])
|
||||
|
||||
for cal in values:
|
||||
quest = Question(col, val)
|
||||
|
||||
t_rows, f_rows = partition(rows, quest)
|
||||
|
||||
if len(t_rows) == 0 or len(f_rows) == 0Ж
|
||||
continue
|
||||
|
||||
fain = info_gain(t_rows, f_rows, current_uncertainty)
|
||||
|
||||
if gain >= best gain:
|
||||
best_gain, best_quest = gain, quest
|
||||
|
||||
return best_gain, best_quest
|
||||
|
||||
|
||||
class Leaf:
|
||||
def __init__(self,rows):
|
||||
self.predicts = class_counts(rows)
|
||||
|
||||
|
||||
class Decision_Node():
|
||||
def __init__(self, quest, t_branch, f_branch):
|
||||
self.quest = quest
|
||||
self.t_branch = t_branch
|
||||
self.f_branch = f_branch
|
||||
|
||||
|
||||
def build_tree():
|
||||
gain, quest = find_best_q(rows)
|
||||
|
||||
if gain == 0:
|
||||
return Leaf(rows)
|
||||
|
||||
t_rows, f_rows = partition(rows, quest)
|
||||
|
||||
t_branch = build_tree(t_rows)
|
||||
f_branch = build_tree(f_rows)
|
||||
|
||||
return Decision_Node(quest, t_branch, f_branch)
|
||||
|
||||
|
||||
def print_tree(node):
|
||||
|
||||
if isinstance(node, leaf):
|
||||
print("" + "Predict", node.predictions)
|
||||
return
|
||||
|
||||
print("" + str(node.quest))
|
||||
|
||||
print("" + '--> True:')
|
||||
print_tree(node.t_branch, ""+ " ")
|
||||
|
||||
print("" + '--> False:')
|
||||
print_tree(node.f_branch,"" + " ")
|
||||
|
||||
def classify(row, node):
|
||||
if isinstance(node, leaf):
|
||||
return node.predictions
|
||||
|
||||
if node.quest.compare(row):
|
||||
return classify(row, node.t_branch)
|
||||
else:
|
||||
return classify(row, node.f_branch)
|
||||
|
||||
|
||||
def print_leaf(counts):
|
||||
total = sum(counts.values())*1.0
|
||||
probs = {}
|
||||
for lbl in counts.keys():
|
||||
probs[lbl] = str(int(counts[lbl] / total*100)) + "%"
|
||||
return probs
|
||||
|
||||
|
||||
'''
|
||||
|
||||
###
|
||||
class Node:
|
||||
def __init__(self, state, parent, action):
|
||||
|
Loading…
Reference in New Issue
Block a user