AI-2020/raport.md
2020-06-15 11:58:49 +00:00

76 lines
1.7 KiB
Markdown

# Podprojekt Szi
### Opis
Tematem podprojektu jest rozpoznawanie zamówień na podstawie historii zamówień.
Użyłem drzew decyzyjnych.
### Dane
Potrawy, ich nazwa, rodzaj oraz charakterystyka.
tree_format = ["dish", "served", "price", "origin", "cooked", "ingredients", "name"]
Dane uczące:
dish - (salad/soup/meal/coffee/tea/non-alcho drink)
served - (cold/hot/warm)
origin - (Worldwide/America/Europe/Asia)
cooked - (baked/boiled/mixed)
ingridients - (2/4)
Dane testowe jest tworzone losowo w funkcji:
def client_ordering():
order = []
dish = uniq_val_from_data(training_data, 0)
temperature = uniq_val_from_data(training_data, 1)
tmpr = random.sample(dish, 1)
order.append(tmpr[0])
tmpr = random.sample(temperature, 1)
order.append(tmpr[0])
order.append('order')
return order
### Implementacja
#### Drzewo:
Klasy:
##### Question
class Queestion:
def __init__(self, col, value):
self.col = col #column
self.value = value #value of column
def compare(self, example):
#compare val in example with val in the question
def __repr__(self):
#just to print
##### Node
class Decision_Node():
#contain the question and child nodes
def __init__(self, quest, t_branch, f_branch):
self.quest = quest
self.t_branch = t_branch
self.f_branch = f_branch
##### Leaf
class Leaf:
#contain a number of how many times the label has appeared in dataset
def __init__(self, rows):
self.predicts = uniq_count(rows)
### Biblioteki
* random
* numpy