evaluation test
This commit is contained in:
parent
b693a63331
commit
78da89f86f
@ -16,6 +16,7 @@ pipeline {
|
|||||||
git branch: "${params.BRANCH}", url: 'https://git.wmi.amu.edu.pl/s444386/ium_444386.git'
|
git branch: "${params.BRANCH}", url: 'https://git.wmi.amu.edu.pl/s444386/ium_444386.git'
|
||||||
copyArtifacts filter: 'model.tar.gz', projectName: "s444386-training/${BRANCH}/", selector: buildParameter('BUILD_SELECTOR')
|
copyArtifacts filter: 'model.tar.gz', projectName: "s444386-training/${BRANCH}/", selector: buildParameter('BUILD_SELECTOR')
|
||||||
sh 'tar xvzf model.tar.gz'
|
sh 'tar xvzf model.tar.gz'
|
||||||
|
sh 'python3 evaluation.py'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -10,6 +10,8 @@ pipeline {
|
|||||||
sh 'python3 biblioteki_dl.py'
|
sh 'python3 biblioteki_dl.py'
|
||||||
sh 'tar -czf model.tar.gz model/'
|
sh 'tar -czf model.tar.gz model/'
|
||||||
archiveArtifacts 'model.tar.gz'
|
archiveArtifacts 'model.tar.gz'
|
||||||
|
archiveArtifacts 'xtest.csv'
|
||||||
|
archiveArtifacts 'ytest.csv'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -71,17 +71,28 @@ y_train = steam_train['game']
|
|||||||
x_test = steam_test[['hoursPlayed','purchaseCount','playCount','playerPlayCount','playerPurchaseCount']]
|
x_test = steam_test[['hoursPlayed','purchaseCount','playCount','playerPlayCount','playerPurchaseCount']]
|
||||||
y_test = steam_test['game']
|
y_test = steam_test['game']
|
||||||
|
|
||||||
|
|
||||||
x_train = np.array(x_train)
|
x_train = np.array(x_train)
|
||||||
y_train = np.array(y_train)
|
y_train = np.array(y_train)
|
||||||
x_test = np.array(x_test)
|
x_test = np.array(x_test)
|
||||||
y_test = np.array(y_test)
|
y_test = np.array(y_test)
|
||||||
|
|
||||||
|
with open('xtest.csv','w',encoding='UTF-8',newline='') as xtest:
|
||||||
|
writer = csv.writer(xtest)
|
||||||
|
for i in x_test:
|
||||||
|
writer.writerow(i)
|
||||||
|
|
||||||
for i,j in enumerate(y_train):
|
for i,j in enumerate(y_train):
|
||||||
y_train[i] = games[j]
|
y_train[i] = games[j]
|
||||||
|
|
||||||
for i,j in enumerate(y_test):
|
for i,j in enumerate(y_test):
|
||||||
y_test[i] = games[j]
|
y_test[i] = games[j]
|
||||||
|
|
||||||
|
np.savetxt("ytest.csv",y_test,delimiter=",",fmt='%d')
|
||||||
|
|
||||||
|
with open('ytest.csv','w',encoding='UTF-8',newline='') as ytest:
|
||||||
|
writer = csv.writer(ytest)
|
||||||
|
writer.writerow(y_test)
|
||||||
|
|
||||||
|
|
||||||
model = tf.keras.models.Sequential([
|
model = tf.keras.models.Sequential([
|
||||||
|
13
evaluation.py
Normal file
13
evaluation.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import tensorflow as tf
|
||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import csv
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
|
||||||
|
x_test = pd.read_csv('xtest.csv')
|
||||||
|
y_test = pd.read_csv('ytest.csv')
|
||||||
|
|
||||||
|
model = tf.keras.models.load_model('./model')
|
||||||
|
|
||||||
|
model.evaluate(x_test, y_test)
|
8
model/keras_metadata.pb
Normal file
8
model/keras_metadata.pb
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
þ#root"_tf_keras_sequential*Ù#{"name": "sequential", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "must_restore_from_config": false, "class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_input"}}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "dtype": "float32", "data_format": "channels_last"}}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.01, "noise_shape": null, "seed": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 1000, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "shared_object_id": 9, "input_spec": [{"class_name": "InputSpec", "config": {"dtype": null, "shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "ndim": 3, "max_ndim": null, "min_ndim": null, "axes": {}}}], "build_input_shape": {"class_name": "TensorShape", "items": [null, 5, 1]}, "is_graph_network": true, "full_save_spec": {"class_name": "__tuple__", "items": [[{"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 5, 1]}, "float32", "flatten_input"]}], {}]}, "save_spec": {"class_name": "TypeSpec", "type_spec": "tf.TensorSpec", "serialized": [{"class_name": "TensorShape", "items": [null, 5, 1]}, "float32", "flatten_input"]}, "keras_version": "2.8.0", "backend": "tensorflow", "model_config": {"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "InputLayer", "config": {"batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "dtype": "float32", "sparse": false, "ragged": false, "name": "flatten_input"}, "shared_object_id": 0}, {"class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 1}, {"class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4}, {"class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.01, "noise_shape": null, "seed": null}, "shared_object_id": 5}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 1000, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 6}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 8}]}}, "training_config": {"loss": "sparse_categorical_crossentropy", "metrics": [[{"class_name": "MeanMetricWrapper", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 11}]], "weighted_metrics": null, "loss_weights": null, "optimizer_config": {"class_name": "Adam", "config": {"name": "Adam", "learning_rate": 0.0010000000474974513, "decay": 0.0, "beta_1": 0.8999999761581421, "beta_2": 0.9990000128746033, "epsilon": 1e-07, "amsgrad": false}}}}2
|
||||||
|
‰root.layer-0"_tf_keras_layer*ß{"name": "flatten", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "stateful": false, "must_restore_from_config": false, "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "batch_input_shape": {"class_name": "__tuple__", "items": [null, 5, 1]}, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 1, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 12}}2
|
||||||
|
Àroot.layer_with_weights-0"_tf_keras_layer*‰{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 256, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 2}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 3}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 4, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 5}}, "shared_object_id": 13}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 5]}}2
|
||||||
|
Äroot.layer-2"_tf_keras_layer*š{"name": "dropout", "trainable": true, "expects_training_arg": true, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dropout", "config": {"name": "dropout", "trainable": true, "dtype": "float32", "rate": 0.01, "noise_shape": null, "seed": null}, "shared_object_id": 5, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2
|
||||||
|
Ìroot.layer_with_weights-1"_tf_keras_layer*•{"name": "dense_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 1000, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 6}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 7}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 8, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 256}}, "shared_object_id": 14}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 256]}}2
|
||||||
|
¹Jroot.keras_api.metrics.0"_tf_keras_metric*‚{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 15}2
|
||||||
|
óKroot.keras_api.metrics.1"_tf_keras_metric*¼{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 11}2
|
BIN
model/saved_model.pb
Normal file
BIN
model/saved_model.pb
Normal file
Binary file not shown.
BIN
model/variables/variables.data-00000-of-00001
Normal file
BIN
model/variables/variables.data-00000-of-00001
Normal file
Binary file not shown.
BIN
model/variables/variables.index
Normal file
BIN
model/variables/variables.index
Normal file
Binary file not shown.
6257
results.csv
Normal file
6257
results.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user