Compare commits

...

5 Commits

Author SHA1 Message Date
cb1e89f1e9 conda env 2022-05-22 12:53:22 +02:00
985f274358 Prześlij pliki do '' 2022-05-15 19:19:58 +02:00
1e81011951 Zaktualizuj 'Dockerfile' 2022-05-01 19:54:04 +02:00
ecfa724759 Zaktualizuj 'Jenkinsfile' 2022-04-27 21:43:43 +02:00
szymonj98
5caee91910 run train after create 2022-04-27 21:28:54 +02:00
5 changed files with 571 additions and 0 deletions

View File

@ -8,5 +8,6 @@ RUN pip3 install pandas
RUN pip3 install numpy
RUN pip3 install sklearn
RUN pip3 install tensorflow
RUN pip3 install matplotlib
COPY ./steam-200k.csv ./
COPY ./biblioteki_dl.py ./

5
Jenkinsfile vendored
View File

@ -37,5 +37,10 @@ pipeline {
archiveArtifacts 'data.csv'
}
}
stage('Stage 2') {
steps {
build job: 's444386-training/training-evaluation/'
}
}
}
}

11
MLproject Normal file
View File

@ -0,0 +1,11 @@
name: MLflow
docker_env:
image: szymonjadczak/mlflow:latest
entry_points:
main:
parameters:
epochs: {type: float, default: 3}
command: "python ./biblioteki_dl.py {epochs}"

415
environment.yml Normal file
View File

@ -0,0 +1,415 @@
name: null
channels:
- defaults
dependencies:
- _anaconda_depends=2021.11=py39_0
- alabaster=0.7.12=pyhd3eb1b0_0
- anaconda=custom=py39_1
- anaconda-client=1.9.0=py39haa95532_0
- anaconda-project=0.10.2=pyhd3eb1b0_0
- anyio=3.5.0=py39haa95532_0
- appdirs=1.4.4=pyhd3eb1b0_0
- argh=0.26.2=py39haa95532_0
- argon2-cffi=21.3.0=pyhd3eb1b0_0
- argon2-cffi-bindings=21.2.0=py39h2bbff1b_0
- arrow=1.2.2=pyhd3eb1b0_0
- asn1crypto=1.5.1=py39haa95532_0
- astroid=2.6.6=py39haa95532_0
- astropy=5.0.4=py39h080aedc_0
- asttokens=2.0.5=pyhd3eb1b0_0
- async_generator=1.10=pyhd3eb1b0_0
- atomicwrites=1.4.0=py_0
- attrs=21.4.0=pyhd3eb1b0_0
- autopep8=1.6.0=pyhd3eb1b0_0
- babel=2.9.1=pyhd3eb1b0_0
- backcall=0.2.0=pyhd3eb1b0_0
- backports=1.1=pyhd3eb1b0_0
- backports.shutil_get_terminal_size=1.0.0=pyhd3eb1b0_3
- bcrypt=3.2.0=py39h196d8e1_0
- beautifulsoup4=4.11.1=py39haa95532_0
- binaryornot=0.4.4=pyhd3eb1b0_1
- bitarray=2.5.0=py39h2bbff1b_0
- bkcharts=0.2=py39haa95532_0
- black=19.10b0=py_0
- blas=1.0=mkl
- bleach=4.1.0=pyhd3eb1b0_0
- blosc=1.21.0=h19a0ad4_0
- bokeh=2.4.2=py39haa95532_1
- boto=2.49.0=py39haa95532_0
- bottleneck=1.3.4=py39h080aedc_0
- brotli=1.0.9=ha925a31_2
- brotlipy=0.7.0=py39h2bbff1b_1003
- bzip2=1.0.8=he774522_0
- ca-certificates=2022.4.26=haa95532_0
- cached-property=1.5.2=py_0
- certifi=2022.5.18.1=py39haa95532_0
- cffi=1.15.0=py39h2bbff1b_1
- cfitsio=3.470=he774522_6
- chardet=4.0.0=py39haa95532_1003
- charls=2.2.0=h6c2663c_0
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- click=8.0.4=py39haa95532_0
- cloudpickle=2.0.0=pyhd3eb1b0_0
- clyent=1.2.2=py39haa95532_1
- colorama=0.4.4=pyhd3eb1b0_0
- comtypes=1.1.10=py39haa95532_1002
- conda=4.12.0=py39haa95532_0
- conda-content-trust=0.1.1=pyhd3eb1b0_0
- conda-pack=0.6.0=pyhd3eb1b0_0
- conda-package-handling=1.8.1=py39h8cc25b3_0
- conda-token=0.3.0=pyhd3eb1b0_0
- console_shortcut=0.1.1=4
- contextlib2=0.6.0.post1=pyhd3eb1b0_0
- cookiecutter=1.7.3=pyhd3eb1b0_0
- cryptography=37.0.1=py39h21b164f_0
- curl=7.82.0=h2bbff1b_0
- cycler=0.11.0=pyhd3eb1b0_0
- cython=0.29.28=py39hd77b12b_0
- cytoolz=0.11.0=py39h2bbff1b_0
- daal4py=2021.5.0=py39h8cb3d55_0
- dal=2021.5.0=haa95532_796
- dask=2022.2.1=pyhd3eb1b0_0
- dask-core=2022.2.1=pyhd3eb1b0_0
- dataclasses=0.8=pyh6d0b6a4_7
- debugpy=1.5.1=py39hd77b12b_0
- decorator=5.1.1=pyhd3eb1b0_0
- defusedxml=0.7.1=pyhd3eb1b0_0
- diff-match-patch=20200713=pyhd3eb1b0_0
- distributed=2022.2.1=pyhd3eb1b0_0
- docutils=0.17.1=py39haa95532_1
- entrypoints=0.4=py39haa95532_0
- et_xmlfile=1.1.0=py39haa95532_0
- executing=0.8.3=pyhd3eb1b0_0
- fastcache=1.1.0=py39h196d8e1_0
- filelock=3.6.0=pyhd3eb1b0_0
- flake8=3.9.2=pyhd3eb1b0_0
- flask=2.0.3=pyhd3eb1b0_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.10.4=hd328e21_0
- fsspec=2022.3.0=py39haa95532_0
- get_terminal_size=1.0.0=h38e98db_0
- gevent=21.8.0=py39h2bbff1b_1
- giflib=5.2.1=h62dcd97_0
- glob2=0.7=pyhd3eb1b0_0
- greenlet=1.1.1=py39hd77b12b_0
- h5py=3.6.0=py39h3de5c98_0
- hdf5=1.10.6=h7ebc959_0
- heapdict=1.0.1=pyhd3eb1b0_0
- html5lib=1.1=pyhd3eb1b0_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=3.3=pyhd3eb1b0_0
- imagecodecs=2021.8.26=py39ha1f97ea_0
- imageio=2.9.0=pyhd3eb1b0_0
- imagesize=1.3.0=pyhd3eb1b0_0
- importlib-metadata=4.11.3=py39haa95532_0
- importlib_metadata=4.11.3=hd3eb1b0_0
- inflection=0.5.1=py39haa95532_0
- iniconfig=1.1.1=pyhd3eb1b0_0
- intel-openmp=2021.4.0=haa95532_3556
- intervaltree=3.1.0=pyhd3eb1b0_0
- ipykernel=6.9.1=py39haa95532_0
- ipython=8.3.0=py39haa95532_0
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- ipywidgets=7.6.5=pyhd3eb1b0_1
- isort=5.9.3=pyhd3eb1b0_0
- itsdangerous=2.0.1=pyhd3eb1b0_0
- jdcal=1.4.1=pyhd3eb1b0_0
- jedi=0.18.1=py39haa95532_1
- jinja2=3.0.3=pyhd3eb1b0_0
- jinja2-time=0.2.0=pyhd3eb1b0_3
- joblib=1.1.0=pyhd3eb1b0_0
- jpeg=9e=h2bbff1b_0
- json5=0.9.6=pyhd3eb1b0_0
- jsonschema=4.4.0=py39haa95532_0
- jupyter=1.0.0=py39haa95532_7
- jupyter_client=6.1.12=pyhd3eb1b0_0
- jupyter_console=6.4.0=pyhd3eb1b0_0
- jupyter_core=4.10.0=py39haa95532_0
- jupyter_server=1.13.5=pyhd3eb1b0_0
- jupyterlab=3.3.2=pyhd3eb1b0_0
- jupyterlab_pygments=0.1.2=py_0
- jupyterlab_server=2.12.0=py39haa95532_0
- jupyterlab_widgets=1.0.0=pyhd3eb1b0_1
- keyring=23.4.0=py39haa95532_0
- kiwisolver=1.3.2=py39hd77b12b_0
- krb5=1.19.2=h5b6d351_0
- lazy-object-proxy=1.6.0=py39h2bbff1b_0
- lcms2=2.12=h83e58a3_0
- lerc=3.0=hd77b12b_0
- libaec=1.0.4=h33f27b4_1
- libarchive=3.4.2=h5e25573_0
- libcurl=7.82.0=h86230a5_0
- libdeflate=1.8=h2bbff1b_5
- libiconv=1.16=h2bbff1b_2
- liblief=0.11.5=hd77b12b_1
- libpng=1.6.37=h2a8f88b_0
- libspatialindex=1.9.3=h6c2663c_0
- libssh2=1.10.0=hcd4344a_0
- libtiff=4.2.0=hd0e1b90_0
- libwebp=1.2.2=h2bbff1b_0
- libxml2=2.9.12=h0ad7f3c_2
- libxslt=1.1.34=he774522_0
- libzopfli=1.0.3=ha925a31_0
- llvmlite=0.38.0=py39h23ce68f_0
- locket=1.0.0=py39haa95532_0
- lxml=4.8.0=py39h1985fb9_0
- lz4-c=1.9.3=h2bbff1b_1
- lzo=2.10=he774522_2
- m2w64-gcc-libgfortran=5.3.0=6
- m2w64-gcc-libs=5.3.0=7
- m2w64-gcc-libs-core=5.3.0=7
- m2w64-gmp=6.1.0=2
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
- markupsafe=2.0.1=py39h2bbff1b_0
- matplotlib=3.5.1=py39haa95532_1
- matplotlib-base=3.5.1=py39hd77b12b_1
- matplotlib-inline=0.1.2=pyhd3eb1b0_2
- mccabe=0.6.1=py39haa95532_1
- menuinst=1.4.18=py39h59b6b97_0
- mistune=0.8.4=py39h2bbff1b_1000
- mkl=2021.4.0=haa95532_640
- mkl-service=2.4.0=py39h2bbff1b_0
- mkl_fft=1.3.1=py39h277e83a_0
- mkl_random=1.2.2=py39hf11a4ad_0
- mock=4.0.3=pyhd3eb1b0_0
- more-itertools=8.12.0=pyhd3eb1b0_0
- mpmath=1.2.1=py39haa95532_0
- msgpack-python=1.0.3=py39h59b6b97_0
- msys2-conda-epoch=20160418=1
- multipledispatch=0.6.0=py39haa95532_0
- munkres=1.1.4=py_0
- mypy_extensions=0.4.3=py39haa95532_1
- nbclassic=0.3.5=pyhd3eb1b0_0
- nbclient=0.5.13=py39haa95532_0
- nbconvert=6.4.4=py39haa95532_0
- nbformat=5.3.0=py39haa95532_0
- nest-asyncio=1.5.5=py39haa95532_0
- networkx=2.7.1=pyhd3eb1b0_0
- nltk=3.7=pyhd3eb1b0_0
- nose=1.3.7=pyhd3eb1b0_1008
- notebook=6.4.11=py39haa95532_0
- numba=0.55.1=py39hf11a4ad_0
- numexpr=2.8.1=py39hb80d3ca_0
- numpy=1.21.5=py39h7a0a035_2
- numpy-base=1.21.5=py39hca35cd5_2
- numpydoc=1.2=pyhd3eb1b0_0
- olefile=0.46=pyhd3eb1b0_0
- openjpeg=2.4.0=h4fc8c34_0
- openpyxl=3.0.9=pyhd3eb1b0_0
- openssl=1.1.1o=h2bbff1b_0
- packaging=21.3=pyhd3eb1b0_0
- pandas=1.4.2=py39hd77b12b_0
- pandocfilters=1.5.0=pyhd3eb1b0_0
- paramiko=2.8.1=pyhd3eb1b0_0
- parso=0.8.3=pyhd3eb1b0_0
- partd=1.2.0=pyhd3eb1b0_1
- path=16.2.0=pyhd3eb1b0_0
- path.py=12.5.0=hd3eb1b0_0
- pathlib2=2.3.6=py39haa95532_2
- pathspec=0.7.0=py_0
- patsy=0.5.2=py39haa95532_1
- pep8=1.7.1=py39haa95532_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=9.0.1=py39hdc2b20a_0
- pip=21.2.4=py39haa95532_0
- pkginfo=1.8.2=pyhd3eb1b0_0
- pluggy=1.0.0=py39haa95532_1
- ply=3.11=py39haa95532_0
- powershell_shortcut=0.0.1=3
- poyo=0.5.0=pyhd3eb1b0_0
- prometheus_client=0.13.1=pyhd3eb1b0_0
- prompt-toolkit=3.0.20=pyhd3eb1b0_0
- prompt_toolkit=3.0.20=hd3eb1b0_0
- psutil=5.8.0=py39h2bbff1b_1
- ptyprocess=0.7.0=pyhd3eb1b0_2
- pure_eval=0.2.2=pyhd3eb1b0_0
- py=1.11.0=pyhd3eb1b0_0
- py-lief=0.11.5=py39hd77b12b_1
- pycodestyle=2.7.0=pyhd3eb1b0_0
- pycosat=0.6.3=py39h2bbff1b_0
- pycparser=2.21=pyhd3eb1b0_0
- pycurl=7.44.1=py39hcd4344a_1
- pydocstyle=6.1.1=pyhd3eb1b0_0
- pyerfa=2.0.0=py39h2bbff1b_0
- pyflakes=2.3.1=pyhd3eb1b0_0
- pygments=2.11.2=pyhd3eb1b0_0
- pylint=2.9.6=py39haa95532_1
- pyls-spyder=0.4.0=pyhd3eb1b0_0
- pynacl=1.4.0=py39hbd8134f_1
- pyodbc=4.0.32=py39hd77b12b_1
- pyopenssl=22.0.0=pyhd3eb1b0_0
- pyparsing=3.0.4=pyhd3eb1b0_0
- pyqt=5.9.2=py39hd77b12b_6
- pyreadline=2.1=py39haa95532_1
- pyrsistent=0.18.0=py39h196d8e1_0
- pysocks=1.7.1=py39haa95532_0
- pytables=3.6.1=py39h56d22b6_1
- pytest=7.1.1=py39haa95532_0
- python=3.9.2=h6244533_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- python-fastjsonschema=2.15.1=pyhd3eb1b0_0
- python-libarchive-c=2.9=pyhd3eb1b0_1
- python-lsp-black=1.0.0=pyhd3eb1b0_0
- python-lsp-jsonrpc=1.0.0=pyhd3eb1b0_0
- python-lsp-server=1.2.4=pyhd3eb1b0_0
- python-slugify=5.0.2=pyhd3eb1b0_0
- pytz=2021.3=pyhd3eb1b0_0
- pywavelets=1.3.0=py39h2bbff1b_0
- pywin32-ctypes=0.2.0=py39haa95532_1000
- pywinpty=2.0.2=py39h5da7b33_0
- pyyaml=6.0=py39h2bbff1b_1
- pyzmq=22.3.0=py39hd77b12b_2
- qdarkstyle=3.0.2=pyhd3eb1b0_0
- qstylizer=0.1.10=pyhd3eb1b0_0
- qt=5.9.7=vc14h73c81de_0
- qtawesome=1.0.3=pyhd3eb1b0_0
- qtconsole=5.3.0=pyhd3eb1b0_0
- qtpy=2.0.1=pyhd3eb1b0_0
- regex=2022.3.15=py39h2bbff1b_0
- requests=2.27.1=pyhd3eb1b0_0
- rope=0.22.0=pyhd3eb1b0_0
- rtree=0.9.7=py39h2eaa2aa_1
- ruamel_yaml=0.15.100=py39h2bbff1b_0
- scikit-image=0.19.2=py39hf11a4ad_0
- scikit-learn=1.0.2=py39hf11a4ad_1
- scikit-learn-intelex=2021.5.0=py39haa95532_0
- scipy=1.7.3=py39h0a974cb_0
- seaborn=0.11.2=pyhd3eb1b0_0
- send2trash=1.8.0=pyhd3eb1b0_1
- setuptools=61.2.0=py39haa95532_0
- simplegeneric=0.8.1=py39haa95532_2
- singledispatch=3.7.0=pyhd3eb1b0_1001
- sip=4.19.13=py39hd77b12b_0
- six=1.16.0=pyhd3eb1b0_1
- snappy=1.1.9=h6c2663c_0
- sniffio=1.2.0=py39haa95532_1
- snowballstemmer=2.2.0=pyhd3eb1b0_0
- sortedcollections=2.1.0=pyhd3eb1b0_0
- sortedcontainers=2.4.0=pyhd3eb1b0_0
- soupsieve=2.3.1=pyhd3eb1b0_0
- sphinx=4.4.0=pyhd3eb1b0_0
- sphinxcontrib=1.0=py39haa95532_1
- sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0
- sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0
- sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0
- sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0
- sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0
- sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0
- sphinxcontrib-websupport=1.2.4=py_0
- spyder=5.1.5=py39haa95532_1
- spyder-kernels=2.1.3=py39haa95532_0
- sqlalchemy=1.4.32=py39h2bbff1b_0
- sqlite=3.38.3=h2bbff1b_0
- stack_data=0.2.0=pyhd3eb1b0_0
- statsmodels=0.13.2=py39h2bbff1b_0
- sympy=1.10.1=py39haa95532_0
- tbb=2021.5.0=h59b6b97_0
- tbb4py=2021.5.0=py39h59b6b97_0
- tblib=1.7.0=pyhd3eb1b0_0
- terminado=0.13.1=py39haa95532_0
- testpath=0.5.0=pyhd3eb1b0_0
- text-unidecode=1.3=pyhd3eb1b0_0
- textdistance=4.2.1=pyhd3eb1b0_0
- threadpoolctl=2.2.0=pyh0d69192_0
- three-merge=0.1.1=pyhd3eb1b0_0
- tifffile=2021.7.2=pyhd3eb1b0_2
- tinycss=0.4=pyhd3eb1b0_1002
- tk=8.6.11=h2bbff1b_1
- toml=0.10.2=pyhd3eb1b0_0
- tomli=1.2.2=pyhd3eb1b0_0
- toolz=0.11.2=pyhd3eb1b0_0
- tornado=6.1=py39h2bbff1b_0
- tqdm=4.64.0=py39haa95532_0
- traitlets=5.1.1=pyhd3eb1b0_0
- typed-ast=1.4.3=py39h2bbff1b_1
- typing-extensions=4.1.1=hd3eb1b0_0
- typing_extensions=4.1.1=pyh06a4308_0
- tzdata=2022a=hda174b7_0
- ujson=5.1.0=py39hd77b12b_0
- unicodecsv=0.14.1=py39haa95532_0
- unidecode=1.2.0=pyhd3eb1b0_0
- urllib3=1.26.9=py39haa95532_0
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- watchdog=2.1.6=py39haa95532_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- webencodings=0.5.1=py39haa95532_1
- websocket-client=0.58.0=py39haa95532_4
- werkzeug=2.0.3=pyhd3eb1b0_0
- wheel=0.37.1=pyhd3eb1b0_0
- whichcraft=0.6.1=pyhd3eb1b0_0
- widgetsnbextension=3.5.2=py39haa95532_0
- win_inet_pton=1.1.0=py39haa95532_0
- win_unicode_console=0.5=py39haa95532_0
- wincertstore=0.2=py39haa95532_2
- winpty=0.4.3=4
- wrapt=1.12.1=py39h196d8e1_1
- xlrd=2.0.1=pyhd3eb1b0_0
- xlsxwriter=3.0.3=pyhd3eb1b0_0
- xlwings=0.24.9=py39haa95532_0
- xlwt=1.3.0=py39haa95532_0
- xz=5.2.5=h8cc25b3_1
- yaml=0.2.5=he774522_0
- yapf=0.31.0=pyhd3eb1b0_0
- zfp=0.5.5=hd77b12b_6
- zict=2.0.0=pyhd3eb1b0_0
- zipp=3.8.0=py39haa95532_0
- zlib=1.2.12=h8cc25b3_2
- zope=1.0=py39haa95532_1
- zope.event=4.5.0=py39haa95532_0
- zope.interface=5.4.0=py39h2bbff1b_0
- zstd=1.4.9=h19a0ad4_0
- pip:
- absl-py==1.0.0
- alembic==1.7.7
- astunparse==1.6.3
- cachetools==5.1.0
- databricks-cli==0.16.6
- docker==5.0.3
- docopt==0.6.2
- flatbuffers==1.12
- gast==0.4.0
- gitdb==4.0.9
- gitpython==3.1.27
- google-auth==2.6.6
- google-auth-oauthlib==0.4.6
- google-pasta==0.2.0
- grpcio==1.46.3
- jsonpickle==1.5.2
- kaggle==1.5.12
- keras==2.9.0
- keras-preprocessing==1.1.2
- libclang==14.0.1
- mako==1.2.0
- markdown==3.3.7
- mlflow==1.26.0
- munch==2.5.0
- oauthlib==3.2.0
- opt-einsum==3.3.0
- prometheus-flask-exporter==0.20.1
- protobuf==3.20.1
- py-cpuinfo==8.0.0
- pyasn1==0.4.8
- pyasn1-modules==0.2.8
- pyjwt==2.4.0
- pymongo==4.1.1
- pywin32==227
- querystring-parser==1.2.4
- requests-oauthlib==1.3.1
- rsa==4.8
- sacred==0.8.2
- sklearn==0.0
- smmap==5.0.0
- sqlparse==0.4.2
- tabulate==0.8.9
- tensorboard==2.9.0
- tensorboard-data-server==0.6.1
- tensorboard-plugin-wit==1.8.1
- tensorflow==2.9.0
- tensorflow-estimator==2.9.0
- tensorflow-io-gcs-filesystem==0.26.0
- termcolor==1.1.0
- waitress==2.1.1
prefix: D:\anaconda\envs\s444386

139
mlflow.py Normal file
View File

@ -0,0 +1,139 @@
import tensorflow as tf
import os
import pandas as pd
import numpy as np
import csv
from sklearn.model_selection import train_test_split
import sys
import mlflow
# os.system("kaggle datasets download -d tamber/steam-video-games")
# os.system("unzip -o steam-video-games.zip")
with mlflow.start_run():
epoch = int(sys.argv[1])
steam=pd.read_csv('data.csv',usecols=[0,1,2,3],names=['userId','game','behavior','hoursPlayed'])
steam.isnull().values.any()
steam['userId'] = steam.userId.astype(str)
purchaseCount = steam[steam["behavior"] != "play"]["game"].value_counts()
playCount = steam[steam["behavior"] != "purchase"]["game"].value_counts()
playerPurchaseCount = steam[steam["behavior"] != "play"]["userId"].value_counts()
playerPlayCount = steam[steam["behavior"] != "purchase"]["userId"].value_counts()
steam = steam[steam['behavior'] != 'purchase']
steam = steam.groupby("game").filter(lambda x: len(x)>10)
size=int(len(steam)/10)
meanGame = steam[steam["behavior"] != "purchase"].groupby("game").mean()
meanGame = meanGame.to_dict()
meanGame = meanGame['hoursPlayed']
purchaseCount = purchaseCount.to_dict()
playCount = playCount.to_dict()
playerPurchaseCount = playerPurchaseCount.to_dict()
playerPlayCount = playerPlayCount.to_dict()
steam['meanTime'] = 0;
steam['purchaseCount'] = 0;
steam['playCount'] = 0;
steam['playerPurchaseCount'] =0;
steam['playerPlayCount'] =0;
steam['playPercent'] =0;
for i in steam.index:
steam.at[i,'meanTime'] = meanGame[steam.at[i,'game']]
steam.at[i,'purchaseCount'] = purchaseCount[steam.at[i,'game']]
steam.at[i,'playCount'] = playCount[steam.at[i,'game']]
steam.at[i,'playerPurchaseCount'] = playerPurchaseCount[steam.at[i,'userId']]
steam.at[i,'playerPlayCount'] = playerPlayCount[steam.at[i,'userId']]
steam.at[i,'playPercent'] = playerPlayCount[steam.at[i,'userId']]/playerPurchaseCount[steam.at[i,'userId']]
steam_train, steam_test = train_test_split(steam, test_size=size, random_state=1, stratify=steam["game"])
steam_train, steam_dev = train_test_split(steam_train, test_size=size, random_state=1, stratify=steam_train["game"])
print(steam)
games = {}
for i in steam['game']:
games[i] = 0
j=0
for key,game in games.items():
games[key]=j
j=j+1
for i in steam['game']:
i = games[i]
invGames = {v: k for k, v in games.items()}
x_train = steam_train[['hoursPlayed','purchaseCount','playCount','playerPlayCount','playerPurchaseCount']]
y_train = steam_train['game']
x_test = steam_test[['hoursPlayed','purchaseCount','playCount','playerPlayCount','playerPurchaseCount']]
y_test = steam_test['game']
x_train = np.array(x_train)
y_train = np.array(y_train)
x_test = np.array(x_test)
y_test = np.array(y_test)
with open('xtest.csv','w',encoding='UTF-8',newline='') as xtest:
writer = csv.writer(xtest)
for i in x_test:
writer.writerow(i)
for i,j in enumerate(y_train):
y_train[i] = games[j]
for i,j in enumerate(y_test):
y_test[i] = games[j]
np.savetxt("ytest.csv",y_test,delimiter=",",fmt='%d')
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(5,1)),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout(0.01),
tf.keras.layers.Dense(1000, activation='softmax')
])
mlflow.log_param("layers dense relu",256)
mlflow.log_param("layers droout",0.01)
mlflow.log_param("layers dense softmax",1000)
mlflow.log_param("iterations",epoch)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
y_train = np.array(y_train).astype(np.float32)
y_test = np.array(y_test).astype(np.float32)
model.fit(x_train, y_train, epochs=epoch)
eval = model.evaluate(x_test, y_test)
mlflow.log_metric("accuraccy", eval[1])
prediction = model.predict(x_test)
classes_x=np.argmax(prediction,axis=1)
rows = []
for j,i in enumerate(classes_x):
row = [invGames[i],invGames[y_test[j]]]
rows.append(row)
with open('results.csv','w',encoding='UTF-8',newline='') as f:
writer = csv.writer(f)
writer.writerow(["predicted", "expected"])
for row in rows:
writer.writerow(row)
model.save('./model')