Bootstrap-t-student/bootstrap-t.ipynb

493 lines
16 KiB
Plaintext
Raw Normal View History

2022-05-11 15:02:15 +02:00
{
"cells": [
2022-05-13 22:06:56 +02:00
{
"cell_type": "markdown",
2022-05-17 17:27:59 +02:00
"metadata": {},
2022-05-13 22:06:56 +02:00
"source": [
2022-05-17 17:27:59 +02:00
"# Projekt - Test t studenta\n",
"\n",
"- Marcin Kostrzewski\n",
"- Krystian Wasilewski\n",
"- Mateusz Tylka\n",
"\n",
"## Test t studenta\n",
"\n",
"Metoda statystyczna służącą do porównania dwóch średnich między sobą gdy znamy liczbę badanych próbek, średnią arytmetyczną oraz wartość odchylenia standardowego lub wariancji.\n",
"Jest to jeden z mniej skomplikowanych i bardzo często wykorzystywanych testów statystycznych używanych do weryfikacji hipotez. Dzięki niemu możemy dowiedzieć się czy dwie różne średnie są różne niechcący (w wyniku przypadku) czy są różne istotnie statystycznie (np. z uwagi na naszą manipulację eksperymentalna).\n",
"Wyróżniamy 3 wersję testu t:\n",
"\n",
"1. test t Studenta dla jednej próby\n",
"2. test t Studenta dla prób niezależnych\n",
"3. test t Studenta dla prób zależnych\n",
"\n",
"Wszystkie rodzaje testów są testami parametrycznymi, a co za tym idzie nasze mierzone zmienne ilościowe powinny mieć rozkład normalny."
2022-05-16 23:34:31 +02:00
]
2022-05-13 22:06:56 +02:00
},
{
2022-05-17 17:27:59 +02:00
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 313,
2022-05-16 23:34:31 +02:00
"metadata": {
2022-05-17 17:27:59 +02:00
"pycharm": {
"name": "#%%\n"
}
2022-05-16 23:34:31 +02:00
},
2022-05-17 17:27:59 +02:00
"outputs": [],
2022-05-13 22:06:56 +02:00
"source": [
2022-05-17 17:27:59 +02:00
"import numpy as np\n",
"import pandas as pd\n",
2022-05-17 19:40:13 +02:00
"from enum import Enum\n",
2022-05-17 17:27:59 +02:00
"from math import sqrt\n",
2022-05-17 17:58:54 +02:00
"from scipy import stats\n",
2022-05-17 17:27:59 +02:00
"from scipy.stats import sem\n",
"from scipy.stats import t\n",
"import matplotlib.pyplot as plt\n",
"from statistics import mean, stdev\n",
"from scipy.stats import ttest_ind, ttest_1samp, ttest_rel"
2022-05-16 23:34:31 +02:00
]
2022-05-13 22:06:56 +02:00
},
2022-05-11 15:02:15 +02:00
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 314,
2022-05-17 17:27:59 +02:00
"metadata": {},
2022-05-17 13:58:25 +02:00
"outputs": [],
"source": [
2022-05-17 17:27:59 +02:00
"dataset = pd.read_csv('experiment_data.csv')"
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 315,
2022-05-17 17:27:59 +02:00
"metadata": {},
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"class Alternatives(Enum):\n",
" LESS = 'less'\n",
" GREATER = 'greater'"
2022-05-17 17:27:59 +02:00
]
2022-05-17 13:58:25 +02:00
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 316,
2022-05-17 17:27:59 +02:00
"metadata": {},
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def calculate_t_difference(t_stat_sample, t_stat_list, alternative):\n",
" \"\"\"\n",
" Funkcja oblicza procent statystyk testowych powstałych z prób bootstrapowych, \n",
" które róznią się od statystyki testowej powstałej ze zbioru według hipotezy alternatywnej.\n",
" \"\"\"\n",
" all_stats = len(t_stat_list)\n",
" stats_different_count = 0\n",
" for t_stat_boot in t_stat_list:\n",
" if alternative is Alternatives.LESS and t_stat_boot < t_stat_sample:\n",
" stats_different_count += 1 \n",
" elif alternative is Alternatives.GREATER and t_stat_boot > t_stat_sample:\n",
" stats_different_count += 1\n",
" return stats_different_count / all_stats"
2022-05-17 17:27:59 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 317,
2022-05-11 15:02:15 +02:00
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def t_test_1_samp(sample_1, population_mean=None, alternative=Alternatives.LESS):\n",
2022-05-17 17:27:59 +02:00
" \"\"\"\n",
2022-05-17 19:40:13 +02:00
" Funkcja przeprowadza test T-studenta dla jednej zmiennej.\n",
2022-05-17 17:27:59 +02:00
" \"\"\"\n",
2022-05-17 19:40:13 +02:00
" t_stat_from_sample, _ = ttest_1samp(a=sample_1, popmean=population_mean, alternative=alternative.value)\n",
" t_stat_list = get_t_stats(sample_1, t_stat_fn=ttest_1samp, alternative=alternative, population_mean=population_mean)\n",
"\n",
" p = calculate_t_difference(t_stat_from_sample, t_stat_list, alternative)\n",
2022-05-17 17:27:59 +02:00
"\n",
2022-05-17 20:56:02 +02:00
" return p, t_stat_from_sample, t_stat_list"
2022-05-17 19:40:13 +02:00
]
},
{
"cell_type": "code",
"execution_count": 318,
"metadata": {},
"outputs": [],
"source": [
"def t_test_ind(sample_1, sample_2, alternative=Alternatives.LESS):\n",
" \"\"\"\n",
" Funkcja przeprowadza test T-studenta dla dwóch zmiennych niezależnych.\n",
" \"\"\"\n",
" t_stat_from_sample, _ = ttest_ind(sample_1, sample_2, alternative=alternative.value)\n",
" t_stat_list = get_t_stats(sample_1, sample_2, alternative=alternative, t_stat_fn=ttest_ind)\n",
2022-05-17 17:27:59 +02:00
"\n",
2022-05-17 19:40:13 +02:00
" p = calculate_t_difference(t_stat_from_sample, t_stat_list, alternative)\n",
2022-05-17 17:27:59 +02:00
"\n",
2022-05-17 20:56:02 +02:00
" return p, t_stat_from_sample, t_stat_list"
2022-05-17 17:27:59 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 319,
2022-05-17 17:27:59 +02:00
"metadata": {},
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def t_test_dep(sample_1, sample_2, alternative=Alternatives.LESS):\n",
" \"\"\"\n",
" Funkcja przeprowadza test T-studenta dla dwóch zmiennych zależnych.\n",
" \"\"\"\n",
" t_stat_list = get_t_stats(sample_1, sample_2, alternative=alternative, t_stat_fn=ttest_rel)\n",
" t_stat_from_sample, _ = ttest_rel(sample_1, sample_2, alternative=alternative.value)\n",
"\n",
" p = calculate_t_difference(t_stat_from_sample, t_stat_list, alternative)\n",
"\n",
2022-05-17 20:56:02 +02:00
" return p, t_stat_from_sample, t_stat_list"
2022-05-17 19:40:13 +02:00
]
},
{
"cell_type": "code",
"execution_count": 320,
"metadata": {},
"outputs": [],
"source": [
"def get_t_stats(sample_1, sample_2=None, t_stat_fn=ttest_1samp, alternative=Alternatives.LESS, population_mean=None):\n",
2022-05-17 17:27:59 +02:00
" \"\"\"Funkcja oblicza listę statystyk testowych dla każdej próbki bootstrapowej wybranej na podstawie danych sample_1 i sample_2\"\"\"\n",
" t_stat_list = []\n",
"\n",
" # One sample test\n",
2022-05-17 19:40:13 +02:00
" if t_stat_fn is ttest_1samp and sample_2 is None:\n",
2022-05-17 17:27:59 +02:00
" if not population_mean:\n",
" raise Exception(\"population_mean not provided\")\n",
" for bootstrap in generate_bootstraps(sample_1):\n",
2022-05-17 19:40:13 +02:00
" stat, _ = t_stat_fn(bootstrap, population_mean, alternative=alternative.value)\n",
2022-05-17 17:27:59 +02:00
" t_stat_list.append(stat)\n",
" return t_stat_list\n",
"\n",
" # Two sample test\n",
2022-05-17 19:40:13 +02:00
" for bootstrap_sample in generate_bootstraps(pd.concat((sample_1, sample_2))):\n",
" bootstrap_1, bootstrap_2 = bootstrap_sample.iloc[: round(len(bootstrap_sample) * 0.5)], bootstrap_sample.iloc[: round(-len(bootstrap_sample) * 0.5)]\n",
" stat, _ = t_stat_fn(bootstrap_1, bootstrap_2, alternative=alternative.value)\n",
2022-05-17 17:27:59 +02:00
" t_stat_list.append(stat)\n",
" return t_stat_list"
]
},
2022-05-17 17:58:54 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test Shapiro Wilka\n",
"\n",
"Wszystkie rodzaje testów są testami parametrycznymi, a co za tym idzie nasze mierzone zmienne ilościowe powinny mieć rozkład normalny."
]
},
2022-05-17 17:27:59 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testowanie hipotez metodą bootstrap\n",
"\n",
"**Bootstrap**  metoda szacowania (estymacji) wyników poprzez wielokrotne losowanie ze zwracaniem z próby. Polega ona na utworzeniu nowego rozkładu wyników, na podstawie posiadanych danych, poprzez wielokrotne losowanie wartości z posiadanej próby. Metoda ze zwracaniem polega na tym, że po wylosowaniu danej wartości, “wraca” ona z powrotem do zbioru.\n",
"\n",
"Metoda bootstrapowa znajduje zastosowanie w sytuacji, w której nie znamy rozkładu z populacji z której pochodzi próbka lub w przypadku rozkładów małych lub asymetrycznych. W takim wypadku, dzięki tej metodzie, wyniki testów parametrycznych i analiz opartych o modele liniowe są bardziej precyzyjne. Zazwyczaj losuje się wiele próbek, np. 2000 czy 5000."
2022-05-11 15:02:15 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 321,
2022-05-11 15:02:15 +02:00
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"def generate_bootstraps(data, n_bootstraps=100):\n",
" data_size = data.shape[0]\n",
2022-05-13 22:06:56 +02:00
" for _ in range(n_bootstraps):\n",
" indices = np.random.choice(len(data), size=data_size)\n",
" yield data.iloc[indices, :]"
2022-05-11 15:02:15 +02:00
]
},
2022-05-17 17:27:59 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Test t studenta dla jednej próby\n",
"\n",
"**Test t Studenta dla jednej próby** wykorzystujemy gdy chcemy porównać średnią “teoretyczną” ze średnią, którą faktycznie możemy zaobserwować w naszej bazie danych. Średnia teoretyczna to średnia pochodząca z innych badań lub po prostu bez większych uzasadnień pochodząca z naszej głowy.\n",
"\n",
"Wyobraźmy sobie, że mamy dane z takimi zmiennymi jak wzrost pewnej grupy ludzi. Dzięki testowi t Studenta dla jednej próby możemy dowiedzieć się np. czy wzrost naszego młodszego brata wynoszący 155cm odbiega znacząco od średniej wzrostu tej grupy. Hipoteza zerowa w takim badaniu wyglądałaby następująco H0: Badana próba została wylosowana z populacji, w której wzrost osób wynosi średnio 155cm. Z kolei hipoteza alternatywna będzie brzmiała H1: Badana próba nie została wylosowana z populacji gdzie średni wzrost wynosi 155cm\n"
]
},
2022-05-11 15:02:15 +02:00
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 322,
2022-05-16 23:34:31 +02:00
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
2022-05-14 15:31:47 +02:00
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def bootstrap_one_sample(sample, population_mean, alternative=Alternatives.LESS):\n",
" return t_test_1_samp(\n",
" sample_1=sample,\n",
" population_mean=population_mean,\n",
" alternative=alternative,\n",
" )"
2022-05-16 23:34:31 +02:00
]
},
{
2022-05-17 19:40:13 +02:00
"cell_type": "markdown",
2022-05-17 17:27:59 +02:00
"metadata": {},
"source": [
2022-05-17 19:40:13 +02:00
"### Sprawdzenie czy osoba o wzroście 165cm pasuje do populacji (nie jest odmieńcem)"
2022-05-17 17:27:59 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 323,
2022-05-17 17:27:59 +02:00
"metadata": {},
2022-05-17 19:40:13 +02:00
"outputs": [],
2022-05-17 17:27:59 +02:00
"source": [
2022-05-17 19:40:13 +02:00
"dummy = pd.DataFrame([1, 2, 3, 4, 5])\n",
"dummy2 = pd.DataFrame([4, 5, 6, 7, 8])\n",
"dummy3 = pd.DataFrame([1, 3 , 3, 4, 6])"
2022-05-16 23:34:31 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 324,
2022-05-14 15:31:47 +02:00
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
2022-05-16 23:34:31 +02:00
},
2022-05-17 17:27:59 +02:00
"outputs": [
{
2022-05-17 19:40:13 +02:00
"name": "stdout",
2022-05-17 20:56:02 +02:00
"output_type": "stream",
2022-05-17 17:27:59 +02:00
"text": [
2022-05-17 19:40:13 +02:00
"p: 0.73\n"
2022-05-17 17:27:59 +02:00
]
}
],
2022-05-14 15:31:47 +02:00
"source": [
2022-05-17 17:27:59 +02:00
"#TODO: poprawić kod aby można było podawać kolumny\n",
"\n",
2022-05-17 19:40:13 +02:00
"p, _ = bootstrap_one_sample(dummy, 165)\n",
"print(f'p: {p}')"
2022-05-16 23:34:31 +02:00
]
2022-05-14 15:31:47 +02:00
},
2022-05-17 17:58:54 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO: Wniosek"
]
},
2022-05-14 17:09:29 +02:00
{
2022-05-17 17:27:59 +02:00
"cell_type": "markdown",
2022-05-16 23:34:31 +02:00
"metadata": {},
2022-05-17 17:27:59 +02:00
"source": [
"## Test t studenta dla prób niezależnych\n",
"\n",
"**Test t Studenta dla prób niezależnych** jest najczęściej stosowaną metodą statystyczną w celu porównania średnich z dwóch niezależnych od siebie grup. Wykorzystujemy go gdy chcemy porównać dwie grupy pod względem jakiejś zmiennej ilościowej. Na przykład gdy chcemy porównać średni wzrost kobiet i mężczyzn w danej grupie.\n",
"\n",
"Zazwyczaj dwie średnie z różnych od siebie grup będą się różnić. Test t Studenta powie nam jednak czy owe różnice są istotne statystycznie czy nie są przypadkowe. Hipoteza zerowa takiego testu będzie brzmiała H0: Średni wzrost w grupie mężczyzn jest taki sam jak średni w grupie kobiet. Hipoteza alternatywna z kolei H1: Kobiety będą różnić się od mężczyzn pod wzrostu.\n",
"Jeśli wynik testu t Studenta będzie istotny na poziomie p < 0,05 możemy odrzucić hipotezę zerową na rzecz hipotezy alternatywnej.\n"
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 325,
2022-05-17 17:27:59 +02:00
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
},
2022-05-16 23:34:31 +02:00
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def bootstrap_independent(sample_1, sample_2, alternative=Alternatives.LESS):\n",
" return t_test_ind(\n",
2022-05-17 17:27:59 +02:00
" sample_1=sample_1,\n",
" sample_2=sample_2,\n",
2022-05-17 19:40:13 +02:00
" alternative=alternative,\n",
2022-05-17 17:27:59 +02:00
" )"
2022-05-16 23:34:31 +02:00
]
},
{
2022-05-17 17:27:59 +02:00
"cell_type": "markdown",
2022-05-16 23:34:31 +02:00
"metadata": {},
"source": [
2022-05-17 17:27:59 +02:00
"# TODO: Wyciągnąć wysokości kobiet i mężczyzn oraz poprawić kod aby można było podawać kolumny\n",
"t_stat, df, cv, p, _ = bootstrap_independent(dataset, dataset)\n",
"pretty_print_full_stats(t_stat, df, cv, p)"
2022-05-16 23:34:31 +02:00
]
},
2022-05-17 17:58:54 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO: Wniosek"
]
},
2022-05-16 23:34:31 +02:00
{
2022-05-17 17:27:59 +02:00
"cell_type": "markdown",
2022-05-16 23:34:31 +02:00
"metadata": {},
"source": [
2022-05-17 17:27:59 +02:00
"## Test t studenta dla prób zależnych\n",
"\n",
"W odróżnieniu od testu t Studenta dla prób niezależnych, gdzie porównujemy dwie grupy, ten rodzaj testu stosujemy gdy poddajemy analizie tą samą pojedynczą grupę, ale dwukrotnie w czasie. Na przykład gdy chcemy porównać średnie wagi grupy osób przed dietą oraz po diecie, aby sprawdzić czy dieta spowodowała istotne zmiany statystyczne.\n",
"\n",
"Hipoteza zerowa takiego testu będzie brzmiała H0: Średnia waga osób po diecie jest taka sama jak przed dietą. Hipoteza alternatywna z kolei H1: Dieta znacząco wpłynęła na średnią wagę danej grupy."
2022-05-16 23:34:31 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 326,
2022-05-14 17:09:29 +02:00
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
2022-05-16 23:34:31 +02:00
},
"outputs": [],
"source": [
2022-05-17 19:40:13 +02:00
"def bootstrap_dependent(sample_1, sample_2, alternative=Alternatives.LESS):\n",
" return t_test_dep(\n",
2022-05-16 23:34:31 +02:00
" sample_1=sample_1,\n",
" sample_2=sample_2,\n",
2022-05-17 19:40:13 +02:00
" alternative=alternative,\n",
2022-05-16 23:34:31 +02:00
" )"
]
},
{
2022-05-17 17:27:59 +02:00
"cell_type": "markdown",
2022-05-16 23:34:31 +02:00
"metadata": {},
"source": [
2022-05-17 17:27:59 +02:00
"# TODO: Wyciągnąć wagi przed dietą i po oraz poprawić kod aby można było podawać kolumny\n",
"t_stat, df, cv, p, _ = bootstrap_dependent(dataset, dataset)\n",
"pretty_print_full_stats(t_stat, df, cv, p)"
2022-05-11 15:02:15 +02:00
]
},
2022-05-17 17:58:54 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TODO: Wniosek"
]
},
2022-05-11 15:02:15 +02:00
{
2022-05-17 17:27:59 +02:00
"cell_type": "markdown",
"metadata": {},
2022-05-11 15:02:15 +02:00
"source": [
2022-05-17 17:27:59 +02:00
"## Wykresy"
2022-05-16 23:34:31 +02:00
]
},
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 327,
2022-05-11 15:02:15 +02:00
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
2022-05-16 23:34:31 +02:00
},
2022-05-16 18:52:49 +02:00
"outputs": [],
2022-05-13 22:06:56 +02:00
"source": [
2022-05-17 13:58:25 +02:00
"def draw_distribution(stats):\n",
2022-05-16 18:52:49 +02:00
" \"\"\"\n",
" Funkcja rysuje rozkład statystyki testowej\n",
2022-05-17 16:21:32 +02:00
" @param stats: lista statystyk testowych\n",
2022-05-16 18:52:49 +02:00
" \"\"\"\n",
" plt.hist(stats)\n",
" plt.xlabel('Test statistic value')\n",
" plt.ylabel('Frequency')\n",
" plt.show()"
2022-05-16 23:34:31 +02:00
]
},
2022-05-17 17:27:59 +02:00
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Testy"
]
},
2022-05-16 23:34:31 +02:00
{
"cell_type": "code",
2022-05-17 19:40:13 +02:00
"execution_count": 328,
2022-05-16 23:34:31 +02:00
"metadata": {},
"outputs": [
{
2022-05-17 19:40:13 +02:00
"name": "stdout",
2022-05-17 20:56:02 +02:00
"output_type": "stream",
"text": [
2022-05-17 16:21:32 +02:00
"Statystyki dla jednej próby:\n",
2022-05-17 19:40:13 +02:00
"0.44\n",
2022-05-17 16:21:32 +02:00
"Statystyki dla dwóch prób zależnych:\n",
2022-05-17 19:40:13 +02:00
"0.0\n",
2022-05-17 16:21:32 +02:00
"Statystyki dla dwóch prób niezależnych:\n",
2022-05-17 19:40:13 +02:00
"1.0\n"
2022-05-16 18:52:49 +02:00
]
2022-05-11 15:02:15 +02:00
}
],
"source": [
2022-05-16 23:34:31 +02:00
"# Testy z bootstrappowaniem\n",
"\n",
2022-05-17 17:27:59 +02:00
"\n",
2022-05-16 23:34:31 +02:00
"print('Statystyki dla jednej próby:')\n",
2022-05-17 19:40:13 +02:00
"p, _ = bootstrap_one_sample(dummy, 2)\n",
"print(f'p {p}')\n",
2022-05-16 23:34:31 +02:00
"\n",
"print('Statystyki dla dwóch prób zależnych:')\n",
2022-05-17 19:40:13 +02:00
"p, _ = bootstrap_dependent(dummy2, dummy3)\n",
"print(f'p {p}')\n",
2022-05-16 23:34:31 +02:00
"\n",
"print('Statystyki dla dwóch prób niezależnych:')\n",
2022-05-17 19:40:13 +02:00
"p, _ = bootstrap_independent(dummy2, dummy3)\n",
"print(f'p {p}')"
2022-05-16 23:34:31 +02:00
]
2022-05-17 19:40:13 +02:00
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
2022-05-11 15:02:15 +02:00
}
],
"metadata": {
"interpreter": {
"hash": "11938c6bc6919ae2720b4d5011047913343b08a43b18698fd82dedb0d4417594"
},
"kernelspec": {
2022-05-17 19:40:13 +02:00
"display_name": "Python 3.8.10 64-bit",
"metadata": {
"interpreter": {
"hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90"
}
2022-05-17 20:56:02 +02:00
},
"name": "python3"
2022-05-11 15:02:15 +02:00
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2022-05-17 19:40:13 +02:00
"version": "3.8.10-final"
2022-05-11 15:02:15 +02:00
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
2022-05-17 20:56:02 +02:00
}