Network_attack_propagation/network_attack_propagation.py

167 lines
4.5 KiB
Python
Raw Normal View History

2022-06-16 19:57:51 +02:00
import random
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib import animation
2022-06-16 18:39:16 +02:00
class Node:
2022-06-16 19:57:51 +02:00
def __init__(self, is_infected=False):
self.id = random.randint(1, 2000000)
self.is_infected = is_infected
def as_tuple(self):
return self.id, self.is_infected
def __repr__(self):
2022-06-16 21:05:08 +02:00
return f'id: {self.id}, infected: {self.is_infected}'
2022-06-16 18:39:16 +02:00
class Edge:
def __init__(self, node_a: Node, node_b: Node, weight: float):
self.node_a = node_a
self.node_b = node_b
self.weight = weight
2022-06-16 19:57:51 +02:00
def as_tuple(self):
2022-06-16 21:05:08 +02:00
return self.node_a, self.node_b, {'weight': self.weight}
2022-06-16 19:57:51 +02:00
2022-06-16 22:05:00 +02:00
def has_node(self, node: Node) -> bool:
return self.node_a is node or self.node_b is node
2022-06-16 18:39:16 +02:00
class Graph:
2022-06-16 22:05:00 +02:00
def __init__(self, use_weights=False):
2022-06-16 18:39:16 +02:00
self.edges = []
2022-06-16 22:05:00 +02:00
self.use_weights = use_weights
2022-06-16 18:39:16 +02:00
def add_edge(self, edge: Edge):
2022-06-16 19:57:51 +02:00
self.edges.append(edge)
def add_edges(self, edges: [Edge]):
[self.edges.append(e) for e in edges]
2022-06-16 20:14:56 +02:00
def get_nodes(self) -> [Node]:
nodes = set()
for edge in self.edges:
nodes.add(edge.node_a)
nodes.add(edge.node_b)
return nodes
2022-06-16 19:57:51 +02:00
2022-06-16 22:05:00 +02:00
def get_adjacent_nodes(self, node: Node) -> [(Node, int)]:
"""
:param node: Node to search for
:return: An array of tuples (node, weight)
"""
edges_with_node = filter(lambda ed: ed.has_node(node), self.edges)
nodes = set()
for e in edges_with_node:
if e.node_a is node:
nodes.add((e.node_b, e.weight))
else:
nodes.add((e.node_a, e.weight))
return nodes
def infect_step(self):
infected_nodes = list(filter(lambda n: n.is_infected, self.get_nodes()))
for node in infected_nodes:
adjacent_nodes = self.get_adjacent_nodes(node)
if self.use_weights:
to_be_infected = random.choices([n[0] for n in adjacent_nodes], weights=[n[1] for n in adjacent_nodes])[0]
else:
to_be_infected = random.choice([n[0] for n in adjacent_nodes])
to_be_infected.is_infected = True
2022-06-16 20:14:56 +02:00
def update(num, layout, g_repr, ax, our_graph: Graph):
2022-06-16 19:57:51 +02:00
"""
This function is called every 'step', so if you wish to update the graph, do it here
"""
ax.clear()
2022-06-16 20:14:56 +02:00
2022-06-16 21:05:08 +02:00
colors = ['red' if n.is_infected else 'blue' for n in g_repr]
sizes = [50 if n.is_infected else 1 for n in g_repr]
nx.draw(
g_repr,
ax=ax,
pos=layout,
node_color=colors,
with_labels=False,
node_size=sizes,
node_shape="s",
alpha=0.5,
linewidths=40,
)
2022-06-16 19:57:51 +02:00
2022-06-16 22:05:00 +02:00
our_graph.infect_step()
2022-06-16 19:57:51 +02:00
2022-06-16 21:17:45 +02:00
def do_graph_animation(output_file_name: str, in_graph: Graph, frame_count: int, layout):
2022-06-16 19:57:51 +02:00
g_repr = nx.Graph()
# Convert our graph class into tuples understood by networkx
g_repr.add_edges_from([e.as_tuple() for e in in_graph.edges])
2022-06-16 21:17:45 +02:00
layout = layout(g_repr)
2022-06-16 19:57:51 +02:00
fig, ax = plt.subplots()
2022-06-16 21:05:08 +02:00
fig.set_figwidth(15)
fig.set_figheight(15)
2022-06-16 20:58:13 +02:00
anim = animation.FuncAnimation(
2022-06-16 22:05:00 +02:00
fig, update, frames=frame_count, interval=500, fargs=(layout, g_repr, ax, in_graph)
2022-06-16 20:58:13 +02:00
)
2022-06-16 19:57:51 +02:00
anim.save(output_file_name)
2022-06-16 21:05:08 +02:00
plt.style.use('seaborn')
2022-06-16 19:57:51 +02:00
plt.show()
2022-06-16 22:05:00 +02:00
def bus_network(n=30, infected_idx=0) -> Graph:
2022-06-16 20:44:58 +02:00
network = Graph()
nodes = [Node() for _ in range(n)]
2022-06-16 22:05:00 +02:00
nodes[infected_idx].is_infected = True
2022-06-16 20:58:13 +02:00
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
network.add_edges(edges)
return network
def ring_network(n=30) -> Graph:
network = Graph()
nodes = [Node() for _ in range(n)]
2022-06-16 22:05:00 +02:00
nodes[0].is_infected = True
2022-06-16 20:58:13 +02:00
edges = [Edge(nodes[i], nodes[i + 1], 1.0) for i in range(n - 1)]
end_edge = Edge(nodes[n - 1], nodes[0], 1.0)
edges.append(end_edge)
2022-06-16 20:44:58 +02:00
network.add_edges(edges)
return network
2022-06-16 19:57:51 +02:00
def main():
network = Graph()
nodes = [Node(True), Node(), Node(), Node(True), Node()]
2022-06-16 20:58:13 +02:00
network.add_edges(
[
Edge(nodes[1], nodes[0], 0.02),
Edge(nodes[1], nodes[2], 0.2),
Edge(nodes[2], nodes[0], 0.7),
Edge(nodes[3], nodes[2], 0.2),
Edge(nodes[3], nodes[1], 0.2),
Edge(nodes[4], nodes[3], 0.2),
]
)
2022-06-16 19:57:51 +02:00
2022-06-16 21:17:45 +02:00
do_graph_animation('test.gif', network, 5, nx.spring_layout)
2022-06-16 19:57:51 +02:00
2022-06-16 20:44:58 +02:00
bus = bus_network()
2022-06-16 22:05:00 +02:00
do_graph_animation('bus.gif', bus, 20, nx.spiral_layout)
2022-06-16 20:58:13 +02:00
ring = ring_network()
2022-06-16 22:05:00 +02:00
do_graph_animation('ring.gif', ring, 20, nx.circular_layout)
2022-06-16 20:44:58 +02:00
2022-06-16 19:57:51 +02:00
if __name__ == "__main__":
main()