234 lines
6.3 KiB
Python
234 lines
6.3 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# In[1]:
|
|
|
|
|
|
import torch
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoConfig
|
|
|
|
|
|
# In[2]:
|
|
|
|
|
|
import lzma
|
|
|
|
|
|
def read_xz_file(fname):
|
|
with lzma.open(fname, mode='rt', encoding='utf-8') as f:
|
|
return [line.strip() for line in f.readlines()]
|
|
|
|
|
|
def read_file(fname):
|
|
with open(fname, mode='rt', encoding='utf-8') as f:
|
|
return [line.strip() for line in f.readlines()]
|
|
|
|
|
|
def get_contexts(input_text):
|
|
all_fields = input_text.replace(r'\n', ' ').split('\t')
|
|
return {'left': all_fields[6], 'right': all_fields[7]}
|
|
|
|
|
|
bos = '<|endoftext|>'
|
|
eos = '<|EOS|>'
|
|
|
|
|
|
def compose_sentences(raw_input, labels):
|
|
result = []
|
|
for input, label in zip(raw_input, labels):
|
|
context = get_contexts(input)
|
|
result.append(f'{bos} {context["left"]} {input} {eos}')
|
|
result.append(f'{bos} {input} {context["right"]} {eos}')
|
|
return result
|
|
|
|
|
|
# In[6]:
|
|
|
|
|
|
pad = '<|pad|>'
|
|
special_tokens_dict = {'eos_token': eos, 'bos_token': bos, 'pad_token': pad}
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
|
num_add_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
|
|
|
|
|
# In[4]:
|
|
|
|
|
|
class AmericaDataset(Dataset):
|
|
def __init__(self, tokenizer, data):
|
|
self.tokenizer = tokenizer
|
|
self.sentences = []
|
|
for entry in data:
|
|
self.sentences.append(
|
|
torch.tensor(self.tokenizer.encode(entry, padding=True))
|
|
)
|
|
def __len__(self):
|
|
return len(self.sentences)
|
|
|
|
def __getitem__(self, item):
|
|
return self.sentences[item]
|
|
|
|
|
|
# In[5]:
|
|
|
|
|
|
train_input_raw = read_xz_file('challenging-america-word-gap-prediction/train/in.tsv.xz')
|
|
train_labels = read_file('challenging-america-word-gap-prediction/train/expected.tsv')
|
|
train_sentences = compose_sentences(train_input_raw, train_labels)
|
|
train_dataset = AmericaDataset(tokenizer, train_sentences)
|
|
|
|
|
|
# In[11]:
|
|
|
|
|
|
config = AutoConfig.from_pretrained('distilgpt2', bos_token_id=tokenizer.bos_token_id,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
pad_token_id=tokenizer.pad_token_id, output_hidden_states=False, return_dict_in_generate=True)
|
|
model = GPT2LMHeadModel.from_pretrained('distilgpt2', config=config)
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
device = torch.device('cuda')
|
|
|
|
|
|
model.to(device)
|
|
|
|
|
|
# In[8]:
|
|
|
|
|
|
def pack_tensor(new_tensor, packed_tensor, max_seq_len):
|
|
if packed_tensor is None:
|
|
return new_tensor, True, None
|
|
if new_tensor.size()[1] + packed_tensor.size()[1] > max_seq_len:
|
|
return packed_tensor, False, new_tensor
|
|
else:
|
|
packed_tensor = torch.cat([new_tensor, packed_tensor[:, 1:]], dim=1)
|
|
return packed_tensor, True, None
|
|
|
|
|
|
# In[9]:
|
|
|
|
|
|
import os
|
|
from transformers import AdamW, get_linear_schedule_with_warmup
|
|
from tqdm import tqdm
|
|
|
|
|
|
def train(
|
|
model,
|
|
dataset,
|
|
batch_size=16, epochs=5, lr=2e-5,
|
|
warmup_steps=200,
|
|
output_dir=".", output_prefix="gpt2",
|
|
save_model_on_epoch=False,
|
|
):
|
|
device = torch.device("cuda")
|
|
model = model.to(device)
|
|
model.train()
|
|
|
|
optimizer = AdamW(model.parameters(), lr=lr)
|
|
scheduler = get_linear_schedule_with_warmup(
|
|
optimizer, num_warmup_steps=warmup_steps, num_training_steps=-1
|
|
)
|
|
|
|
loss = 0
|
|
accumulating_batch_count = 0
|
|
input_tensor = None
|
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
|
|
|
|
for epoch in range(epochs):
|
|
|
|
print(f"Training epoch {epoch}")
|
|
print(loss)
|
|
for idx, entry in tqdm(enumerate(dataloader)):
|
|
(input_tensor, carry_on, remainder) = pack_tensor(entry, input_tensor, 1024)
|
|
|
|
if carry_on and idx != len(dataset) - 1:
|
|
continue
|
|
|
|
input_tensor = input_tensor.to(device)
|
|
outputs = model(input_tensor, labels=input_tensor)
|
|
loss = outputs[0]
|
|
loss.backward()
|
|
|
|
if (accumulating_batch_count % batch_size) == 0:
|
|
optimizer.step()
|
|
scheduler.step()
|
|
optimizer.zero_grad()
|
|
model.zero_grad()
|
|
|
|
accumulating_batch_count += 1
|
|
input_tensor = None
|
|
if save_model_on_epoch:
|
|
torch.save(
|
|
model.state_dict(),
|
|
os.path.join(output_dir, f"{output_prefix}-{epoch}.pt"),
|
|
)
|
|
return model
|
|
|
|
|
|
# In[12]:
|
|
|
|
|
|
model = train(model, train_dataset)
|
|
|
|
|
|
# In[3]:
|
|
|
|
|
|
dev_input_raw = read_xz_file('challenging-america-word-gap-prediction/dev-0/in.tsv.xz')
|
|
dev_input_contexts = [get_contexts(input_text) for input_text in dev_input_raw]
|
|
test_input_raw = read_xz_file('challenging-america-word-gap-prediction/test-A/in.tsv.xz')
|
|
test_input_contexts = [get_contexts(input_text) for input_text in test_input_raw]
|
|
|
|
|
|
# In[15]:
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
tokenizer.truncation_side = 'left'
|
|
|
|
blacklist = ['ia', 'ix', 'io',
|
|
'ik'] # Te tokeny się prawie zawsze powtarzają, a nie są to żadne słowa w języku angielskim.
|
|
|
|
|
|
def predict_words(dataset):
|
|
preds = []
|
|
for entry in tqdm(dataset):
|
|
text = f"{entry['left']}"
|
|
src = tokenizer.encode(text, return_tensors="pt", truncation=True).to(device)
|
|
output = model.generate(src, max_length=len(src[0]) + 1, do_sample=True, top_k=0, temperature=0.8,
|
|
num_return_sequences=1, no_repeat_ngram_size=2, output_scores=True)
|
|
probs, idxs = torch.softmax(output.scores[0][-1], dim=0).topk(30)
|
|
current_output = ''
|
|
accumulated_probability = 0
|
|
for prob, token_id in zip(probs, idxs):
|
|
token = tokenizer.decode(token_id, skip_special_tokens=True).split(' ')[-1]
|
|
if not token.isalnum() or token in blacklist:
|
|
continue
|
|
prob_value = prob.item()
|
|
accumulated_probability += prob_value
|
|
current_output += f'{token.strip()}:{prob_value} '
|
|
current_output += f':{1 - accumulated_probability}'
|
|
preds.append(current_output)
|
|
return preds
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
dev_preds = predict_words(dev_input_contexts)
|
|
with open('challenging-america-word-gap-prediction/dev-0/out.tsv', 'w') as f:
|
|
f.writelines(line + '\n' for line in dev_preds)
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
test_preds = predict_words(test_input_contexts)
|
|
with open('challenging-america-word-gap-prediction/test-A/out.tsv', 'w') as f:
|
|
f.writelines(line + '\n' for line in test_preds)
|
|
|