commit_natalia2
@ -1,100 +1,121 @@
|
||||
20,0,2,4,3,2
|
||||
57,0,8,2,1,2
|
||||
50,1,3,4,1,1
|
||||
51,1,6,1,1,1
|
||||
82,1,9,1,2,2
|
||||
73,1,5,4,3,2
|
||||
65,0,7,3,2,1
|
||||
16,1,9,2,3,1
|
||||
23,0,1,4,3,1
|
||||
74,0,10,3,1,1
|
||||
85,1,5,4,1,2
|
||||
35,0,2,1,2,1
|
||||
79,1,9,4,1,2
|
||||
56,0,7,2,1,2
|
||||
51,0,6,4,3,2
|
||||
13,1,8,1,3,1
|
||||
30,0,8,2,2,2
|
||||
50,0,5,5,1,2
|
||||
39,1,9,3,3,1
|
||||
20,0,7,5,3,1
|
||||
63,1,8,4,1,1
|
||||
74,1,2,1,3,1
|
||||
46,1,7,3,1,2
|
||||
52,0,5,3,3,1
|
||||
39,0,9,1,3,1
|
||||
14,1,4,1,3,2
|
||||
81,1,2,1,3,1
|
||||
79,0,10,4,1,2
|
||||
69,0,1,5,1,2
|
||||
87,1,3,4,3,2
|
||||
72,1,9,1,3,1
|
||||
85,0,5,4,1,2
|
||||
59,1,10,5,3,1
|
||||
32,1,8,1,3,1
|
||||
28,0,3,1,1,2
|
||||
77,0,10,3,1,1
|
||||
82,1,4,5,3,2
|
||||
30,0,9,1,3,2
|
||||
83,1,9,2,3,2
|
||||
88,1,2,3,2,1
|
||||
72,1,8,3,2,1
|
||||
87,1,9,2,2,2
|
||||
13,0,8,5,2,1
|
||||
47,0,6,3,1,2
|
||||
51,1,1,4,3,1
|
||||
27,0,4,5,2,2
|
||||
50,1,7,5,1,2
|
||||
16,1,2,4,2,2
|
||||
29,0,8,4,3,2
|
||||
80,1,2,3,2,1
|
||||
16,0,10,2,1,1
|
||||
76,0,4,4,3,2
|
||||
44,1,6,1,1,2
|
||||
63,0,5,2,2,2
|
||||
12,1,5,4,3,2
|
||||
73,1,1,5,1,2
|
||||
39,1,7,3,3,1
|
||||
10,0,8,3,1,2
|
||||
32,0,7,4,3,1
|
||||
32,0,8,1,2,1
|
||||
74,1,2,4,1,2
|
||||
77,1,9,1,3,1
|
||||
13,1,2,1,1,1
|
||||
61,0,10,1,1,2
|
||||
48,1,2,1,1,1
|
||||
11,0,4,5,3,1
|
||||
80,0,10,3,3,1
|
||||
33,0,9,5,3,2
|
||||
53,1,5,2,3,2
|
||||
56,0,10,2,2,2
|
||||
25,1,4,4,1,2
|
||||
27,0,8,3,3,2
|
||||
83,0,1,1,1,2
|
||||
49,0,4,3,2,2
|
||||
76,0,10,3,1,1
|
||||
40,0,1,5,2,2
|
||||
73,1,3,4,2,1
|
||||
19,1,2,4,2,2
|
||||
77,1,7,2,3,1
|
||||
52,0,5,4,3,2
|
||||
29,0,10,2,3,1
|
||||
28,1,5,1,3,2
|
||||
63,0,1,5,3,2
|
||||
84,1,4,2,1,2
|
||||
31,0,9,1,3,1
|
||||
46,1,3,5,1,1
|
||||
84,0,6,5,3,1
|
||||
30,0,7,1,2,2
|
||||
29,1,7,1,1,1
|
||||
46,1,5,3,3,2
|
||||
17,1,8,1,1,1
|
||||
37,0,10,4,2,1
|
||||
43,0,6,1,3,1
|
||||
57,1,6,1,2,2
|
||||
58,1,4,1,3,2
|
||||
59,0,1,4,3,1
|
||||
26,0,7,2,3,2
|
||||
43,0,2,1,3,1
|
||||
66,0,8,2,1,1
|
||||
85,1,2,1,2,2
|
||||
14,1,3,14,1,2
|
||||
7,1,1,11,2,1
|
||||
18,1,3,15,1,1
|
||||
8,0,2,11,2,3
|
||||
11,0,4,12,1,3
|
||||
20,0,4,12,1,2
|
||||
9,1,1,11,1,2
|
||||
7,1,2,15,0,1
|
||||
20,1,7,16,1,2
|
||||
13,1,2,15,5,4
|
||||
39,0,10,11,3,4
|
||||
29,1,3,6,5,4
|
||||
44,1,7,5,5,4
|
||||
65,1,5,4,5,4
|
||||
47,1,5,5,5,4
|
||||
78,1,0,2,5,4
|
||||
73,1,1,4,5,4
|
||||
63,1,5,4,5,4
|
||||
26,1,9,9,5,4
|
||||
38,1,8,5,4,4
|
||||
20,1,8,4,4,4
|
||||
45,1,8,4,5,4
|
||||
50,1,8,6,4,4
|
||||
45,1,9,6,5,4
|
||||
35,1,8,8,5,4
|
||||
29,1,3,6,5,5
|
||||
29,0,9,9,5,5
|
||||
15,0,5,4,4,5
|
||||
20,0,4,4,5,5
|
||||
25,0,4,4,4,5
|
||||
30,0,6,4,4,5
|
||||
35,0,7,6,4,5
|
||||
45,0,6,5,4,5
|
||||
44,1,7,5,4,6
|
||||
44,1,7,5,3,6
|
||||
30,0,7,5,3,6
|
||||
10,1,6,5,3,6
|
||||
15,1,7,5,3,6
|
||||
17,0,5,5,3,6
|
||||
25,1,6,4,4,6
|
||||
46,1,6,3,4,6
|
||||
65,1,5,4,0,7
|
||||
10,0,5,4,1,7
|
||||
15,0,5,4,0,7
|
||||
16,1,5,4,0,7
|
||||
17,1,5,4,1,7
|
||||
16,0,5,4,0,7
|
||||
20,0,5,4,1,7
|
||||
21,0,5,4,0,7
|
||||
25,1,5,4,0,7
|
||||
27,1,5,4,0,7
|
||||
28,1,5,4,1,7
|
||||
29,1,5,4,1,7
|
||||
29,1,5,4,0,7
|
||||
29,0,5,4,0,7
|
||||
30,0,5,4,0,7
|
||||
31,1,5,4,0,7
|
||||
32,1,6,3,0,7
|
||||
34,1,6,4,0,7
|
||||
35,1,6,4,1,7
|
||||
46,1,5,4,1,7
|
||||
47,1,5,4,1,7
|
||||
47,0,5,4,1,7
|
||||
47,0,5,4,0,7
|
||||
48,1,5,4,1,7
|
||||
48,1,5,4,0,7
|
||||
48,0,5,4,1,7
|
||||
49,1,5,4,1,7
|
||||
49,0,5,4,1,7
|
||||
7,0,3,10,0,1
|
||||
8,0,3,10,0,1
|
||||
10,1,4,10,0,1
|
||||
10,0,2,9,0,1
|
||||
9,1,3,9,0,1
|
||||
13,1,3,10,0,1
|
||||
13,1,4,9,0,1
|
||||
15,0,2,8,0,1
|
||||
14,1,2,8,0,1
|
||||
16,1,3,8,0,1
|
||||
16,1,3,9,1,1
|
||||
16,0,3,9,1,1
|
||||
16,0,4,8,1,1
|
||||
16,1,4,10,1,1
|
||||
30,0,4,8,0,1
|
||||
30,1,4,8,0,1
|
||||
30,1,5,9,1,1
|
||||
30,0,3,10,1,1
|
||||
31,0,3,9,0,1
|
||||
31,0,4,9,1,1
|
||||
31,1,3,10,0,1
|
||||
17,0,15,7,2,2
|
||||
17,0,14,7,2,2
|
||||
17,0,14,10,1,2
|
||||
17,0,13,10,1,2
|
||||
17,1,14,10,2,2
|
||||
17,1,15,7,1,2
|
||||
18,0,13,7,2,2
|
||||
18,0,15,7,1,2
|
||||
18,1,13,7,1,2
|
||||
20,0,14,8,3,2
|
||||
20,1,13,7,3,2
|
||||
21,1,15,5,1,2
|
||||
21,0,13,6,2,2
|
||||
30,0,13,6,2,2
|
||||
30,0,15,5,1,2
|
||||
30,0,14,6,1,2
|
||||
31,0,15,5,1,2
|
||||
31,1,15,4,2,2
|
||||
31,1,14,6,2,2
|
||||
31,1,14,5,0,2
|
||||
20,1,10,3,0,3
|
||||
20,1,9,4,0,3
|
||||
21,1,10,3,0,3
|
||||
21,0,9,4,0,3
|
||||
21,0,10,5,0,3
|
||||
30,0,10,5,0,3
|
||||
40,0,10,5,0,3
|
||||
50,0,10,5,0,3
|
||||
65,0,10,5,0,3
|
||||
21,0,11,4,5,4
|
||||
22,1,11,4,5,4
|
||||
|
|
@ -1,54 +0,0 @@
|
||||
# Load libraries
|
||||
import pandas as pd
|
||||
from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier
|
||||
from sklearn.model_selection import train_test_split # Import train_test_split function
|
||||
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
|
||||
from sklearn.tree import export_graphviz
|
||||
from sklearn.externals.six import StringIO
|
||||
from IPython.display import Image
|
||||
import pydotplus
|
||||
|
||||
col_names = ['age', 'sex', 'fat', 'spicy', 'hungry', 'budget']
|
||||
# load dataset
|
||||
pima = pd.read_csv("nazwa.csv", header=None, names=col_names)
|
||||
|
||||
#split dataset in features and target variable
|
||||
feature_cols = ['age', 'sex', 'fat', 'spicy']
|
||||
X = pima[feature_cols] # Features
|
||||
y = pima.label # Target variable
|
||||
|
||||
# Split dataset into training set and test set
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test
|
||||
|
||||
# Create Decision Tree classifer object
|
||||
clf = DecisionTreeClassifier()
|
||||
|
||||
# Train Decision Tree Classifer
|
||||
clf = clf.fit(X_train,y_train)
|
||||
|
||||
#Predict the response for test dataset
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# Model Accuracy, how often is the classifier correct?
|
||||
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
|
||||
|
||||
dot_data = StringIO()
|
||||
export_graphviz(clf, out_file=dot_data,
|
||||
filled=True, rounded=True,
|
||||
special_characters=True,feature_names = feature_cols,class_names=['0','1'])
|
||||
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
|
||||
graph.write_png('food_tree.png')
|
||||
Image(graph.create_png())
|
||||
|
||||
|
||||
# Create Decision Tree classifer object
|
||||
clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)
|
||||
|
||||
# Train Decision Tree Classifer
|
||||
clf = clf.fit(X_train,y_train)
|
||||
|
||||
#Predict the response for test dataset
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# Model Accuracy, how often is the classifier correct?
|
||||
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
|
@ -0,0 +1,87 @@
|
||||
import pandas as pd
|
||||
try:
|
||||
from StringIO import StringIO
|
||||
except ImportError:
|
||||
from io import StringIO
|
||||
from io import StringIO
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn import metrics
|
||||
from sklearn.tree import export_graphviz
|
||||
import joblib
|
||||
from IPython.display import Image
|
||||
import pydotplus
|
||||
import os
|
||||
os.environ["PATH"] += os.pathsep + r'C:\Program Files (x86)\Graphviz2.38\bin'
|
||||
|
||||
def main():
|
||||
dot_data = StringIO()
|
||||
col_names = ['age', 'sex', 'fat', 'fiber', 'spicy', 'number']
|
||||
#import danych
|
||||
model_tree = pd.read_csv("Nowy.csv", header=None, names=col_names)
|
||||
model_tree.head()
|
||||
#seperacja danych cechy
|
||||
feature_cols = ['age', 'sex', 'fat', 'fiber', 'spicy']
|
||||
X = model_tree[feature_cols]
|
||||
#separacja danych etykieta
|
||||
y = model_tree.number
|
||||
# Target variable
|
||||
|
||||
#podział danych na zestaw treningowy i testowy; 70% trening 30% test
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
|
||||
random_state=1) # 70% training and 30% test
|
||||
|
||||
###############################
|
||||
# stworzenie -obiektu- drzewa Decision Tree classifer
|
||||
clf = DecisionTreeClassifier()
|
||||
|
||||
# drzewo treningowe
|
||||
clf = clf.fit(X_train, y_train)
|
||||
|
||||
#generowanie wyników dla zbioru testowego
|
||||
y_pred = clf.predict(X_test)
|
||||
#print(y_pred)
|
||||
|
||||
#Akuratność dla modelu danych
|
||||
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
|
||||
|
||||
dot_data = StringIO()
|
||||
#tworzenie graficznego drzewa
|
||||
export_graphviz(clf, out_file=dot_data,
|
||||
filled=True, rounded=True,
|
||||
special_characters=True, feature_names=feature_cols,
|
||||
class_names=['1', '2', '3', '4', '5', '6', '7'])
|
||||
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
|
||||
graph.write_png('polecanie_1.png')
|
||||
Image(graph.create_png())
|
||||
|
||||
# ************************************************************
|
||||
# stworzenie -obiektu- drzewa Decision Tree classifer z kryterium entropii
|
||||
clf = DecisionTreeClassifier(criterion="entropy")
|
||||
|
||||
#drzewo testowe-z entripią
|
||||
clf = clf.fit(X_train, y_train)
|
||||
|
||||
#generowanie wyników dla zbioru testowego
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
#Akuratność dla modelu danych z warunkiem entropii
|
||||
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
|
||||
|
||||
#stowrzenie graficznego drzewa z warunkiem entropii
|
||||
dot_data = StringIO()
|
||||
export_graphviz(clf, out_file=dot_data,
|
||||
filled=True, rounded=True,
|
||||
special_characters=True, feature_names=feature_cols,
|
||||
class_names=['1', '2', '3', '4', '5', '6', '7'])
|
||||
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
|
||||
graph.write_png('polecanie_2_entropia.png')
|
||||
Image(graph.create_png())
|
||||
|
||||
#zapisanie modelu danych do pliku
|
||||
file_name = 'final_model.sav'
|
||||
joblib.dump(clf, file_name)
|
||||
|
||||
return
|
||||
|
||||
main()
|
BIN
Restaurant/Natalia/danie1.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
Restaurant/Natalia/danie2.png
Normal file
After Width: | Height: | Size: 1.2 MiB |
BIN
Restaurant/Natalia/danie3.png
Normal file
After Width: | Height: | Size: 167 KiB |
BIN
Restaurant/Natalia/danie4.png
Normal file
After Width: | Height: | Size: 2.8 MiB |
BIN
Restaurant/Natalia/danie5.png
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
Restaurant/Natalia/danie6.png
Normal file
After Width: | Height: | Size: 106 KiB |
BIN
Restaurant/Natalia/danie7.png
Normal file
After Width: | Height: | Size: 175 KiB |
BIN
Restaurant/Natalia/digest_entropy.png
Normal file
After Width: | Height: | Size: 87 KiB |
BIN
Restaurant/Natalia/final_model.sav
Normal file
BIN
Restaurant/Natalia/finalized_model.sav
Normal file
BIN
Restaurant/Natalia/model.sav
Normal file
BIN
Restaurant/Natalia/polecanie_1.png
Normal file
After Width: | Height: | Size: 275 KiB |
BIN
Restaurant/Natalia/polecanie_2_entropia.png
Normal file
After Width: | Height: | Size: 274 KiB |