forked from filipg/aitech-eks-pub
28 KiB
28 KiB
Ekstrakcja informacji
8. Regresja logistyczna [ćwiczenia]
Jakub Pokrywka (2021)
Regresja logistyczna
import bibliotek
import numpy as np
import gensim
import torch
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
/media/kuba/ssdsam/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning. warnings.warn(msg)
CATEGORIES = ['soc.religion.christian', 'alt.atheism']
newsgroups_train_dev = fetch_20newsgroups(subset = 'train', categories=CATEGORIES)
newsgroups_test = fetch_20newsgroups(subset = 'test', categories=CATEGORIES)
newsgroups_train_dev_text = newsgroups_train_dev['data']
newsgroups_test_text = newsgroups_test['data']
Y_train_dev = newsgroups_train_dev['target']
Y_test = newsgroups_test['target']
newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)
Y_names = newsgroups_train_dev['target_names']
Y_names
['alt.atheism', 'soc.religion.christian']
baseline
Y_train
array([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0])
pd.value_counts(Y_train)
1 450 0 359 dtype: int64
train
accuracy_score(np.ones_like(Y_train) * 1, Y_train)
0.5562422744128553
dev
accuracy_score(np.ones_like(Y_dev) * 1, Y_dev)
0.5518518518518518
test
accuracy_score(np.ones_like(Y_test) * 1, Y_test)
0.5550906555090656
PYTANIE: co jest nie tak z regresją liniową?
Regresja logistyczna
wektoryzacja
FEAUTERES = 10_000
vectorizer = TfidfVectorizer(max_features=10_000)
X_train = vectorizer.fit_transform(newsgroups_train_text)
X_dev = vectorizer.transform(newsgroups_dev_text)
X_test = vectorizer.transform(newsgroups_test_text)
X_test
<717x10000 sparse matrix of type '<class 'numpy.float64'>' with 120739 stored elements in Compressed Sparse Row format>
model - inicjalizacja
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LogisticRegressionModel, self).__init__()
self.fc = torch.nn.Linear(FEAUTERES,1)
def forward(self, x):
x = self.fc(x)
x = torch.sigmoid(x)
return x
lr_model = LogisticRegressionModel()
lr_model(torch.Tensor(X_train[0:5].astype(np.float32).todense()))
tensor([[0.4989], [0.4985], [0.4970], [0.4968], [0.5007]], grad_fn=<SigmoidBackward>)
lr_model
LogisticRegressionModel( (fc): Linear(in_features=10000, out_features=1, bias=True) )
list(lr_model.parameters())
[Parameter containing: tensor([[ 0.0006, -0.0076, 0.0002, ..., 0.0051, 0.0034, -0.0004]], requires_grad=True), Parameter containing: tensor([-0.0099], requires_grad=True)]
model - trenowanie
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)
Y_train.shape[0]
809
loss_score = 0
acc_score = 0
items_total = 0
lr_model.train()
for i in range(0, Y_train.shape[0], BATCH_SIZE):
X = X_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = lr_model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
Y_predictions
tensor([[0.5657], [0.5827], [0.5727], [0.5672]], grad_fn=<SigmoidBackward>)
Y
tensor([[0.], [1.], [1.], [0.]])
acc_score
453
items_total
809
print(f'accuracy: {acc_score / items_total}')
accuracy: 0.5599505562422744
print(f'BCE loss: {loss_score / items_total}')
BCE loss: 0.6745760098965412
model - ewaluacja
def get_loss_acc(model, X_dataset, Y_dataset):
loss_score = 0
acc_score = 0
items_total = 0
model.eval()
for i in range(0, Y_dataset.shape[0], BATCH_SIZE):
X = X_dataset[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_dataset[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
loss = criterion(Y_predictions, Y)
loss_score += loss.item() * Y.shape[0]
return (loss_score / items_total), (acc_score / items_total)
get_loss_acc(lr_model, X_train, Y_train)
(0.6443268107837445, 0.6254635352286774)
get_loss_acc(lr_model, X_dev, Y_dev)
(0.6371536641209213, 0.6074074074074074)
get_loss_acc(lr_model, X_test, Y_test)
(0.6322633745447529, 0.6485355648535565)
wagi modelu
list(lr_model.parameters())
[Parameter containing: tensor([[ 0.0379, -0.0485, 0.0113, ..., 0.0035, 0.0083, -0.0044]], requires_grad=True), Parameter containing: tensor([0.0556], requires_grad=True)]
list(lr_model.parameters())[0][0]
tensor([ 0.0379, -0.0485, 0.0113, ..., 0.0035, 0.0083, -0.0044], grad_fn=<SelectBackward>)
torch.topk(list(lr_model.parameters())[0][0], 20)
torch.return_types.topk( values=tensor([0.3804, 0.2315, 0.2033, 0.2026, 0.2014, 0.1993, 0.1942, 0.1890, 0.1868, 0.1818, 0.1727, 0.1542, 0.1474, 0.1458, 0.1360, 0.1359, 0.1260, 0.1204, 0.1184, 0.1174], grad_fn=<TopkBackward>), indices=tensor([8942, 6336, 1865, 1852, 8208, 9056, 7820, 4039, 5002, 1857, 9709, 803, 130, 1046, 4370, 4259, 4306, 1855, 4285, 6481]))
for i in torch.topk(list(lr_model.parameters())[0][0], 20)[1]:
print(vectorizer.get_feature_names()[i])
the of church christ sin to rutgers god jesus christians we and 1993 athos his he hell christian heaven our
torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)
torch.return_types.topk( values=tensor([-0.3464, -0.2578, -0.2372, -0.2307, -0.2300, -0.2259, -0.2227, -0.2107, -0.2054, -0.1949, -0.1919, -0.1767, -0.1767, -0.1749, -0.1747, -0.1739, -0.1715, -0.1633, -0.1567, -0.1562], grad_fn=<TopkBackward>), indices=tensor([5119, 8096, 5420, 1627, 6194, 6901, 4436, 9970, 5946, 3116, 1036, 9906, 7869, 5654, 1991, 8329, 4925, 4926, 6373, 1039]))
for i in torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)[1]:
print(vectorizer.get_feature_names()[i])
keith sgi livesey caltech nntp posting host you morality edu atheism wpd sandvik mathew com solntze islam islamic okcforum atheists
sieć neuronowa
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEAUTERES,500)
self.fc2 = torch.nn.Linear(500,1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
nn_model = NeuralNetworkModel()
BATCH_SIZE = 5
criterion = torch.nn.BCELoss()
optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)
for epoch in range(5):
loss_score = 0
acc_score = 0
items_total = 0
nn_model.train()
for i in range(0, Y_train.shape[0], BATCH_SIZE):
X = X_train[i:i+BATCH_SIZE]
X = torch.tensor(X.astype(np.float32).todense())
Y = Y_train[i:i+BATCH_SIZE]
Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)
Y_predictions = nn_model(X)
acc_score += torch.sum((Y_predictions > 0.5) == Y).item()
items_total += Y.shape[0]
optimizer.zero_grad()
loss = criterion(Y_predictions, Y)
loss.backward()
optimizer.step()
loss_score += loss.item() * Y.shape[0]
display(epoch)
display(get_loss_acc(nn_model, X_train, Y_train))
display(get_loss_acc(nn_model, X_dev, Y_dev))
0
(0.6734723948651398, 0.5636588380716935)
(0.6606645694485417, 0.5777777777777777)
1
(0.5035873688342987, 0.8677379480840544)
(0.43131878033832266, 0.8851851851851852)
2
(0.22238253315332793, 0.9678615574783683)
(0.18925935278336206, 0.9814814814814815)
3
(0.10367853983509158, 0.9913473423980222)
(0.09969225936327819, 0.9962962962962963)
4
(0.0588170926504491, 0.9987639060568603)
(0.06267384567332489, 1.0)
get_loss_acc(nn_model, X_test, Y_test)
(0.17201613383874234, 0.9414225941422594)
Zadanie domowe
- wybrać jedno z poniższych repozytoriów i je sforkować:
- stworzyć klasyfikator bazujący na prostej sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze). Zamiast tfidf proszę skorzystać z jakieś reprezentacji gęstej (np. word2vec).
- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67
- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo termin 25.05, 70 punktów