forked from filipg/aitech-eks-pub
42 KiB
42 KiB
Ekstrakcja informacji
11. NER RNN [ćwiczenia]
Jakub Pokrywka (2021)
Podejście softmax z embeddingami na przykładzie NER
import numpy as np
import gensim
import torch
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from datasets import load_dataset
from torchtext.vocab import Vocab
from collections import Counter
from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
from tqdm.notebook import tqdm
import torch
/media/kuba/ssdsam/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning. warnings.warn(msg)
dataset = load_dataset("conll2003")
Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6)
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab = build_vocab(dataset['train']['tokens'])
len(vocab.itos)
23627
vocab['on']
15
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
validation_tokens_ids = data_process(dataset['validation']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
validation_labels = labels_process(dataset['validation']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
tensor([ 2, 966, 22409, 238, 773, 9, 4588, 212, 7686, 4, 3])
dataset['train'][0]
{'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0], 'id': '0', 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0], 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7], 'tokens': ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.']}
train_labels[0]
tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])
def get_scores(y_true, y_pred):
acc_score = 0
tp = 0
fp = 0
selected_items = 0
relevant_items = 0
for p,t in zip(y_pred, y_true):
if p == t:
acc_score +=1
if p > 0 and p == t:
tp +=1
if p > 0:
selected_items += 1
if t > 0 :
relevant_items +=1
if selected_items == 0:
precision = 1.0
else:
precision = tp / selected_items
if relevant_items == 0:
recall = 1.0
else:
recall = tp / relevant_items
if precision + recall == 0.0 :
f1 = 0.0
else:
f1 = 2* precision * recall / (precision + recall)
return precision, recall, f1
num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1
class LSTM(torch.nn.Module):
def __init__(self):
super(LSTM, self).__init__()
self.emb = torch.nn.Embedding(len(vocab.itos),100)
self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)
self.fc1 = torch.nn.Linear( 256 , 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
lstm_output, (h_n, c_n) = self.rec(emb)
out_weights = self.fc1(lstm_output)
return out_weights
lstm = LSTM()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(lstm.parameters())
def eval_model(dataset_tokens, dataset_labels, model):
Y_true = []
Y_pred = []
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(0)
tags = list(dataset_labels[i].numpy())
Y_true += tags
Y_batch_pred_weights = model(batch_tokens).squeeze(0)
Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)
Y_pred += list(Y_batch_pred.numpy())
return get_scores(Y_true, Y_pred)
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
lstm.train()
#for i in tqdm(range(500)):
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i].unsqueeze(0)
tags = train_labels[i].unsqueeze(1)
predicted_tags = lstm(batch_tokens)
optimizer.zero_grad()
loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
loss.backward()
optimizer.step()
lstm.eval()
print(eval_model(validation_tokens_ids, validation_labels, lstm))
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.5068524970963996, 0.5072649075903755, 0.5070586184860281)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.653649243957614, 0.6381494827385795, 0.6458063757205035)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.7140486069946651, 0.7001046146693014, 0.7070078647728607)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.756327964151629, 0.725909566430315, 0.7408066429418744)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.7963248522230789, 0.7203301174009067, 0.7564235581324383)
eval_model(validation_tokens_ids, validation_labels, lstm)
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.7963248522230789, 0.7203301174009067, 0.7564235581324383)
eval_model(test_tokens_ids, test_labels, lstm)
HBox(children=(FloatProgress(value=0.0, max=3453.0), HTML(value='')))
(0.7450810185185185, 0.6348619329388561, 0.685569755058573)
len(train_tokens_ids)
14041
pytania
- co zrobić z trenowaniem na batchach > 1 ?
- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?
- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?
Zadanie na zajęcia ( 20 minut)
zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.
class GRU(torch.nn.Module):
def __init__(self):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(len(vocab.itos),100)
self.dropout = torch.nn.Dropout(0.2)
self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)
self.fc1 = torch.nn.Linear(2* 256 , 9)
def forward(self, x):
emb = torch.relu(self.emb(x))
emb = self.dropout(emb)
gru_output, h_n = self.rec(emb)
out_weights = self.fc1(gru_output)
return out_weights
gru = GRU()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(gru.parameters())
NUM_EPOCHS = 5
for i in range(NUM_EPOCHS):
gru.train()
#for i in tqdm(range(50)):
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i].unsqueeze(0)
tags = train_labels[i].unsqueeze(1)
predicted_tags = gru(batch_tokens)
optimizer.zero_grad()
loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))
loss.backward()
optimizer.step()
gru.eval()
print(eval_model(validation_tokens_ids, validation_labels, gru))
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.6431379891406104, 0.39927932116703474, 0.49268502581755597)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.6638910917261432, 0.5838660932232942, 0.6213123879027769)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.6697936210131332, 0.7054515866558178, 0.6871603260869565)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.7091097308488613, 0.7166104847146344, 0.7128403769439787)
HBox(children=(FloatProgress(value=0.0, max=14041.0), HTML(value='')))
HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))
(0.7708963348252087, 0.740788097175404, 0.755542382928275)
Zadanie domowe
- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003
- stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).
- model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65
- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów