train pure function for map, gitignore added vscode
This commit is contained in:
parent
2f1176b3c0
commit
c474b560aa
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,3 +4,4 @@ nohup.out
|
||||
wandb
|
||||
__pycache__/
|
||||
checkpoint
|
||||
.vscode
|
145
train_stream.py
145
train_stream.py
@ -1,3 +1,4 @@
|
||||
from typing import Any, List
|
||||
from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
@ -15,7 +16,7 @@ from utils.callbacks import PushToHubCallback
|
||||
import warnings
|
||||
from datasets import load_dataset, interleave_datasets
|
||||
from torchdata.datapipes.iter import IterableWrapper
|
||||
|
||||
import json
|
||||
|
||||
|
||||
def main(config, hug_token):
|
||||
@ -34,30 +35,128 @@ def main(config, hug_token):
|
||||
|
||||
added_tokens = []
|
||||
|
||||
dataset = load_dataset(config.dataset_path, split="train[:80%]")
|
||||
dataset = dataset.train_test_split(test_size=0.1)
|
||||
### PROCESS FUNC START ###
|
||||
|
||||
train_dataset_process = DonutDatasetStream(
|
||||
processor=processor,
|
||||
model=model,
|
||||
max_length=config.max_length,
|
||||
split="train",
|
||||
task_start_token="<s_cord-v2>",
|
||||
prompt_end_token="<s_cord-v2>",
|
||||
added_tokens=added_tokens,
|
||||
sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
||||
def add_tokens(list_of_tokens: List[str]):
|
||||
"""
|
||||
Add special tokens to tokenizer and resize the token embeddings of the decoder
|
||||
"""
|
||||
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
|
||||
if newly_added_num > 0:
|
||||
model.decoder.resize_token_embeddings(len(processor.tokenizer))
|
||||
added_tokens.extend(list_of_tokens)
|
||||
|
||||
def json2token(obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
|
||||
"""
|
||||
Convert an ordered JSON object into a token sequence
|
||||
"""
|
||||
if type(obj) == dict:
|
||||
if len(obj) == 1 and "text_sequence" in obj:
|
||||
return obj["text_sequence"]
|
||||
else:
|
||||
output = ""
|
||||
if sort_json_key:
|
||||
keys = sorted(obj.keys(), reverse=True)
|
||||
else:
|
||||
keys = obj.keys()
|
||||
for k in keys:
|
||||
if update_special_tokens_for_json_key:
|
||||
add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
|
||||
output += (
|
||||
fr"<s_{k}>"
|
||||
+ json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
|
||||
+ fr"</s_{k}>"
|
||||
)
|
||||
return output
|
||||
elif type(obj) == list:
|
||||
return r"<sep/>".join(
|
||||
[json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
|
||||
)
|
||||
else:
|
||||
obj = str(obj)
|
||||
if f"<{obj}/>" in added_tokens:
|
||||
obj = f"<{obj}/>" # for categorical special tokens
|
||||
return obj
|
||||
|
||||
def process(row, split):
|
||||
task_start_token, prompt_end_token = "<s_cord-v2>"
|
||||
ground_truth = json.loads(row["ground_truth"])
|
||||
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
|
||||
assert isinstance(ground_truth["gt_parses"], list)
|
||||
gt_jsons = ground_truth["gt_parses"]
|
||||
else:
|
||||
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
|
||||
gt_jsons = [ground_truth["gt_parse"]]
|
||||
|
||||
gt_token_sequences = (
|
||||
[
|
||||
json2token(
|
||||
gt_json,
|
||||
update_special_tokens_for_json_key=split == "train",
|
||||
sort_json_key=False,
|
||||
)
|
||||
+ processor.tokenizer.eos_token
|
||||
for gt_json in gt_jsons # load json from list of json
|
||||
]
|
||||
)
|
||||
|
||||
val_dataset_process = DonutDatasetStream(
|
||||
processor=processor,
|
||||
model=model,
|
||||
add_tokens([task_start_token, prompt_end_token])
|
||||
prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(prompt_end_token)
|
||||
|
||||
# change if not 3 channels
|
||||
if row['image'].mode != "RGB":
|
||||
row['image'] = row['image'].convert("RGB")
|
||||
|
||||
# inputs
|
||||
pixel_values = processor(row["image"], random_padding=split == "train", return_tensors="pt").pixel_values
|
||||
pixel_values = pixel_values.squeeze()
|
||||
|
||||
# targets
|
||||
input_ids = processor.tokenizer(
|
||||
gt_token_sequences,
|
||||
add_special_tokens=False,
|
||||
max_length=config.max_length,
|
||||
split="test",
|
||||
task_start_token="<s_cord-v2>",
|
||||
prompt_end_token="<s_cord-v2>",
|
||||
added_tokens=added_tokens,
|
||||
sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
||||
)
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)["input_ids"].squeeze(0)
|
||||
|
||||
labels = input_ids.clone()
|
||||
labels[labels == processor.tokenizer.pad_token_id] = -100 # model doesn't need to predict pad token
|
||||
return {"pixel_values": pixel_values, "labels": labels, 'target_sequence': gt_token_sequences }
|
||||
|
||||
def proces_train(row):
|
||||
return process(row, 'train')
|
||||
|
||||
def proces_val(row):
|
||||
return process(row, 'validation')
|
||||
|
||||
|
||||
|
||||
|
||||
### PROCESS FUNC END ###
|
||||
|
||||
# train_dataset_process = DonutDatasetStream(
|
||||
# processor=processor,
|
||||
# model=model,
|
||||
# max_length=config.max_length,
|
||||
# split="train",
|
||||
# task_start_token="<s_cord-v2>",
|
||||
# prompt_end_token="<s_cord-v2>",
|
||||
# added_tokens=added_tokens,
|
||||
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
||||
# )
|
||||
|
||||
# val_dataset_process = DonutDatasetStream(
|
||||
# processor=processor,
|
||||
# model=model,
|
||||
# max_length=config.max_length,
|
||||
# split="validation",
|
||||
# task_start_token="<s_cord-v2>",
|
||||
# prompt_end_token="<s_cord-v2>",
|
||||
# added_tokens=added_tokens,
|
||||
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
|
||||
# )
|
||||
|
||||
dataset = load_dataset(config.dataset_path, streaming=True)
|
||||
val_dataset = dataset.pop('validation')
|
||||
@ -66,8 +165,8 @@ def main(config, hug_token):
|
||||
# val_length = list(val_dataset.info.splits.values())[-1].num_examples
|
||||
|
||||
|
||||
train_dataset = train_dataset.map(lambda x: train_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
|
||||
val_dataset = val_dataset.map(lambda x: val_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
|
||||
train_dataset = train_dataset.map(proces_train, remove_columns = ['image', 'ground_truth'])
|
||||
val_dataset = val_dataset.map(proces_val, remove_columns = ['image', 'ground_truth'])
|
||||
|
||||
# train_dataset = train_dataset.with_format('torch')
|
||||
# val_dataset = val_dataset.with_format('torch')
|
||||
|
@ -8,19 +8,6 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
|
||||
|
||||
class DonutDatasetStream:
|
||||
"""
|
||||
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
|
||||
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
|
||||
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
|
||||
Args:
|
||||
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
|
||||
max_length: the max number of tokens for the target sequences
|
||||
split: whether to load "train", "validation" or "test" split
|
||||
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
|
||||
task_start_token: the special token to be fed to the decoder to conduct the target task
|
||||
prompt_end_token: the special token at the end of the sequences
|
||||
sort_json_key: whether or not to sort the JSON keys
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -34,7 +21,6 @@ class DonutDatasetStream:
|
||||
sort_json_key: bool = True,
|
||||
added_tokens: list = []
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.split = split
|
||||
self.max_length = max_length
|
||||
|
Loading…
Reference in New Issue
Block a user