train pure function for map, gitignore added vscode

This commit is contained in:
michal.kozlowski 2023-03-14 20:52:24 +01:00
parent 2f1176b3c0
commit c474b560aa
3 changed files with 125 additions and 39 deletions

1
.gitignore vendored
View File

@ -4,3 +4,4 @@ nohup.out
wandb
__pycache__/
checkpoint
.vscode

View File

@ -1,3 +1,4 @@
from typing import Any, List
from transformers import VisionEncoderDecoderConfig, DonutProcessor, VisionEncoderDecoderModel
import torch
from torch.utils.data import DataLoader
@ -15,7 +16,7 @@ from utils.callbacks import PushToHubCallback
import warnings
from datasets import load_dataset, interleave_datasets
from torchdata.datapipes.iter import IterableWrapper
import json
def main(config, hug_token):
@ -34,30 +35,128 @@ def main(config, hug_token):
added_tokens = []
dataset = load_dataset(config.dataset_path, split="train[:80%]")
dataset = dataset.train_test_split(test_size=0.1)
### PROCESS FUNC START ###
train_dataset_process = DonutDatasetStream(
processor=processor,
model=model,
max_length=config.max_length,
split="train",
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
)
def add_tokens(list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings of the decoder
"""
newly_added_num = processor.tokenizer.add_tokens(list_of_tokens)
if newly_added_num > 0:
model.decoder.resize_token_embeddings(len(processor.tokenizer))
added_tokens.extend(list_of_tokens)
val_dataset_process = DonutDatasetStream(
processor=processor,
model=model,
max_length=config.max_length,
split="test",
task_start_token="<s_cord-v2>",
prompt_end_token="<s_cord-v2>",
added_tokens=added_tokens,
sort_json_key=False, # cord dataset is preprocessed, so no need for this
def json2token(obj: Any, update_special_tokens_for_json_key: bool = True, sort_json_key: bool = True):
"""
Convert an ordered JSON object into a token sequence
"""
if type(obj) == dict:
if len(obj) == 1 and "text_sequence" in obj:
return obj["text_sequence"]
else:
output = ""
if sort_json_key:
keys = sorted(obj.keys(), reverse=True)
else:
keys = obj.keys()
for k in keys:
if update_special_tokens_for_json_key:
add_tokens([fr"<s_{k}>", fr"</s_{k}>"])
output += (
fr"<s_{k}>"
+ json2token(obj[k], update_special_tokens_for_json_key, sort_json_key)
+ fr"</s_{k}>"
)
return output
elif type(obj) == list:
return r"<sep/>".join(
[json2token(item, update_special_tokens_for_json_key, sort_json_key) for item in obj]
)
else:
obj = str(obj)
if f"<{obj}/>" in added_tokens:
obj = f"<{obj}/>" # for categorical special tokens
return obj
def process(row, split):
task_start_token, prompt_end_token = "<s_cord-v2>"
ground_truth = json.loads(row["ground_truth"])
if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa
assert isinstance(ground_truth["gt_parses"], list)
gt_jsons = ground_truth["gt_parses"]
else:
assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict)
gt_jsons = [ground_truth["gt_parse"]]
gt_token_sequences = (
[
json2token(
gt_json,
update_special_tokens_for_json_key=split == "train",
sort_json_key=False,
)
+ processor.tokenizer.eos_token
for gt_json in gt_jsons # load json from list of json
]
)
add_tokens([task_start_token, prompt_end_token])
prompt_end_token_id = processor.tokenizer.convert_tokens_to_ids(prompt_end_token)
# change if not 3 channels
if row['image'].mode != "RGB":
row['image'] = row['image'].convert("RGB")
# inputs
pixel_values = processor(row["image"], random_padding=split == "train", return_tensors="pt").pixel_values
pixel_values = pixel_values.squeeze()
# targets
input_ids = processor.tokenizer(
gt_token_sequences,
add_special_tokens=False,
max_length=config.max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
)["input_ids"].squeeze(0)
labels = input_ids.clone()
labels[labels == processor.tokenizer.pad_token_id] = -100 # model doesn't need to predict pad token
return {"pixel_values": pixel_values, "labels": labels, 'target_sequence': gt_token_sequences }
def proces_train(row):
return process(row, 'train')
def proces_val(row):
return process(row, 'validation')
### PROCESS FUNC END ###
# train_dataset_process = DonutDatasetStream(
# processor=processor,
# model=model,
# max_length=config.max_length,
# split="train",
# task_start_token="<s_cord-v2>",
# prompt_end_token="<s_cord-v2>",
# added_tokens=added_tokens,
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
# )
# val_dataset_process = DonutDatasetStream(
# processor=processor,
# model=model,
# max_length=config.max_length,
# split="validation",
# task_start_token="<s_cord-v2>",
# prompt_end_token="<s_cord-v2>",
# added_tokens=added_tokens,
# sort_json_key=False, # cord dataset is preprocessed, so no need for this
# )
dataset = load_dataset(config.dataset_path, streaming=True)
val_dataset = dataset.pop('validation')
@ -66,8 +165,8 @@ def main(config, hug_token):
# val_length = list(val_dataset.info.splits.values())[-1].num_examples
train_dataset = train_dataset.map(lambda x: train_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
val_dataset = val_dataset.map(lambda x: val_dataset_process.process(x), remove_columns = ['image', 'ground_truth'])
train_dataset = train_dataset.map(proces_train, remove_columns = ['image', 'ground_truth'])
val_dataset = val_dataset.map(proces_val, remove_columns = ['image', 'ground_truth'])
# train_dataset = train_dataset.with_format('torch')
# val_dataset = val_dataset.with_format('torch')

View File

@ -8,19 +8,6 @@ from transformers import DonutProcessor, VisionEncoderDecoderModel
class DonutDatasetStream:
"""
DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets)
Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt),
and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string).
Args:
dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl
max_length: the max number of tokens for the target sequences
split: whether to load "train", "validation" or "test" split
ignore_id: ignore_index for torch.nn.CrossEntropyLoss
task_start_token: the special token to be fed to the decoder to conduct the target task
prompt_end_token: the special token at the end of the sequences
sort_json_key: whether or not to sort the JSON keys
"""
def __init__(
self,
@ -34,7 +21,6 @@ class DonutDatasetStream:
sort_json_key: bool = True,
added_tokens: list = []
):
super().__init__()
self.split = split
self.max_length = max_length