widzenie-komputerowe-projekt/rybki.ipynb
2023-02-01 10:23:06 +01:00

196 lines
6.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"import keras\n",
"import numpy as np\n",
"import threading\n",
"import tensorflow as tf"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def wrap_frozen_graph(graph_def, inputs, outputs, print_graph=False):\n",
" def _imports_graph_def():\n",
" tf.compat.v1.import_graph_def(graph_def, name=\"\")\n",
"\n",
" wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, [])\n",
" import_graph = wrapped_import.graph\n",
"\n",
" if print_graph == True:\n",
" print(\"-\" * 50)\n",
" print(\"Frozen model layers: \")\n",
" layers = [op.name for op in import_graph.get_operations()]\n",
" for layer in layers:\n",
" print(layer)\n",
" print(\"-\" * 50)\n",
"\n",
" return wrapped_import.prune(\n",
" tf.nest.map_structure(import_graph.as_graph_element, inputs),\n",
" tf.nest.map_structure(import_graph.as_graph_element, outputs))"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
" # Load frozen graph using TensorFlow 1.x functions\n",
"with tf.io.gfile.GFile(\"./frozen_models/frozen_graph_best_vgg.pb\", \"rb\") as f:\n",
" graph_def = tf.compat.v1.GraphDef()\n",
" loaded = graph_def.ParseFromString(f.read())\n",
"\n",
"# Wrap frozen graph to ConcreteFunctions\n",
"frozen_func = wrap_frozen_graph(graph_def=graph_def,\n",
" inputs=[\"x:0\"],\n",
" outputs=[\"Identity:0\"],\n",
" print_graph=False)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Jellyfish'"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"class_names=sorted(['Fish', \"Jellyfish\", 'Lionfish', 'Shark', 'Stingray', 'Turtle'])\n",
"a = cv2.imread('test.PNG')\n",
"# a.shape\n",
"a = cv2.resize(a,(227,227))\n",
"pred = frozen_func(x=tf.convert_to_tensor(a[None, :], dtype='float32'))\n",
"label = class_names[np.argmax(pred)]\n",
"label"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[51], line 42\u001b[0m\n\u001b[0;32m 39\u001b[0m roi \u001b[39m=\u001b[39m cv2\u001b[39m.\u001b[39mresize(roi, (\u001b[39m960\u001b[39m, \u001b[39m540\u001b[39m)) \n\u001b[0;32m 40\u001b[0m cv2\u001b[39m.\u001b[39mimshow(\u001b[39m\"\u001b[39m\u001b[39mroi\u001b[39m\u001b[39m\"\u001b[39m, roi)\n\u001b[1;32m---> 42\u001b[0m key \u001b[39m=\u001b[39m cv2\u001b[39m.\u001b[39;49mwaitKey(\u001b[39m30\u001b[39;49m)\n\u001b[0;32m 43\u001b[0m \u001b[39mif\u001b[39;00m key \u001b[39m==\u001b[39m \u001b[39m27\u001b[39m:\n\u001b[0;32m 44\u001b[0m \u001b[39mbreak\u001b[39;00m\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"cap = cv2.VideoCapture(\"rybki4.mp4\")\n",
"# cap.set(cv2.CAP_PROP_FPS, 60)\n",
"\n",
"class_names=sorted(['Fish', \"Jellyfish\", 'Lionfish', 'Shark', 'Stingray', 'Turtle'])\n",
"object_detector = cv2.createBackgroundSubtractorMOG2(history=100, varThreshold=50)\n",
"\n",
"\n",
"# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) \n",
"# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
"# fps = cap.get(cv2.CAP_PROP_FPS)\n",
"# out = cv2.VideoWriter('track_fish.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, height))\n",
"\n",
"while True:\n",
" ret, frame = cap.read()\n",
" if(ret):\n",
" roi = frame[100: 900,330:1900]\n",
" mask = object_detector.apply(roi)\n",
" _, mask = cv2.threshold(mask,254,255, cv2.THRESH_BINARY)\n",
" conturs, _ =cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n",
"\n",
" images = []\n",
" for cnt in conturs:\n",
" area = cv2.contourArea(cnt)\n",
" if area > 300:\n",
" #cv2.drawContours(roi,[cnt],-1,(0,255,0),2)\n",
" x,y,w,h = cv2.boundingRect(cnt)\n",
" rectangle = cv2.rectangle(roi,(x,y),(x+w,y+h),(0,255,0),3)\n",
" # images.append((x,y,rectangle,np.expand_dims(image_to_predict,axis=0)))\n",
" # image_to_predict = roi[y:y+h,x:x+w]\n",
" # image_to_predict = cv2.resize(image_to_predict,(227,227))\n",
" # pred = frozen_func(x=tf.convert_to_tensor(image_to_predict[None, :], dtype='float32'))\n",
" # label = class_names[np.argmax(pred)]\n",
" # cv2.putText(rectangle, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 1)\n",
" \n",
" # if images:\n",
" # pred = model.predict(np.vstack([image[3] for image in images]))\n",
" # labels = [class_names[np.argmax(pre)] for pre in pred]\n",
" # for i,image in enumerate(images):\n",
" roi = cv2.resize(roi, (960, 540)) \n",
" cv2.imshow(\"roi\", roi)\n",
"\n",
" key = cv2.waitKey(30)\n",
" if key == 27:\n",
" break\n",
"\n",
" #out.write(frame)\n",
" else:\n",
" break\n",
"\n",
"\n",
"#out.release()\n",
"cap.release()\n",
"cv2.destroyAllWindows()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "um",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.15"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "876e189cbbe99a9a838ece62aae1013186c4bb7e0254a10cfa2f9b2381853efb"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}