ium_444417/lab8/predictMlflow.py

30 lines
882 B
Python
Raw Normal View History

2022-05-15 10:55:01 +02:00
# import mlflow
# import numpy as np
# import json
#
# logged_model = '/mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model'
#
# # Load model as a PyFuncModel.
# loaded_model = mlflow.pyfunc.load_model(logged_model)
#
# with open(f'{loaded_model}/input_example.json') as f:
# input_example_data = json.load(f)
#
# # Predictions
# print(f'input: {input_example_data}')
# print(f'predictions: {loaded_model.predict(input_example_data)}')
2022-05-15 10:37:28 +02:00
import mlflow
import numpy as np
import json
2022-05-15 10:55:01 +02:00
registry_path = '/mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model'
model = mlflow.pyfunc.load_model(registry_path)
2022-05-15 10:37:28 +02:00
2022-05-15 10:55:01 +02:00
with open(f'{registry_path}/input_example.json') as f:
2022-05-15 10:37:28 +02:00
input_example_data = json.load(f)
2022-05-15 10:56:11 +02:00
input_example = np.array(input_example_data['inputs'])
2022-05-15 10:55:01 +02:00
print(f'Input: {input_example}')
print(f'Prediction: {model.predict(input_example)}')