2022-05-15 10:55:01 +02:00
|
|
|
# import mlflow
|
|
|
|
# import numpy as np
|
|
|
|
# import json
|
|
|
|
#
|
|
|
|
# logged_model = '/mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model'
|
|
|
|
#
|
|
|
|
# # Load model as a PyFuncModel.
|
|
|
|
# loaded_model = mlflow.pyfunc.load_model(logged_model)
|
|
|
|
#
|
|
|
|
# with open(f'{loaded_model}/input_example.json') as f:
|
|
|
|
# input_example_data = json.load(f)
|
|
|
|
#
|
|
|
|
# # Predictions
|
|
|
|
# print(f'input: {input_example_data}')
|
|
|
|
# print(f'predictions: {loaded_model.predict(input_example_data)}')
|
|
|
|
|
2022-05-15 10:37:28 +02:00
|
|
|
import mlflow
|
|
|
|
import numpy as np
|
|
|
|
import json
|
|
|
|
|
2022-05-15 10:55:01 +02:00
|
|
|
registry_path = '/mlruns/14/80fe21a0804844088147d15a3cebb3e5/artifacts/lego-model'
|
|
|
|
model = mlflow.pyfunc.load_model(registry_path)
|
2022-05-15 10:37:28 +02:00
|
|
|
|
2022-05-15 10:55:01 +02:00
|
|
|
with open(f'{registry_path}/input_example.json') as f:
|
2022-05-15 10:37:28 +02:00
|
|
|
input_example_data = json.load(f)
|
|
|
|
|
2022-05-15 10:56:11 +02:00
|
|
|
input_example = np.array(input_example_data['inputs'])
|
2022-05-15 10:55:01 +02:00
|
|
|
|
|
|
|
print(f'Input: {input_example}')
|
|
|
|
print(f'Prediction: {model.predict(input_example)}')
|