ium_444421/predict_444501.Jenkinsfile

32 lines
1.1 KiB
Plaintext
Raw Normal View History

2022-05-17 20:44:27 +02:00
pipeline {
agent {
docker {
image 'agakul/ium:mlflow'}
}
parameters {
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR'
)
2022-05-22 12:15:11 +02:00
string(
defaultValue: '{\\"inputs\\": [[167.39999389648438, 72.18000030517578, 40.0, 21.0, 94.0], [162.3000030517578, 67.30000305175781, 18.0, 52.0, 219.0], [178.5, 90.5, 14.699999809265137, 45.0, 262.0], [180.89999389648438, 77.0999984741211, 25.399999618530273, 43.0, 224.0], [177.3000030517578, 88.4800033569336, 35.599998474121094, 18.0, 183.0]]}',
description: 'Inputs',
name: 'INPUT'
)
2022-05-17 20:44:27 +02:00
}
stages {
stage('Copy artifacts') {
steps {
2022-05-22 11:41:39 +02:00
copyArtifacts fingerprintArtifacts: true, projectName: 's444421-training/training_and_evaluation', selector: buildParameter('BUILD_SELECTOR')
2022-05-17 20:44:27 +02:00
}
}
2022-05-22 12:15:11 +02:00
stage('Predict') {
steps {
2022-05-22 12:24:38 +02:00
sh "echo ${params.INPUT} > input_example.json"
sh "python predict_444501.py"
2022-05-22 12:15:11 +02:00
}
}
2022-05-17 20:44:27 +02:00
}
2022-05-22 11:41:39 +02:00
}