Convert preparation.ipynb file to python script
This commit is contained in:
parent
783fda2c71
commit
83b32cbea7
104
preparation.py
Normal file
104
preparation.py
Normal file
@ -0,0 +1,104 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# get_ipython().system('kaggle datasets download -d tejashvi14/travel-insurance-prediction-data')
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
get_ipython().system('unzip -o travel-insurance-prediction-data.zip')
|
||||
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
import pandas as pd
|
||||
travel_insurance=pd.read_csv('TravelInsurancePrediction.csv', index_col=0)
|
||||
travel_insurance
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
# usunięcie wierszy zawierających braki
|
||||
travel_insurance.dropna(axis='index', how='any')
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
# normalizacja danych
|
||||
for column in travel_insurance.columns:
|
||||
if travel_insurance[column].dtype == 'object':
|
||||
travel_insurance[column] = travel_insurance[column].str.lower()
|
||||
|
||||
travel_insurance
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
# podział na podzbiory train/dev/test
|
||||
import sklearn
|
||||
from sklearn.model_selection import train_test_split
|
||||
travel_insurance_train, travel_insurance_rest = sklearn.model_selection.train_test_split(travel_insurance, test_size=0.4, random_state=1)
|
||||
travel_insurance_test, travel_insurance_dev = sklearn.model_selection.train_test_split(travel_insurance_rest, test_size=0.5, random_state=1)
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
travel_insurance.describe(include='all')
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
# zwracanie informacji o danym zbiorze
|
||||
|
||||
import seaborn as sns
|
||||
|
||||
def printInformation(data):
|
||||
print(f'Size (rows): {len(data)}\n')
|
||||
mean_value = data.mean()
|
||||
min_value = data.min(numeric_only=True)
|
||||
max_value = data.max(numeric_only=True)
|
||||
std_value = data.std()
|
||||
median_value = data.median()
|
||||
print(f'(mean)\n{mean_value}', f'(min)\n{min_value}', f'(max)\n{max_value}', f'(std)\n{std_value}', f'(median)\n{median_value}', sep="\n\n")
|
||||
sns.pairplot(data=data, hue="TravelInsurance")
|
||||
|
||||
|
||||
# In[24]:
|
||||
|
||||
|
||||
printInformation(travel_insurance)
|
||||
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
printInformation(travel_insurance_train)
|
||||
|
||||
|
||||
# In[12]:
|
||||
|
||||
|
||||
printInformation(travel_insurance_test)
|
||||
|
||||
|
||||
# In[13]:
|
||||
|
||||
|
||||
printInformation(travel_insurance_dev)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user