ium_444421/predict_444501.py
2022-05-22 12:15:11 +02:00

9 lines
296 B
Python

import mlflow
import numpy as np
model = mlflow.pyfunc.load_model('/mlruns/1/e435ee5c0c5a468c99eb43c13df4a94b/artifacts/s444421')
with open('input_example.json') as f:
input = json.load(f)
y_predicted = model.predict(np.array([data['inputs']]).reshape(-1, 2))
print(y_predicted[:5])