CatOrNot/README.md

44 lines
1.6 KiB
Markdown
Raw Normal View History

2020-01-06 16:11:15 +01:00
# Object detection using deep learning with OpenCV and Python
OpenCV `dnn` module supports running inference on pre-trained deep learning models from popular frameworks like Caffe, Torch and TensorFlow.
When it comes to object detection, popular detection frameworks are
* YOLO
* SSD
* Faster R-CNN
Support for running YOLO/DarkNet has been added to OpenCV dnn module recently.
## Dependencies
* opencv
* numpy
`pip install numpy opencv-python`
**Note: Compatability with Python 2.x is not officially tested.**
## YOLO (You Only Look Once)
Download the pre-trained YOLO v3 weights file from this [link](https://pjreddie.com/media/files/yolov3.weights) and place it in the current directory or you can directly download to the current directory in terminal using
`$ wget https://pjreddie.com/media/files/yolov3.weights`
Provided all the files are in the current directory, below command will apply object detection on the input image `dog.jpg`.
`$ python yolo_opencv.py --image dog.jpg --config yolov3.cfg --weights yolov3.weights --classes yolov3.txt`
**Command format**
_$ python yolo_opencv.py --image /path/to/input/image --config /path/to/config/file --weights /path/to/weights/file --classes /path/to/classes/file_
Checkout the [blog post](http://www.arunponnusamy.com/yolo-object-detection-opencv-python.html) to learn more.
### sample output :
![](object-detection.jpg)
Checkout the object detection implementation available in [cvlib](http:cvlib.net) which enables detecting common objects in the context through a single function call `detect_common_objects()`.
(_SSD and Faster R-CNN examples will be added soon_)