2020-05-15 13:54:18 +02:00
|
|
|
import pandas as pd
|
|
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn import metrics
|
|
|
|
import numpy
|
|
|
|
|
2020-05-17 20:24:15 +02:00
|
|
|
header = ["ready", "hydration", "weeds", "empty", "TODO"]
|
|
|
|
work = ["Zebrac","Podlac","Odchwascic","Zasadzic"]
|
|
|
|
#0 - 3
|
|
|
|
#1 - 0
|
|
|
|
#2 - 1
|
|
|
|
#3 - 2
|
|
|
|
def check_p(field):
|
|
|
|
if field == 0:
|
|
|
|
return [0, 0, 0, 0, "Zasadzic"]
|
|
|
|
elif field == 1:
|
|
|
|
return [0, 0, 1, 0, "Odchwascic"]
|
|
|
|
elif field == 2:
|
|
|
|
return [0, 0, 0, 1, "Podlac"]
|
|
|
|
elif field == 3:
|
|
|
|
return [0, 0, 1, 1, "Odchwascic"]
|
|
|
|
elif field == 4:
|
|
|
|
return [0, 1, 0, 0, "Zasadzic"]
|
|
|
|
elif field == 5:
|
|
|
|
return [0, 1, 1, 0, "Odchwascic"]
|
|
|
|
elif field == 6:
|
|
|
|
return [0, 1, 0, 1, "Ignoruj"]
|
|
|
|
elif field == 7:
|
|
|
|
return [0, 1, 1, 1, "Odchwascic"]
|
|
|
|
elif field == 8:
|
|
|
|
return [1, 0, 0, 1, "Zebrac"]
|
|
|
|
else:
|
|
|
|
print("wrong field number")
|
2020-05-15 13:54:18 +02:00
|
|
|
|
|
|
|
|
|
|
|
def check(field):
|
|
|
|
if field == 0:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 0, 0, 1, "Zasadzic"],[0,0,0,1,"Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 1:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 0, 1, 1, "Odchwascic"], [0,0,1,1,"Podlac"], [0,0,1,1,"Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 2:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 0, 0, 0, "Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 3:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 0, 1, 0, "Odchwascic"],[0,0,1,0,"Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 4:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 1, 0, 1, "Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 5:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 1, 1, 1, "Odchwascic"],[0,1,1,1,"Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 6:
|
2020-05-17 20:24:15 +02:00
|
|
|
return []
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 7:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 1, 1, 0, "Odchwascic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 8:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[1, 0, 0, 0, "Zebrac"],[1, 0, 0, 0, "Potem podlac"],[1, 0, 0, 0, "Potem zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
else:
|
|
|
|
print("wrong field number")
|
|
|
|
|
|
|
|
def un_values(rows, col):
|
|
|
|
return set([row[col] for row in rows])
|
|
|
|
|
|
|
|
|
|
|
|
def class_counts(rows):
|
|
|
|
counts = {}
|
|
|
|
for row in rows:
|
|
|
|
label = row[-1]
|
|
|
|
if label not in counts:
|
|
|
|
counts[label] = 0
|
|
|
|
counts[label] += 1
|
|
|
|
return counts
|
|
|
|
|
|
|
|
|
|
|
|
def is_numeric(value):
|
|
|
|
return isinstance(value, int) or isinstance(value, float)
|
|
|
|
|
|
|
|
|
|
|
|
class Question():
|
|
|
|
def __init__(self, column, value):
|
|
|
|
self.column = column
|
|
|
|
self.value = value
|
|
|
|
|
|
|
|
def match(self, example):
|
|
|
|
val = example[self.column]
|
|
|
|
if is_numeric(val):
|
|
|
|
return val == self.value
|
|
|
|
else:
|
|
|
|
return val != self.value
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
condition = "!="
|
|
|
|
if is_numeric(self.value):
|
|
|
|
condition = "=="
|
|
|
|
return "Is %s %s %s?" %(
|
|
|
|
header[self.column], condition, str(self.value)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def partition(rows, question):
|
|
|
|
true_rows, false_rows = [], []
|
|
|
|
for row in rows:
|
|
|
|
if question.match(row):
|
|
|
|
true_rows.append(row)
|
|
|
|
else:
|
|
|
|
false_rows.append(row)
|
|
|
|
return true_rows, false_rows
|
|
|
|
|
|
|
|
|
|
|
|
def gini(rows):
|
|
|
|
counts = class_counts(rows)
|
|
|
|
impurity = 1
|
|
|
|
for lbl in counts:
|
|
|
|
prob_of_lbl = counts[lbl]/float(len(rows))
|
|
|
|
impurity -= prob_of_lbl**2
|
|
|
|
return impurity
|
|
|
|
|
|
|
|
|
|
|
|
def info_gain(left, right, current_uncertainty):
|
|
|
|
p = float(len(left))/(len(left) + len(right))
|
|
|
|
return current_uncertainty - p*gini(left) - (1-p) * gini(right)
|
|
|
|
|
|
|
|
|
|
|
|
def find_best_split(rows):
|
|
|
|
best_gain = 0
|
|
|
|
best_question = None
|
|
|
|
current_uncertainty = gini(rows)
|
|
|
|
n_features = len(rows[0]) - 1
|
|
|
|
|
|
|
|
for col in range(n_features):
|
|
|
|
|
|
|
|
values = set([row[col] for row in rows])
|
|
|
|
|
|
|
|
for val in values:
|
|
|
|
question = Question(col, val)
|
|
|
|
true_rows, false_rows = partition(rows, question)
|
|
|
|
if len(true_rows) == 0 or len(false_rows) == 0:
|
|
|
|
continue
|
|
|
|
gain = info_gain(true_rows,false_rows,current_uncertainty)
|
|
|
|
if gain >= best_gain:
|
|
|
|
best_gain, best_question = gain, question
|
|
|
|
|
|
|
|
return best_gain, best_question
|
|
|
|
|
|
|
|
|
|
|
|
class Leaf:
|
|
|
|
def __init__(self, rows):
|
|
|
|
self.predictions = class_counts(rows)
|
|
|
|
|
|
|
|
|
|
|
|
class DecisionNode:
|
|
|
|
def __init__(self, question, true_branch, false_branch):
|
|
|
|
self.question = question
|
|
|
|
self.true_branch = true_branch
|
|
|
|
self.false_branch = false_branch
|
|
|
|
|
|
|
|
|
|
|
|
def build_tree(rows):
|
|
|
|
gain, question = find_best_split(rows)
|
|
|
|
if gain == 0:
|
|
|
|
return Leaf(rows)
|
|
|
|
true_rows, false_rows = partition(rows, question)
|
|
|
|
|
|
|
|
true_branch = build_tree(true_rows)
|
|
|
|
false_branch = build_tree(false_rows)
|
|
|
|
|
|
|
|
return DecisionNode(question, true_branch, false_branch)
|
|
|
|
|
|
|
|
|
|
|
|
def print_tree(node, spacing=""):
|
|
|
|
if isinstance(node, Leaf):
|
|
|
|
print(spacing + "Predict", node.predictions)
|
|
|
|
return
|
|
|
|
|
|
|
|
print(spacing + str(node.question))
|
|
|
|
|
|
|
|
print(spacing + '--> True: ')
|
|
|
|
print_tree(node.true_branch, spacing + " ")
|
|
|
|
|
|
|
|
print(spacing + '--> False: ')
|
|
|
|
print_tree(node.false_branch, spacing + " ")
|
|
|
|
|
|
|
|
|
|
|
|
def classify(row, node):
|
|
|
|
if isinstance(node, Leaf):
|
|
|
|
return node.predictions
|
|
|
|
if node.question.match(row):
|
|
|
|
return classify(row, node.true_branch)
|
|
|
|
else:
|
|
|
|
return classify(row,node.false_branch)
|
|
|
|
|
|
|
|
|
|
|
|
def print_leaf(counts):
|
|
|
|
total = sum(counts.values()) * 1.0
|
|
|
|
probs = {}
|
|
|
|
for lbl in counts.keys():
|
|
|
|
probs[lbl] = str(int(counts[lbl]/total * 100)) + "%"
|
|
|
|
return probs
|
|
|
|
|
|
|
|
|
2020-05-15 14:03:52 +02:00
|
|
|
class main():
|
2020-05-03 17:13:59 +02:00
|
|
|
def __init__(self,traktor,field,ui,path):
|
|
|
|
self.traktor = traktor
|
|
|
|
self.field = field
|
|
|
|
self.ui = ui
|
|
|
|
self.path = path
|
2020-05-17 20:24:15 +02:00
|
|
|
self.best_action = 0
|
|
|
|
def main(self):
|
2020-05-15 13:54:18 +02:00
|
|
|
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
|
|
|
|
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
|
|
|
|
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
|
|
|
|
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
|
|
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
|
|
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
|
|
|
|
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
2020-05-17 20:24:15 +02:00
|
|
|
while (self.best_action != -1):
|
|
|
|
self.find_best_action()
|
|
|
|
self.do_best_action()
|
|
|
|
print("Koniec roboty")
|
2020-05-15 13:54:18 +02:00
|
|
|
|
|
|
|
|
2020-05-17 20:24:15 +02:00
|
|
|
def find_best_action(self):
|
|
|
|
testing_data = []
|
|
|
|
matrix = self.field.get_matrix()
|
|
|
|
matrix_todo = []
|
|
|
|
#print(self.field)
|
2020-05-15 13:54:18 +02:00
|
|
|
for i in range(10):
|
2020-05-17 20:24:15 +02:00
|
|
|
matrix_todo.append([])
|
|
|
|
verse = matrix[i]
|
|
|
|
for j in range(len(verse)):
|
2020-05-15 13:54:18 +02:00
|
|
|
coord = (i, j)
|
2020-05-17 20:24:15 +02:00
|
|
|
current_field = check(verse[j]) #czynnosci ktore trzeba jeszcze zrobic na kazdym polu
|
|
|
|
matrix_todo[i].append([])
|
|
|
|
for action in current_field:
|
|
|
|
matrix_todo[i][j].append(action[-1])
|
|
|
|
testing_data.extend(current_field)
|
|
|
|
#testing_data.append(current_field)
|
|
|
|
if len(testing_data) > 0:
|
|
|
|
x = build_tree(testing_data)
|
|
|
|
print_tree(x)
|
|
|
|
if isinstance(x, Leaf):
|
|
|
|
self.best_action = self.find_remaining_action(matrix_todo)
|
|
|
|
return
|
|
|
|
self.best_action = x.question.column
|
|
|
|
print(header[x.question.column])
|
|
|
|
print(x.question.value)
|
|
|
|
else:
|
|
|
|
self.best_action = self.find_remaining_action(matrix_todo)
|
|
|
|
return
|
|
|
|
#for row in testing_data:
|
|
|
|
# print("Actual: %s. Predicted %s" %
|
|
|
|
# (row[-1], print_leaf(classify(row, x))))
|
|
|
|
#for row in matrix_todo:
|
|
|
|
# print(row)
|
|
|
|
|
|
|
|
def do_best_action(self):
|
|
|
|
self.traktor.set_mode((self.best_action+3) % 4)
|
|
|
|
while self.path.pathfinding(self.traktor,self.field,self.ui) != 0:
|
|
|
|
pass
|
|
|
|
# 0 - 3
|
|
|
|
# 1 - 0
|
|
|
|
# 2 - 1
|
|
|
|
# 3 - 2
|
|
|
|
def find_remaining_action(self, matrix_todo):
|
|
|
|
for row in matrix_todo:
|
|
|
|
for field in row:
|
|
|
|
for action in field:
|
|
|
|
print(action)
|
|
|
|
return work.index(action)
|
|
|
|
return -1
|