SI_Traktor/Kamila.py

270 lines
7.6 KiB
Python
Raw Normal View History

2020-05-15 13:54:18 +02:00
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy
2020-05-17 20:24:15 +02:00
header = ["ready", "hydration", "weeds", "empty", "TODO"]
work = ["Zebrac","Podlac","Odchwascic","Zasadzic"]
#0 - 3
#1 - 0
#2 - 1
#3 - 2
def check_p(field):
if field == 0:
return [0, 0, 0, 0, "Zasadzic"]
elif field == 1:
return [0, 0, 1, 0, "Odchwascic"]
elif field == 2:
return [0, 0, 0, 1, "Podlac"]
elif field == 3:
return [0, 0, 1, 1, "Odchwascic"]
elif field == 4:
return [0, 1, 0, 0, "Zasadzic"]
elif field == 5:
return [0, 1, 1, 0, "Odchwascic"]
elif field == 6:
return [0, 1, 0, 1, "Ignoruj"]
elif field == 7:
return [0, 1, 1, 1, "Odchwascic"]
elif field == 8:
return [1, 0, 0, 1, "Zebrac"]
else:
print("wrong field number")
2020-05-15 13:54:18 +02:00
def check(field):
if field == 0:
2020-05-17 20:24:15 +02:00
return [[0, 0, 0, 1, "Zasadzic"],[0,0,0,1,"Podlac"]]
2020-05-15 13:54:18 +02:00
elif field == 1:
2020-05-17 20:24:15 +02:00
return [[0, 0, 1, 1, "Odchwascic"], [0,0,1,1,"Podlac"], [0,0,1,1,"Zasadzic"]]
2020-05-15 13:54:18 +02:00
elif field == 2:
2020-05-17 20:24:15 +02:00
return [[0, 0, 0, 0, "Podlac"]]
2020-05-15 13:54:18 +02:00
elif field == 3:
2020-05-17 20:24:15 +02:00
return [[0, 0, 1, 0, "Odchwascic"],[0,0,1,0,"Podlac"]]
2020-05-15 13:54:18 +02:00
elif field == 4:
2020-05-17 20:24:15 +02:00
return [[0, 1, 0, 1, "Zasadzic"]]
2020-05-15 13:54:18 +02:00
elif field == 5:
2020-05-17 20:24:15 +02:00
return [[0, 1, 1, 1, "Odchwascic"],[0,1,1,1,"Zasadzic"]]
2020-05-15 13:54:18 +02:00
elif field == 6:
2020-05-17 20:24:15 +02:00
return []
2020-05-15 13:54:18 +02:00
elif field == 7:
2020-05-17 20:24:15 +02:00
return [[0, 1, 1, 0, "Odchwascic"]]
2020-05-15 13:54:18 +02:00
elif field == 8:
2020-05-17 20:24:15 +02:00
return [[1, 0, 0, 0, "Zebrac"],[1, 0, 0, 0, "Potem podlac"],[1, 0, 0, 0, "Potem zasadzic"]]
2020-05-15 13:54:18 +02:00
else:
print("wrong field number")
def un_values(rows, col):
return set([row[col] for row in rows])
def class_counts(rows):
counts = {}
for row in rows:
label = row[-1]
if label not in counts:
counts[label] = 0
counts[label] += 1
return counts
def is_numeric(value):
return isinstance(value, int) or isinstance(value, float)
class Question():
def __init__(self, column, value):
self.column = column
self.value = value
def match(self, example):
val = example[self.column]
if is_numeric(val):
return val == self.value
else:
return val != self.value
def __repr__(self):
condition = "!="
if is_numeric(self.value):
condition = "=="
return "Is %s %s %s?" %(
header[self.column], condition, str(self.value)
)
def partition(rows, question):
true_rows, false_rows = [], []
for row in rows:
if question.match(row):
true_rows.append(row)
else:
false_rows.append(row)
return true_rows, false_rows
def gini(rows):
counts = class_counts(rows)
impurity = 1
for lbl in counts:
prob_of_lbl = counts[lbl]/float(len(rows))
impurity -= prob_of_lbl**2
return impurity
def info_gain(left, right, current_uncertainty):
p = float(len(left))/(len(left) + len(right))
return current_uncertainty - p*gini(left) - (1-p) * gini(right)
def find_best_split(rows):
best_gain = 0
best_question = None
current_uncertainty = gini(rows)
n_features = len(rows[0]) - 1
for col in range(n_features):
values = set([row[col] for row in rows])
for val in values:
question = Question(col, val)
true_rows, false_rows = partition(rows, question)
if len(true_rows) == 0 or len(false_rows) == 0:
continue
gain = info_gain(true_rows,false_rows,current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
class Leaf:
def __init__(self, rows):
self.predictions = class_counts(rows)
class DecisionNode:
def __init__(self, question, true_branch, false_branch):
self.question = question
self.true_branch = true_branch
self.false_branch = false_branch
def build_tree(rows):
gain, question = find_best_split(rows)
if gain == 0:
return Leaf(rows)
true_rows, false_rows = partition(rows, question)
true_branch = build_tree(true_rows)
false_branch = build_tree(false_rows)
return DecisionNode(question, true_branch, false_branch)
def print_tree(node, spacing=""):
if isinstance(node, Leaf):
print(spacing + "Predict", node.predictions)
return
print(spacing + str(node.question))
print(spacing + '--> True: ')
print_tree(node.true_branch, spacing + " ")
print(spacing + '--> False: ')
print_tree(node.false_branch, spacing + " ")
def classify(row, node):
if isinstance(node, Leaf):
return node.predictions
if node.question.match(row):
return classify(row, node.true_branch)
else:
return classify(row,node.false_branch)
def print_leaf(counts):
total = sum(counts.values()) * 1.0
probs = {}
for lbl in counts.keys():
probs[lbl] = str(int(counts[lbl]/total * 100)) + "%"
return probs
2020-05-15 14:03:52 +02:00
class main():
def __init__(self,traktor,field,ui,path):
self.traktor = traktor
self.field = field
self.ui = ui
self.path = path
2020-05-17 20:24:15 +02:00
self.best_action = 0
def main(self):
2020-05-15 13:54:18 +02:00
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
2020-05-17 20:24:15 +02:00
while (self.best_action != -1):
self.find_best_action()
self.do_best_action()
print("Koniec roboty")
2020-05-15 13:54:18 +02:00
2020-05-17 20:24:15 +02:00
def find_best_action(self):
testing_data = []
matrix = self.field.get_matrix()
matrix_todo = []
#print(self.field)
2020-05-15 13:54:18 +02:00
for i in range(10):
2020-05-17 20:24:15 +02:00
matrix_todo.append([])
verse = matrix[i]
for j in range(len(verse)):
2020-05-15 13:54:18 +02:00
coord = (i, j)
2020-05-17 20:24:15 +02:00
current_field = check(verse[j]) #czynnosci ktore trzeba jeszcze zrobic na kazdym polu
matrix_todo[i].append([])
for action in current_field:
matrix_todo[i][j].append(action[-1])
testing_data.extend(current_field)
#testing_data.append(current_field)
if len(testing_data) > 0:
x = build_tree(testing_data)
print_tree(x)
if isinstance(x, Leaf):
self.best_action = self.find_remaining_action(matrix_todo)
return
self.best_action = x.question.column
print(header[x.question.column])
print(x.question.value)
else:
self.best_action = self.find_remaining_action(matrix_todo)
return
#for row in testing_data:
# print("Actual: %s. Predicted %s" %
# (row[-1], print_leaf(classify(row, x))))
#for row in matrix_todo:
# print(row)
def do_best_action(self):
self.traktor.set_mode((self.best_action+3) % 4)
while self.path.pathfinding(self.traktor,self.field,self.ui) != 0:
pass
# 0 - 3
# 1 - 0
# 2 - 1
# 3 - 2
def find_remaining_action(self, matrix_todo):
for row in matrix_todo:
for field in row:
for action in field:
print(action)
return work.index(action)
return -1