2020-05-15 13:54:18 +02:00
|
|
|
import pandas as pd
|
|
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn import metrics
|
|
|
|
import numpy
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
header = ["hydration", "weeds", "empty", "ready", "TODO"]
|
|
|
|
work = ["Podlac", "Odchwascic", "Zasadzic", "Zebrac"]
|
2020-05-15 13:54:18 +02:00
|
|
|
|
|
|
|
|
|
|
|
def check(field):
|
|
|
|
if field == 0:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[0, 0, 1, 0, "Zasadzic"], [0, 0, 1, 0, "Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 1:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[0, 1, 1, 0, "Odchwascic"], [0, 1, 1, 0, "Podlac"], [0, 1, 1, 0, "Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 2:
|
2020-05-17 20:24:15 +02:00
|
|
|
return [[0, 0, 0, 0, "Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 3:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[0, 1, 0, 0, "Odchwascic"], [0, 1, 0, 0, "Podlac"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 4:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[1, 0, 1, 0, "Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 5:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[1, 1, 1, 0, "Odchwascic"], [1, 1, 1, 0, "Zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 6:
|
2020-05-17 20:24:15 +02:00
|
|
|
return []
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 7:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[1, 1, 0, 0, "Odchwascic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
elif field == 8:
|
2020-05-18 17:13:09 +02:00
|
|
|
return [[0, 0, 0, 1, "Zebrac"], [0, 0, 0, 1, "Potem podlac"], [0, 0, 0, 1, "Potem zasadzic"]]
|
2020-05-15 13:54:18 +02:00
|
|
|
else:
|
|
|
|
print("wrong field number")
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# liczenie ilości prac do wykonania
|
2020-05-15 13:54:18 +02:00
|
|
|
def class_counts(rows):
|
|
|
|
counts = {}
|
|
|
|
for row in rows:
|
|
|
|
label = row[-1]
|
|
|
|
if label not in counts:
|
|
|
|
counts[label] = 0
|
|
|
|
counts[label] += 1
|
|
|
|
return counts
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# sprawdzenie czy wartość jest liczbą
|
2020-05-15 13:54:18 +02:00
|
|
|
def is_numeric(value):
|
|
|
|
return isinstance(value, int) or isinstance(value, float)
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# klasa tworząca zapytanie do podziału danych
|
2020-05-15 13:54:18 +02:00
|
|
|
class Question():
|
|
|
|
def __init__(self, column, value):
|
|
|
|
self.column = column
|
|
|
|
self.value = value
|
|
|
|
|
|
|
|
def match(self, example):
|
|
|
|
val = example[self.column]
|
|
|
|
if is_numeric(val):
|
|
|
|
return val == self.value
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# wyświetlenie pytania
|
2020-05-15 13:54:18 +02:00
|
|
|
def __repr__(self):
|
|
|
|
if is_numeric(self.value):
|
|
|
|
condition = "=="
|
2020-05-18 17:13:09 +02:00
|
|
|
return "Is %s %s %s?" % (
|
2020-05-15 13:54:18 +02:00
|
|
|
header[self.column], condition, str(self.value)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# podział danych na spełnione i niespełnione wiersze
|
2020-05-15 13:54:18 +02:00
|
|
|
def partition(rows, question):
|
|
|
|
true_rows, false_rows = [], []
|
|
|
|
for row in rows:
|
|
|
|
if question.match(row):
|
|
|
|
true_rows.append(row)
|
|
|
|
else:
|
|
|
|
false_rows.append(row)
|
|
|
|
return true_rows, false_rows
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# funkcja implementująca indeks gini
|
2020-05-15 13:54:18 +02:00
|
|
|
def gini(rows):
|
|
|
|
counts = class_counts(rows)
|
|
|
|
impurity = 1
|
|
|
|
for lbl in counts:
|
2020-05-18 17:13:09 +02:00
|
|
|
prob_of_lbl = counts[lbl] / float(len(rows))
|
|
|
|
impurity -= prob_of_lbl ** 2
|
2020-05-15 13:54:18 +02:00
|
|
|
return impurity
|
|
|
|
|
|
|
|
|
|
|
|
def info_gain(left, right, current_uncertainty):
|
2020-05-18 17:13:09 +02:00
|
|
|
p = float(len(left)) / (len(left) + len(right))
|
|
|
|
return current_uncertainty - p * gini(left) - (1 - p) * gini(right)
|
2020-05-15 13:54:18 +02:00
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# znalezienie najlepszego "miejsca" na podział danych
|
2020-05-15 13:54:18 +02:00
|
|
|
def find_best_split(rows):
|
|
|
|
best_gain = 0
|
|
|
|
best_question = None
|
|
|
|
current_uncertainty = gini(rows)
|
|
|
|
n_features = len(rows[0]) - 1
|
|
|
|
|
|
|
|
for col in range(n_features):
|
|
|
|
|
|
|
|
values = set([row[col] for row in rows])
|
|
|
|
|
|
|
|
for val in values:
|
|
|
|
question = Question(col, val)
|
|
|
|
true_rows, false_rows = partition(rows, question)
|
|
|
|
if len(true_rows) == 0 or len(false_rows) == 0:
|
|
|
|
continue
|
2020-05-18 17:13:09 +02:00
|
|
|
gain = info_gain(true_rows, false_rows, current_uncertainty)
|
2020-05-15 13:54:18 +02:00
|
|
|
if gain >= best_gain:
|
|
|
|
best_gain, best_question = gain, question
|
|
|
|
|
|
|
|
return best_gain, best_question
|
|
|
|
|
|
|
|
|
|
|
|
class Leaf:
|
|
|
|
def __init__(self, rows):
|
|
|
|
self.predictions = class_counts(rows)
|
|
|
|
|
|
|
|
|
|
|
|
class DecisionNode:
|
|
|
|
def __init__(self, question, true_branch, false_branch):
|
|
|
|
self.question = question
|
|
|
|
self.true_branch = true_branch
|
|
|
|
self.false_branch = false_branch
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# funkcja budująca drzewo
|
2020-05-15 13:54:18 +02:00
|
|
|
def build_tree(rows):
|
|
|
|
gain, question = find_best_split(rows)
|
|
|
|
if gain == 0:
|
|
|
|
return Leaf(rows)
|
|
|
|
true_rows, false_rows = partition(rows, question)
|
|
|
|
|
|
|
|
true_branch = build_tree(true_rows)
|
|
|
|
false_branch = build_tree(false_rows)
|
|
|
|
|
|
|
|
return DecisionNode(question, true_branch, false_branch)
|
|
|
|
|
|
|
|
|
2020-05-18 17:13:09 +02:00
|
|
|
# funcka wypisująca drzewo
|
2020-05-15 13:54:18 +02:00
|
|
|
def print_tree(node, spacing=""):
|
|
|
|
if isinstance(node, Leaf):
|
|
|
|
print(spacing + "Predict", node.predictions)
|
|
|
|
return
|
|
|
|
|
|
|
|
print(spacing + str(node.question))
|
|
|
|
|
|
|
|
print(spacing + '--> True: ')
|
|
|
|
print_tree(node.true_branch, spacing + " ")
|
|
|
|
|
|
|
|
print(spacing + '--> False: ')
|
|
|
|
print_tree(node.false_branch, spacing + " ")
|
|
|
|
|
|
|
|
|
2020-05-15 14:03:52 +02:00
|
|
|
class main():
|
2020-05-18 17:13:09 +02:00
|
|
|
def __init__(self, traktor, field, ui, path):
|
2020-05-03 17:13:59 +02:00
|
|
|
self.traktor = traktor
|
|
|
|
self.field = field
|
|
|
|
self.ui = ui
|
|
|
|
self.path = path
|
2020-05-17 20:24:15 +02:00
|
|
|
self.best_action = 0
|
2020-05-18 17:13:09 +02:00
|
|
|
|
2020-05-17 20:24:15 +02:00
|
|
|
def main(self):
|
2020-05-18 17:13:09 +02:00
|
|
|
# dane testowe
|
2020-05-15 13:54:18 +02:00
|
|
|
array = ([[8, 8, 8, 8, 8, 8, 8, 8, 8, 8],
|
|
|
|
[7, 7, 7, 7, 7, 7, 7, 7, 7, 7],
|
|
|
|
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6],
|
|
|
|
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
|
|
|
|
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4],
|
|
|
|
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
|
|
|
|
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
|
|
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
2020-05-18 17:13:09 +02:00
|
|
|
|
|
|
|
while (True):
|
2020-05-17 20:24:15 +02:00
|
|
|
self.find_best_action()
|
2020-05-18 17:13:09 +02:00
|
|
|
if self.best_action == -1:
|
|
|
|
break
|
2020-05-17 20:24:15 +02:00
|
|
|
self.do_best_action()
|
|
|
|
print("Koniec roboty")
|
2020-05-15 13:54:18 +02:00
|
|
|
|
2020-05-17 20:24:15 +02:00
|
|
|
def find_best_action(self):
|
|
|
|
testing_data = []
|
|
|
|
matrix = self.field.get_matrix()
|
|
|
|
matrix_todo = []
|
2020-05-18 17:13:09 +02:00
|
|
|
# print(self.field)
|
2020-05-15 13:54:18 +02:00
|
|
|
for i in range(10):
|
2020-05-17 20:24:15 +02:00
|
|
|
matrix_todo.append([])
|
|
|
|
verse = matrix[i]
|
|
|
|
for j in range(len(verse)):
|
2020-05-15 13:54:18 +02:00
|
|
|
coord = (i, j)
|
2020-05-18 17:13:09 +02:00
|
|
|
current_field = check(verse[j]) # czynnosci ktore trzeba jeszcze zrobic na kazdym polu
|
2020-05-17 20:24:15 +02:00
|
|
|
matrix_todo[i].append([])
|
|
|
|
for action in current_field:
|
|
|
|
matrix_todo[i][j].append(action[-1])
|
|
|
|
testing_data.extend(current_field)
|
2020-05-18 17:13:09 +02:00
|
|
|
# testing_data.append(current_field)
|
2020-05-17 20:24:15 +02:00
|
|
|
if len(testing_data) > 0:
|
|
|
|
x = build_tree(testing_data)
|
|
|
|
print_tree(x)
|
|
|
|
if isinstance(x, Leaf):
|
|
|
|
self.best_action = self.find_remaining_action(matrix_todo)
|
|
|
|
return
|
|
|
|
self.best_action = x.question.column
|
|
|
|
print(header[x.question.column])
|
|
|
|
print(x.question.value)
|
|
|
|
else:
|
|
|
|
self.best_action = self.find_remaining_action(matrix_todo)
|
|
|
|
return
|
|
|
|
|
|
|
|
def do_best_action(self):
|
2020-05-18 17:13:09 +02:00
|
|
|
self.traktor.set_mode(self.best_action)
|
|
|
|
while self.path.pathfinding(self.traktor, self.field, self.ui) != 0:
|
2020-05-17 20:24:15 +02:00
|
|
|
pass
|
2020-05-18 17:13:09 +02:00
|
|
|
|
|
|
|
|
2020-05-17 20:24:15 +02:00
|
|
|
def find_remaining_action(self, matrix_todo):
|
|
|
|
for row in matrix_todo:
|
|
|
|
for field in row:
|
|
|
|
for action in field:
|
|
|
|
print(action)
|
|
|
|
return work.index(action)
|
2020-05-18 17:13:09 +02:00
|
|
|
return -1
|