Dodany raport do podprojektu sieci neuronowych

This commit is contained in:
Marcin Kwapisz 2020-05-19 00:09:16 +02:00
parent 7069b595ad
commit 9a7c329a20

93
Marcin.md Normal file
View File

@ -0,0 +1,93 @@
# Podprojekt - sieć neuronowa"
**Twórca: Marcin Kwapisz**
**Klawisz F7 uruchamia program**
Program otrzymuje zdjęcie aktualnego pola i za
pomocą sieci neuronowej określa jakie to jest pole
i wybiera tryb w jakim ma pracować traktor
Sieć neuronowa została nauczona przy użyciu modułu darknet. Sieć została użyta po
20000 iteracjach treningowych
**Main**
```
def main(self):
self.pole = self.ui.field_images[self.field.get_value(self.traktor.get_poz())]
self.img = pygame.surfarray.array3d(self.pole)
self.img = self.img.transpose([1,0,2])
self.img = cv2.cvtColor(self.img, cv2.COLOR_RGB2BGR)
self.reco = self.mode(self.recognition(self.img))
if self.reco == 10:
print("Nic nie trzeba robić")
else:
self.traktor.set_mode(self.reco)
```
Wywołuje wszystkie pozostałe funkcje programu
**Get_output_layers**
```
def get_output_layers(self,net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
```
Zwraca nazwy kolejnych warstw, warstwa wyjściowa nie jest połączona z żadną następną warstwą
**Recognition**
```
def recognition(self,photo):
image = photo
Width = image.shape[1]
Height = image.shape[0]
scale = 0.00392
with open("si.names", 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet("si_20000.weights", "si.cfg")
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(self.get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
class_ids.append(class_id)
return class_ids[0]
```
Odpowiada za odebranie zdjęcia od funkcji głównej i
używa sieci neuronowej do rozpoznania zdjęcia
**Mode**
```
def mode(self,mode):
self.mode_value = mode
if self.mode_value in [0, 1, 2, 3]:
return 0
elif self.mode_value in [1, 3, 5, 7]:
return 1
elif self.mode_value in [0, 1, 4, 5]:
return 2
elif self.mode_value in [8]:
return 3
elif self.mode_value in [6]:
return 10
```
Na podstawie klasy otrzymanej przez funkcję **recognition** wybiera tryb
w jakim ma pracować traktor