gówno
This commit is contained in:
commit
9f44a715cf
32
main.py
32
main.py
@ -26,6 +26,10 @@ if __name__ == "__main__":
|
||||
# AStar
|
||||
goal = None
|
||||
path = ''
|
||||
|
||||
#Dominik
|
||||
check = 0
|
||||
queue = []
|
||||
|
||||
# Marcin Dobrowolski
|
||||
suggestionTreeRoot = SuggestionTree.buildTree(trainingData)
|
||||
@ -51,13 +55,15 @@ if __name__ == "__main__":
|
||||
break
|
||||
|
||||
if event.key == pygame.K_s:
|
||||
tree.TasksList('check', [10, 3])
|
||||
tree.TasksList('eat', [5, 12])
|
||||
tree.TasksList('order', [12, 4])
|
||||
tree.TasksList('goToBar', [10, 10])
|
||||
tree.TasksList('check', [3, 4])
|
||||
tree.TasksList('eat', [10, 5])
|
||||
tree.TasksList('check', [2,3])
|
||||
tree.TasksList('eat', [9, 6])
|
||||
tree.TasksList('order', [4, 8])
|
||||
tree.TasksList('goToBar', [11, 4])
|
||||
tree.TasksList('check', [2, 9])
|
||||
tree.TasksList('eat', [1, 1])
|
||||
queue = tree.ReturnQueueList()
|
||||
tree.print()
|
||||
check = 1
|
||||
|
||||
if event.key == pygame.K_m:
|
||||
|
||||
@ -126,6 +132,20 @@ if __name__ == "__main__":
|
||||
goal = (x, y)
|
||||
path = waiter.findPath(goal)
|
||||
path = waiter.translatePath(path)
|
||||
|
||||
# Dominik
|
||||
if check == 1:
|
||||
task = queue.pop(0)
|
||||
goal = (task[2][0], task[2][1])
|
||||
print(goal)
|
||||
path = waiter.findPath(goal)
|
||||
print(path)
|
||||
path = waiter.translatePath(path)
|
||||
print(path)
|
||||
check = 0
|
||||
|
||||
if len(queue) != 0 and check == 0 and path == '':
|
||||
check = 1
|
||||
|
||||
# AStar
|
||||
if path == '' and actions:
|
||||
|
@ -1,125 +1,158 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pprint
|
||||
|
||||
from src.graphics import *
|
||||
from .waiter import Waiter
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
tasksList = []
|
||||
tasksQueue = []
|
||||
|
||||
class DecisionTree:
|
||||
def __init__(self):
|
||||
graphics = Graphics()
|
||||
self.waiter = Waiter(graphics)
|
||||
|
||||
def BuildDf(self):
|
||||
actionName = 'order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check'.split(',')
|
||||
distance = '1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27'.split(',')
|
||||
priority = '1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4'.split(',')
|
||||
|
||||
dataset ={'actionName':actionName,'distance':distance,'priority':priority}
|
||||
df = pd.DataFrame(dataset,columns=['actionName','distance','priority'])
|
||||
return df
|
||||
|
||||
#Obliczanie entropii dla calego zestawu
|
||||
def FindPriorityEntropy(self,df):
|
||||
entropyNode = 0
|
||||
values = df.priority.unique()
|
||||
for value in values:
|
||||
propability = df.priority.value_counts()[value]/len(df.priority)
|
||||
entropyNode += -propability*np.log2(propability)
|
||||
return entropyNode
|
||||
|
||||
#Obliczanie entropii dla wszystkich atrybut<75>w
|
||||
def FindAttributesEntropy(self, df, attribute):
|
||||
targetVariables = df.priority.unique()
|
||||
variables = df[attribute].unique()
|
||||
|
||||
entropy2 = 0
|
||||
for variable in variables:
|
||||
entropy = 0
|
||||
for targetVariable in targetVariables:
|
||||
num = len(df[attribute][df[attribute]==variable][df.priority == targetVariable])
|
||||
den = len(df[attribute][df[attribute]==variable])
|
||||
propability = num/(den + eps)
|
||||
entropy += propability*np.log2(propability+eps)
|
||||
propability2 = den/len(df)
|
||||
entropy2 += -propability2*entropy
|
||||
return abs(entropy2)
|
||||
|
||||
#Znajdowanie wierzcholka o najwyzszym info Gain
|
||||
def FindWinner(self, df):
|
||||
infoGain = []
|
||||
for key in df.keys()[:-1]:
|
||||
infoGain.append(self.FindPriorityEntropy(df) - self.FindAttributesEntropy(df, key))
|
||||
return df.keys()[:-1][np.argmax(infoGain)]
|
||||
|
||||
def GetSubtable(self, df, node, value):
|
||||
return df[df[node] == value].reset_index(drop=True)
|
||||
|
||||
#Budowanie drzewa
|
||||
def BuildTree(self, df, tree=None):
|
||||
node = self.FindWinner(df)
|
||||
|
||||
attValues = np.unique(df[node])
|
||||
|
||||
if tree is None:
|
||||
tree = {}
|
||||
tree[node] = {}
|
||||
|
||||
for value in attValues:
|
||||
subtable = self.GetSubtable(df, node, value)
|
||||
clValue,counts = np.unique(subtable['priority'],return_counts=True)
|
||||
|
||||
if len(counts) == 1:
|
||||
tree[node][value] = clValue[0]
|
||||
else:
|
||||
tree[node][value] = self.BuildTree(subtable)
|
||||
|
||||
return tree
|
||||
|
||||
|
||||
#Dodawanie zadan do listy zadan
|
||||
def TasksList(self, name, coordinate):
|
||||
waiterNode = self.waiter.Node()
|
||||
distance = abs(waiterNode[0] - coordinate[0]) + abs(waiterNode[1] - coordinate[1])
|
||||
|
||||
tasksList.append([name, distance])
|
||||
|
||||
#Kolejkowanie zadan
|
||||
def Queue(self, tasksList):
|
||||
df = self.BuildDf()
|
||||
tree = self.BuildTree(df)
|
||||
|
||||
winnerNode = self.FindWinner(df)
|
||||
|
||||
for i in tasksList:
|
||||
if winnerNode is "actionName":
|
||||
|
||||
subtable = tree[winnerNode][i[0]]
|
||||
if subtable in ['0','1','2','3']:
|
||||
tasksQueue.append([i[0], i[1], subtable])
|
||||
else:
|
||||
tasksQueue.append([i[0], i[1], tree[winnerNode][i[0]]['distance'][str(i[1])]])
|
||||
elif winnerNode is "distance":
|
||||
|
||||
subtable = tree[winnerNode][i[1]]
|
||||
if subtable in ['0','1','2','3']:
|
||||
tasksQueue.append([i[0], i[1], subtable])
|
||||
else:
|
||||
tasksQueue.append([i[0], i[1], tree[winnerNode][i[1]]['actionName'][str(i[0])]])
|
||||
|
||||
|
||||
tasksQueue.sort(key=lambda x: x[2])
|
||||
print(tasksQueue)
|
||||
|
||||
def print(self):
|
||||
df = self.BuildDf()
|
||||
#a_entropy = {k:self.FindAttributesEntropy(df,k) for k in df.keys()[:-1]}
|
||||
#print(a_entropy)
|
||||
#print('\n Info Gain: ', self.FindWinner(df))
|
||||
print(tasksList)
|
||||
self.Queue(tasksList)
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pprint
|
||||
|
||||
from .matrix import Matrix
|
||||
from src.graphics import *
|
||||
from .waiter import Waiter
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
tasksList = []
|
||||
tasksQueue = []
|
||||
|
||||
|
||||
class DecisionTree:
|
||||
def __init__(self):
|
||||
graphics = Graphics()
|
||||
self.waiter = Waiter(graphics)
|
||||
self.matrix = Matrix(graphics=graphics)
|
||||
|
||||
def BuildDf(self):
|
||||
actionName = 'order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,order,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,goToBar,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,eat,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check,check'.split(',')
|
||||
distance = '1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27'.split(',')
|
||||
priority = '1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4'.split(',')
|
||||
|
||||
dataset ={'actionName':actionName,'distance':distance,'priority':priority}
|
||||
df = pd.DataFrame(dataset,columns=['actionName','distance','priority'])
|
||||
return df
|
||||
|
||||
#Obliczanie entropii dla calego zestawu
|
||||
def FindPriorityEntropy(self,df):
|
||||
entropyNode = 0
|
||||
values = df.priority.unique()
|
||||
for value in values:
|
||||
propability = df.priority.value_counts()[value]/len(df.priority)
|
||||
entropyNode += -propability*np.log2(propability)
|
||||
return entropyNode
|
||||
|
||||
#Obliczanie entropii dla wszystkich atrybut<75>w
|
||||
def FindAttributesEntropy(self, df, attribute):
|
||||
targetVariables = df.priority.unique()
|
||||
variables = df[attribute].unique()
|
||||
|
||||
entropy2 = 0
|
||||
for variable in variables:
|
||||
entropy = 0
|
||||
for targetVariable in targetVariables:
|
||||
num = len(df[attribute][df[attribute]==variable][df.priority == targetVariable])
|
||||
den = len(df[attribute][df[attribute]==variable])
|
||||
propability = num/(den + eps)
|
||||
entropy += propability*np.log2(propability+eps)
|
||||
propability2 = den/len(df)
|
||||
entropy2 += -propability2*entropy
|
||||
return abs(entropy2)
|
||||
|
||||
#Znajdowanie wierzcholka o najwyzszym info Gain
|
||||
def FindWinner(self, df):
|
||||
infoGain = []
|
||||
for key in df.keys()[:-1]:
|
||||
infoGain.append(self.FindPriorityEntropy(df) - self.FindAttributesEntropy(df, key))
|
||||
return df.keys()[:-1][np.argmax(infoGain)]
|
||||
|
||||
def GetSubtable(self, df, node, value):
|
||||
return df[df[node] == value].reset_index(drop=True)
|
||||
|
||||
#Budowanie drzewa
|
||||
def BuildTree(self, df, tree=None):
|
||||
node = self.FindWinner(df)
|
||||
|
||||
attValues = np.unique(df[node])
|
||||
|
||||
if tree is None:
|
||||
tree = {}
|
||||
tree[node] = {}
|
||||
|
||||
for value in attValues:
|
||||
subtable = self.GetSubtable(df, node, value)
|
||||
clValue,counts = np.unique(subtable['priority'],return_counts=True)
|
||||
|
||||
if len(counts) == 1:
|
||||
tree[node][value] = clValue[0]
|
||||
else:
|
||||
tree[node][value] = self.BuildTree(subtable)
|
||||
|
||||
return tree
|
||||
|
||||
|
||||
|
||||
#Dodawanie zadan do listy zadan
|
||||
def TasksList(self, name, coordinate):
|
||||
distance = []
|
||||
waiterNode = [self.waiter.X, self.waiter.Y]
|
||||
if name != "goToBar":
|
||||
if self.matrix.matrix[coordinate[0] - 1][coordinate[1] - 1].walk_through == 1:
|
||||
distance.append([abs(waiterNode[0] - (coordinate[0] - 1)) + abs(waiterNode[1] - (coordinate[1] - 1)), [coordinate[0] - 1, coordinate[1] - 1]])
|
||||
if self.matrix.matrix[coordinate[0] + 1][coordinate[1] - 1].walk_through == 1:
|
||||
distance.append([abs(waiterNode[0] - (coordinate[0] + 1)) + abs(waiterNode[1] - (coordinate[1] - 1)), [coordinate[0] + 1, coordinate[1] - 1]])
|
||||
if self.matrix.matrix[coordinate[0] + 1][coordinate[1]].walk_through == 1:
|
||||
distance.append([abs(coordinate[0] - (coordinate[0] + 1)) + abs(waiterNode[1] - coordinate[1]), [coordinate[0] + 1, coordinate[1] ]])
|
||||
if self.matrix.matrix[coordinate[0] + 1][coordinate[1] - 1].walk_through == 1:
|
||||
distance.append([abs(waiterNode[0] - (coordinate[0] + 1)) + abs(waiterNode[1] - (coordinate[1] - 1)), [coordinate[0] + 1, coordinate[1] - 1]])
|
||||
if self.matrix.matrix[coordinate[0] - 1][coordinate[1] + 1].walk_through == 1:
|
||||
distance.append([abs(waiterNode[0] - (coordinate[0] - 1)) + abs(waiterNode[1] - (coordinate[1] + 1)), [coordinate[0] - 1, coordinate[1] + 1]])
|
||||
|
||||
else:
|
||||
distance.append([abs(waiterNode[0] - 0) + abs(waiterNode[1] - 12), [0, 12]])
|
||||
distance.append([abs(waiterNode[0] - 1) + abs(waiterNode[1] - 12), [1, 12]])
|
||||
distance.append([abs(waiterNode[0] - 2) + abs(waiterNode[1] - 12), [2, 12]])
|
||||
distance.append([abs(waiterNode[0] - 3) + abs(waiterNode[1] - 12), [3, 12]])
|
||||
distance.append([abs(waiterNode[0] - 4) + abs(waiterNode[1] - 12), [4, 12]])
|
||||
distance.append([abs(waiterNode[0] - 5) + abs(waiterNode[1] - 13), [5, 13]])
|
||||
distance.append([abs(waiterNode[0] - 5) + abs(waiterNode[1] - 14), [5, 14]])
|
||||
|
||||
distance.sort(key=lambda x: x[0])
|
||||
tasksList.append([name, distance[0][0], distance[0][1]])
|
||||
|
||||
|
||||
#Kolejkowanie zadan
|
||||
def Queue(self, tasksList):
|
||||
df = self.BuildDf()
|
||||
tree = self.BuildTree(df)
|
||||
winnerNode = self.FindWinner(df)
|
||||
|
||||
for i in tasksList:
|
||||
if winnerNode is "actionName":
|
||||
|
||||
subtable = tree[winnerNode][i[0]]
|
||||
if subtable in ['0','1','2','3']:
|
||||
tasksQueue.append([i[0], i[1], i[2], subtable])
|
||||
else:
|
||||
tasksQueue.append([i[0], i[1], i[2], tree[winnerNode][i[0]]['distance'][str(i[1])]])
|
||||
elif winnerNode is "distance":
|
||||
|
||||
subtable = tree[winnerNode][i[1]]
|
||||
if subtable in ['0','1','2','3']:
|
||||
tasksQueue.append([i[0], i[1], i[2], subtable])
|
||||
else:
|
||||
tasksQueue.append([i[0], i[1], i[2], tree[winnerNode][i[1]]['actionName'][str(i[0])]])
|
||||
|
||||
|
||||
tasksQueue.sort(key=lambda x: x[3])
|
||||
return tasksQueue
|
||||
|
||||
|
||||
def ReturnQueueList(self):
|
||||
if tasksQueue == []:
|
||||
queue = self.Queue(tasksList)
|
||||
else:
|
||||
queue = tasksQueue
|
||||
|
||||
while queue[0][3] == '0':
|
||||
queue.pop(0)
|
||||
|
||||
print(queue)
|
||||
return queue
|
||||
|
||||
def print(self):
|
||||
print(tasksList)
|
||||
|
Loading…
Reference in New Issue
Block a user