AIProjekt/route-planning.md
2020-04-28 21:02:08 +00:00

56 lines
1.9 KiB
Markdown

# Route planning
## Spis treści
* [Informacje](#informacje)
* [Pętla główna](#pętla%20główna)
* [Funkcja następnika](#funkcja%20następnika)
* [Heurystyka](#heurystyka)
## Informacje
Omawiane fragmenty kodu znajdują się w pliku ```dijkstra.py```.
Po uruchomieniu programu, użytkownik ma do wyboru samodzielne sterowanie traktorem przy pomocy strzałek (1) lub podawanie punktów wykorzystujące planowanie ruchu (0). Przy wyborze drugiej z opcji, aby wykonać ruch, użytkownik w aktywnym oknie programu naciska spację, po czym podaje dwa punkty.
## Pętla główna
Implementacja algorytmu Dijkstry:
```
def dijkstra(src):
dist = [sys.maxsize] * len(graph)
dist[src] = 0
sptSet = [False] * len(graph)
for cout in range(len(graph)):
u = minDistance(dist, sptSet)
sptSet[u] = True
for v in range(len(graph)):
if graph[u][v] > 0 and sptSet[v] == False and dist[v] > dist[u] + graph[u][v]:
dist[v] = dist[u] + graph[u][v]
return dist
```
Dla ```src``` będącego wierzchołkiem źródłowym, funkcja zwraca koszt przejścia do każdego punktu w grafie w postaci listy ```dist```.
Dopóki nie zostaną rozpatrzone wszystkie wierzchołki, pętla:
* za wierzchołek ```u``` przyjmuje wierzchołek najbliższy źródła, który nie został jeszcze rozważony
* dla każdego sąsiada ```v``` wierzchołka ```u```, jeżeli przez ```u``` da się dojść do ```v``` szybciej niż dotychczasową ścieżką, to wykonuje podstawienie: ```dist[v] = dist[u] + graph[u][v]```.
## Funkcja następnika
```
def minDistance(dist, sptSet):
mini = sys.maxsize
for v in range(len(graph)):
if dist[v] < mini and sptSet[v] == False:
mini = dist[v]
min_index = v
return min_index
```
Funkcja zwraca indeks wierzchołka, który jest najbliższej źródła, a nie został jeszcze rozważony, przeszukując w tym celu pozostałe wierzchołki grafu.
## Heurystyka