9.2 KiB
9.2 KiB
import pickle
import pandas as pd
import tensorflow as tf
from tensorflow.keras.models import load_model
import tensorflow_addons as tfa
import numpy as np
loaded_model = tf.keras.models.load_model('model')
Model config BertConfig { "_name_or_path": "dkleczek/bert-base-polish-uncased-v1", "architectures": [ "BertForMaskedLM", "BertForPreTraining" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "LABEL_0", "1": "LABEL_1", "2": "LABEL_2", "3": "LABEL_3", "4": "LABEL_4", "5": "LABEL_5", "6": "LABEL_6", "7": "LABEL_7", "8": "LABEL_8", "9": "LABEL_9", "10": "LABEL_10", "11": "LABEL_11", "12": "LABEL_12", "13": "LABEL_13", "14": "LABEL_14", "15": "LABEL_15", "16": "LABEL_16" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "LABEL_0": 0, "LABEL_1": 1, "LABEL_10": 10, "LABEL_11": 11, "LABEL_12": 12, "LABEL_13": 13, "LABEL_14": 14, "LABEL_15": 15, "LABEL_16": 16, "LABEL_2": 2, "LABEL_3": 3, "LABEL_4": 4, "LABEL_5": 5, "LABEL_6": 6, "LABEL_7": 7, "LABEL_8": 8, "LABEL_9": 9 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "output_past": true, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.28.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 60000 }
acts=pd.read_csv('user_acts_one_hot.csv', index_col="Unnamed: 0")
acts=acts.drop(["Agent"],axis=1)
acts=acts.drop(["Act"],axis=1)
from transformers import *
tokenizer = BertTokenizer.from_pretrained("dkleczek/bert-base-polish-uncased-v1")
loading file vocab.txt from cache at C:\Users\macty/.cache\huggingface\hub\models--dkleczek--bert-base-polish-uncased-v1\snapshots\62be9821055981deafb23f217b68cc41f38cdb76\vocab.txt loading file added_tokens.json from cache at None loading file special_tokens_map.json from cache at C:\Users\macty/.cache\huggingface\hub\models--dkleczek--bert-base-polish-uncased-v1\snapshots\62be9821055981deafb23f217b68cc41f38cdb76\special_tokens_map.json loading file tokenizer_config.json from cache at C:\Users\macty/.cache\huggingface\hub\models--dkleczek--bert-base-polish-uncased-v1\snapshots\62be9821055981deafb23f217b68cc41f38cdb76\tokenizer_config.json loading configuration file config.json from cache at C:\Users\macty/.cache\huggingface\hub\models--dkleczek--bert-base-polish-uncased-v1\snapshots\62be9821055981deafb23f217b68cc41f38cdb76\config.json Model config BertConfig { "_name_or_path": "dkleczek/bert-base-polish-uncased-v1", "architectures": [ "BertForMaskedLM", "BertForPreTraining" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "output_past": true, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.28.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 60000 }
input_data = acts["text"].tolist()
encoded_input = tokenizer.batch_encode_plus(input_data, padding=True, truncation=True, return_tensors='tf')
dataset = tf.data.Dataset.from_tensor_slices({
'input_ids': encoded_input['input_ids'],
'attention_mask': encoded_input['attention_mask'],
'token_type_ids': encoded_input['token_type_ids']
}).batch(2)
# make predictions
predictions = loaded_model.predict(dataset)
WARNING:tensorflow:6 out of the last 8 calls to <function Model.make_predict_function.<locals>.predict_function at 0x00000247C45EE2A0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. 80/80 [==============================] - 14s 160ms/step {'logits': array([[0.0429822 , 0.07436842, 0.06289113, ..., 0.07107946, 0.22445329, 0.17556868], [0.05423082, 0.04940203, 0.08606787, ..., 0.06320965, 0.09646532, 0.85783374], [0.02925512, 0.04107895, 0.04539371, ..., 0.04229825, 0.891557 , 0.05482448], ..., [0.07066443, 0.06370321, 0.08790383, ..., 0.08178279, 0.10815965, 0.16227055], [0.04984152, 0.03513726, 0.06702502, ..., 0.04850706, 0.08503693, 0.10317416], [0.1308529 , 0.0802078 , 0.8544387 , ..., 0.08336826, 0.08602922, 0.08140229]], dtype=float32)}
for prediction in predictions:
predicted_classes = (predictions[prediction]> 0.5).astype("int32")
predicted_classes
array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 1], [0, 0, 0, ..., 0, 1, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 1, ..., 0, 0, 0]])
classes = ["ack","affirm","bye","hello","help","negate","null","repeat","reqalts","reqmore","restart","silence","thankyou","confirm","deny","inform","request"]