Space-Project/dependencies/physx-4.1/source/physxextensions/src/ExtRevoluteJoint.cpp
2021-01-16 17:11:39 +01:00

340 lines
12 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#include "ExtRevoluteJoint.h"
#include "ExtConstraintHelper.h"
#include "PxPhysics.h"
using namespace physx;
using namespace Ext;
PxRevoluteJoint* physx::PxRevoluteJointCreate(PxPhysics& physics, PxRigidActor* actor0, const PxTransform& localFrame0, PxRigidActor* actor1, const PxTransform& localFrame1)
{
PX_CHECK_AND_RETURN_NULL(localFrame0.isSane(), "PxRevoluteJointCreate: local frame 0 is not a valid transform");
PX_CHECK_AND_RETURN_NULL(localFrame1.isSane(), "PxRevoluteJointCreate: local frame 1 is not a valid transform");
PX_CHECK_AND_RETURN_NULL(actor0 != actor1, "PxRevoluteJointCreate: actors must be different");
PX_CHECK_AND_RETURN_NULL((actor0 && actor0->is<PxRigidBody>()) || (actor1 && actor1->is<PxRigidBody>()), "PxRevoluteJointCreate: at least one actor must be dynamic");
RevoluteJoint* j;
PX_NEW_SERIALIZED(j, RevoluteJoint)(physics.getTolerancesScale(), actor0, localFrame0, actor1, localFrame1);
if(j->attach(physics, actor0, actor1))
return j;
PX_DELETE(j);
return NULL;
}
PxReal RevoluteJoint::getAngle() const
{
return getTwistAngle_Internal();
}
PxReal RevoluteJoint::getVelocity() const
{
return getRelativeAngularVelocity().magnitude();
}
PxJointAngularLimitPair RevoluteJoint::getLimit() const
{
return data().limit;
}
void RevoluteJoint::setLimit(const PxJointAngularLimitPair& limit)
{
PX_CHECK_AND_RETURN(limit.isValid(), "PxRevoluteJoint::setLimit: limit invalid");
PX_CHECK_AND_RETURN(limit.lower>-PxTwoPi && limit.upper<PxTwoPi , "PxRevoluteJoint::twist limit must be strictly between -2*PI and 2*PI");
data().limit = limit;
markDirty();
}
PxReal RevoluteJoint::getDriveVelocity() const
{
return data().driveVelocity;
}
void RevoluteJoint::setDriveVelocity(PxReal velocity, bool autowake)
{
PX_CHECK_AND_RETURN(PxIsFinite(velocity), "PxRevoluteJoint::setDriveVelocity: invalid parameter");
data().driveVelocity = velocity;
if(autowake)
wakeUpActors();
markDirty();
}
PxReal RevoluteJoint::getDriveForceLimit() const
{
return data().driveForceLimit;
}
void RevoluteJoint::setDriveForceLimit(PxReal forceLimit)
{
PX_CHECK_AND_RETURN(PxIsFinite(forceLimit), "PxRevoluteJoint::setDriveForceLimit: invalid parameter");
data().driveForceLimit = forceLimit;
markDirty();
}
PxReal RevoluteJoint::getDriveGearRatio() const
{
return data().driveGearRatio;
}
void RevoluteJoint::setDriveGearRatio(PxReal gearRatio)
{
PX_CHECK_AND_RETURN(PxIsFinite(gearRatio) && gearRatio>0, "PxRevoluteJoint::setDriveGearRatio: invalid parameter");
data().driveGearRatio = gearRatio;
markDirty();
}
void RevoluteJoint::setProjectionAngularTolerance(PxReal tolerance)
{
PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance>=0 && tolerance<=PxPi, "PxRevoluteJoint::setProjectionAngularTolerance: invalid parameter");
data().projectionAngularTolerance = tolerance;
markDirty();
}
PxReal RevoluteJoint::getProjectionAngularTolerance() const
{
return data().projectionAngularTolerance;
}
void RevoluteJoint::setProjectionLinearTolerance(PxReal tolerance)
{
PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0, "PxRevoluteJoint::setProjectionLinearTolerance: invalid parameter");
data().projectionLinearTolerance = tolerance;
markDirty();
}
PxReal RevoluteJoint::getProjectionLinearTolerance() const
{
return data().projectionLinearTolerance;
}
PxRevoluteJointFlags RevoluteJoint::getRevoluteJointFlags(void) const
{
return data().jointFlags;
}
void RevoluteJoint::setRevoluteJointFlags(PxRevoluteJointFlags flags)
{
data().jointFlags = flags;
}
void RevoluteJoint::setRevoluteJointFlag(PxRevoluteJointFlag::Enum flag, bool value)
{
if(value)
data().jointFlags |= flag;
else
data().jointFlags &= ~flag;
markDirty();
}
bool RevoluteJoint::attach(PxPhysics &physics, PxRigidActor* actor0, PxRigidActor* actor1)
{
mPxConstraint = physics.createConstraint(actor0, actor1, *this, sShaders, sizeof(RevoluteJointData));
return mPxConstraint!=NULL;
}
void RevoluteJoint::exportExtraData(PxSerializationContext& stream)
{
if(mData)
{
stream.alignData(PX_SERIAL_ALIGN);
stream.writeData(mData, sizeof(RevoluteJointData));
}
stream.writeName(mName);
}
void RevoluteJoint::importExtraData(PxDeserializationContext& context)
{
if(mData)
mData = context.readExtraData<RevoluteJointData, PX_SERIAL_ALIGN>();
context.readName(mName);
}
void RevoluteJoint::resolveReferences(PxDeserializationContext& context)
{
setPxConstraint(resolveConstraintPtr(context, getPxConstraint(), getConnector(), sShaders));
}
RevoluteJoint* RevoluteJoint::createObject(PxU8*& address, PxDeserializationContext& context)
{
RevoluteJoint* obj = new (address) RevoluteJoint(PxBaseFlag::eIS_RELEASABLE);
address += sizeof(RevoluteJoint);
obj->importExtraData(context);
obj->resolveReferences(context);
return obj;
}
// global function to share the joint shaders with API capture
const PxConstraintShaderTable* Ext::GetRevoluteJointShaderTable()
{
return &RevoluteJoint::getConstraintShaderTable();
}
//~PX_SERIALIZATION
static void RevoluteJointProject(const void* constantBlock, PxTransform& bodyAToWorld, PxTransform& bodyBToWorld, bool projectToA)
{
const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock);
PxTransform cA2w, cB2w, cB2cA, projected;
joint::computeDerived(data, bodyAToWorld, bodyBToWorld, cA2w, cB2w, cB2cA, false);
bool linearTrunc, angularTrunc;
projected.p = joint::truncateLinear(cB2cA.p, data.projectionLinearTolerance, linearTrunc);
PxQuat swing, twist, projSwing;
Ps::separateSwingTwist(cB2cA.q, swing, twist);
projSwing = joint::truncateAngular(swing, PxSin(data.projectionAngularTolerance/2), PxCos(data.projectionAngularTolerance/2), angularTrunc);
if(linearTrunc || angularTrunc)
{
projected.q = projSwing * twist;
joint::projectTransforms(bodyAToWorld, bodyBToWorld, cA2w, cB2w, projected, data, projectToA);
}
}
static PxQuat computeTwist(const PxTransform& cA2w, const PxTransform& cB2w)
{
// PT: following code is the same as this part of the "getAngle" function:
// const PxQuat q = getRelativeTransform().q;
// PxQuat swing, twist;
// Ps::separateSwingTwist(q, swing, twist);
// But it's done a little bit more efficiently since we don't need the swing quat.
// PT: rotation part of "const PxTransform cB2cA = cA2w.transformInv(cB2w);"
const PxQuat cB2cAq = cA2w.q.getConjugate() * cB2w.q;
// PT: twist part of "Ps::separateSwingTwist(cB2cAq,swing,twist)" (more or less)
return PxQuat(cB2cAq.x, 0.0f, 0.0f, cB2cAq.w);
}
// PT: this version is similar to the "getAngle" function, but the twist is computed slightly differently.
static PX_FORCE_INLINE PxReal computePhi(const PxTransform& cA2w, const PxTransform& cB2w)
{
PxQuat twist = computeTwist(cA2w, cB2w);
twist.normalize();
PxReal angle = twist.getAngle();
if(twist.x<0.0f)
angle = -angle;
return angle;
}
static void RevoluteJointVisualize(PxConstraintVisualizer& viz, const void* constantBlock, const PxTransform& body0Transform, const PxTransform& body1Transform, PxU32 flags)
{
const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock);
PxTransform cA2w, cB2w;
joint::computeJointFrames(cA2w, cB2w, data, body0Transform, body1Transform);
if(flags & PxConstraintVisualizationFlag::eLOCAL_FRAMES)
viz.visualizeJointFrames(cA2w, cB2w);
if((data.jointFlags & PxRevoluteJointFlag::eLIMIT_ENABLED) && (flags & PxConstraintVisualizationFlag::eLIMITS))
{
const PxReal angle = computePhi(cA2w, cB2w);
const PxReal pad = data.limit.contactDistance;
const PxReal low = data.limit.lower;
const PxReal high = data.limit.upper;
const bool active = isLimitActive(data.limit, pad, angle, low, high);
viz.visualizeAngularLimit(cA2w, data.limit.lower, data.limit.upper, active);
}
}
static PxU32 RevoluteJointSolverPrep(Px1DConstraint* constraints,
PxVec3& body0WorldOffset,
PxU32 /*maxConstraints*/,
PxConstraintInvMassScale& invMassScale,
const void* constantBlock,
const PxTransform& bA2w,
const PxTransform& bB2w,
bool useExtendedLimits,
PxVec3& cA2wOut, PxVec3& cB2wOut)
{
const RevoluteJointData& data = *reinterpret_cast<const RevoluteJointData*>(constantBlock);
PxTransform cA2w, cB2w;
joint::ConstraintHelper ch(constraints, invMassScale, cA2w, cB2w, body0WorldOffset, data, bA2w, bB2w);
const PxJointAngularLimitPair& limit = data.limit;
const bool limitEnabled = data.jointFlags & PxRevoluteJointFlag::eLIMIT_ENABLED;
const bool limitIsLocked = limitEnabled && limit.lower >= limit.upper;
// PT: it is a mistake to use the neighborhood operator since it
// prevents us from using the quat's double-cover feature.
if(!useExtendedLimits && cB2w.q.dot(cA2w.q)<0.0f)
cB2w.q = -cB2w.q;
PxVec3 ra, rb;
ch.prepareLockedAxes(cA2w.q, cB2w.q, cA2w.transformInv(cB2w.p), 7, PxU32(limitIsLocked ? 7 : 6), ra, rb);
cA2wOut = ra + bA2w.p;
cB2wOut = rb + bB2w.p;
if(limitIsLocked)
return ch.getCount();
const PxVec3 axis = cA2w.rotate(PxVec3(1.0f, 0.0f, 0.0f));
if(data.jointFlags & PxRevoluteJointFlag::eDRIVE_ENABLED)
{
Px1DConstraint* c = ch.getConstraintRow();
c->solveHint = PxConstraintSolveHint::eNONE;
c->linear0 = PxVec3(0.0f);
c->angular0 = -axis;
c->linear1 = PxVec3(0.0f);
c->angular1 = -axis * data.driveGearRatio;
c->velocityTarget = data.driveVelocity;
c->minImpulse = -data.driveForceLimit;
c->maxImpulse = data.driveForceLimit;
c->flags |= Px1DConstraintFlag::eANGULAR_CONSTRAINT;
if(data.jointFlags & PxRevoluteJointFlag::eDRIVE_FREESPIN)
{
if(data.driveVelocity > 0.0f)
c->minImpulse = 0.0f;
if(data.driveVelocity < 0.0f)
c->maxImpulse = 0.0f;
}
c->flags |= Px1DConstraintFlag::eHAS_DRIVE_LIMIT;
}
if(limitEnabled)
{
const PxReal phi = computePhi(cA2w, cB2w);
ch.anglePair(phi, data.limit.lower, data.limit.upper, data.limit.contactDistance, axis, limit);
}
return ch.getCount();
}
PxConstraintShaderTable Ext::RevoluteJoint::sShaders = { RevoluteJointSolverPrep, RevoluteJointProject, RevoluteJointVisualize, PxConstraintFlag::Enum(0) };