Do realizacji podprojektu wykorzystano drzewa decyzyjne wskazujące którą roślinę (jeśli w ogóle) należy posadzić na danym polu. Drzewo decyzję podejmuje na podstawie poszczególnych parametrów gleby:
Budowanie drzewa decyzyjnego opiera się na podziale gałęzi względem algorytmu CART. Ma ono postać ciągu pytań, na które odpowiedzi determinują kolejne pytania, bądź kończą etap. W wyniku otrzymujemy strukturę drzewa, która w węzłach końcowych nie zawiera już pytań, lecz same odpowiedzi. Dodatkowo wypisuje zestaw danych pasujących do liścia, z zestawu treningowego.
Znajdowanie najlepszego podziału opiera się głównie na Współczynniku Giniego, który mierzy stopień niejednorodności i dzieli ją przez ilość pozostałych zestawów testowych (entropia).
gain = info_gain(true_rows, false_rows, current_uncertainty)
if gain >= best_gain:
best_gain, best_question = gain, question
return best_gain, best_question
```
Drzewo powstałe poprzez wykonanie metody print_tree(node,spacing) na zestawie testowym:
```
Czy kwasowosc == k?
--> True:
Czy cien == s?
--> True:
Czy nawodnienie == n?
--> True:
Czy zyznosc == j?
--> True:
Predict {2: 1}
--> False:
Predict {1: 1}
--> False:
Predict {2: 1}
--> False:
Predict {2: 2}
--> False:
Czy cien == s?
--> True:
Czy zyznosc == j?
--> True:
Czy kwasowosc == n?
--> True:
Predict {3: 1}
--> False:
Predict {1: 1}
--> False:
Predict {1: 3}
--> False:
Czy kwasowosc == n?
--> True:
Predict {1: 1}
--> False:
Predict {3: 1}
```
#Implementacja w C++:
---
Komunikacja między pythonem a cpp zachodzi przez pliki dane.txt i decyzje.txt. W pliku dane.txt cpp wypisuje stan całego pola w oddzielonych spacją kolumnach począwszy od indeksu x=1,y=1 aż po x=25,y=25. Decyzje podjęte przez drzewo decyzyjne wypisane w pliku decyzje.txt zawierają symbol rośliny lub pola jakie mają się znajdować na polu (również w całej przestrzeni pola).