ium_444463/deepl.py
Mikołaj Pokrywka 2a439a88b2 Homework sacred
2022-05-07 14:23:09 +02:00

199 lines
5.7 KiB
Python

import pandas as pd
import numpy as np
import scipy
import torch
import pandas as pd
from sklearn.model_selection import train_test_split
# import kaggle
from sklearn.feature_extraction.text import TfidfVectorizer
from torch import nn
from torch import optim
import matplotlib.pyplot as plt
import sys
from sacred import Experiment
from sacred.observers import FileStorageObserver
ex = Experiment()
ex.observers.append(FileStorageObserver('my_runs'))
vectorizer = TfidfVectorizer()
@ex.config
def my_config():
epochs = 10
def convert_text_to_model_form(text):
a = vectorizer.transform([text])
b = torch.tensor(scipy.sparse.csr_matrix.todense(a)).float()
return b
@ex.automain
def my_main(epochs, _run):
# print(sys.argv[1])
# print(type(sys.argv[1]))
# print(sys.argv[1])
# epochs = int(sys.argv[1])
# epochs=10
# kaggle.api.authenticate()
# kaggle.api.dataset_download_files('shivamb/real-or-fake-fake-jobposting-prediction', path='.',
# unzip=True)
data = pd.read_csv('fake_job_postings.csv', engine='python')
# data = data.replace(np.nan, '', regex=True)
data = data[["company_profile", "fraudulent"]]
data = data.dropna()
company_profile = data["company_profile"]
# data_train, data_test = train_test_split(data, test_size=3000, random_state=1)
# data_dev, data_test = train_test_split(data_test, test_size=1500, random_state=1)
data_train = pd.read_csv('data_train.csv', engine='python', header=None).dropna()
data_dev = pd.read_csv('data_dev.csv', engine='python', header=None).dropna()
data_test = pd.read_csv('data_test.csv', engine='python', header=None).dropna()
x_train = data_train[5]
x_dev = data_dev[5]
x_test = data_test[5]
y_train = data_train[17]
y_dev = data_dev[17]
y_test = data_test[17]
company_profile = np.array(company_profile)
x_train = np.array(x_train)
x_dev = np.array(x_dev)
x_test = np.array(x_test)
y_train = np.array(y_train)
y_dev = np.array(y_dev)
y_test = np.array(y_test)
company_profile = vectorizer.fit_transform(company_profile)
x_train = vectorizer.transform(x_train)
x_dev = vectorizer.transform(x_dev)
x_test = vectorizer.transform(x_test)
x_train = torch.tensor(scipy.sparse.csr_matrix.todense(x_train)).float()
x_dev = torch.tensor(scipy.sparse.csr_matrix.todense(x_dev)).float()
x_test = torch.tensor(scipy.sparse.csr_matrix.todense(x_test)).float()
y_train = torch.tensor(y_train)
y_dev = torch.tensor(y_dev)
y_test = torch.tensor(y_test)
from torch import nn
model = nn.Sequential(
nn.Linear(x_train.shape[1], 64),
nn.ReLU(),
nn.Linear(64, data_train[17].nunique()),
nn.LogSoftmax(dim=1))
# Define the loss
criterion = nn.NLLLoss() # Forward pass, log
logps = model(x_train) # Calculate the loss with the logits and the labels
loss = criterion(logps, y_train)
loss.backward() # Optimizers need parameters to optimize and a learning rate
optimizer = optim.Adam(model.parameters(), lr=0.002)
train_losses = []
test_losses = []
test_accuracies = []
for e in range(epochs):
optimizer.zero_grad()
output = model.forward(x_train)
loss = criterion(output, y_train)
loss.backward()
train_loss = loss.item()
train_losses.append(train_loss)
optimizer.step()
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
model.eval()
log_ps = model(x_dev)
test_loss = criterion(log_ps, y_dev)
test_losses.append(test_loss)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == y_dev.view(*top_class.shape)
test_accuracy = torch.mean(equals.float())
test_accuracies.append(test_accuracy)
model.train()
print(f"Epoch: {e + 1}/{epochs}.. ",
f"Training Loss: {train_loss:.3f}.. ",
f"Test Loss: {test_loss:.3f}.. ",
f"Test Accuracy: {test_accuracy:.3f}")
TP = []
TF = []
FP = []
FN = []
model.eval()
print(x_test.size())
log_ps = model(x_test)
ps = torch.exp(log_ps)
top_p, top_class = ps.topk(1, dim=1)
descr = np.array(data_test[5])
for i, (x, y) in enumerate(zip(np.array(top_class), np.array(y_test.view(*top_class.shape)))):
d = descr[i]
if x == y:
if x:
TP.append(d)
else:
TF.append(d)
else:
if x:
FP.append(d)
else:
FN.append(d)
f_score = len(TP) / (len(TP) + 0.5 * (len(FP) + len(FN)))
print(f"F- score = {f_score}")
f = open("model_resutls.txt", "a")
f.write(f"F-SCORE = {f_score}\n")
f.write(f"TP = {len(TP)}\n")
f.write(f"TF = {len(TF)}\n")
f.write(f"FP = {len(FP)}\n")
f.write(f"FN = {len(FN)}\n")
f.write(f"TP descriptions:")
for i in TP:
f.write(i+'\n')
f.write(f"TF descriptions:")
for i in TF:
f.write(i+"\n")
f.write(f"FP descriptions:")
for i in FP:
f.write(i+"\n")
f.write(f"FN descriptions:")
for i in FN:
f.write(i+"\n")
f.close()
torch.save(model, 'model')
ex.add_artifact("model")
# plt.figure(figsize=(12, 5))
# ax = plt.subplot(121)
# plt.xlabel('epochs')
# plt.ylabel('negative log likelihood loss')
# plt.plot(train_losses, label='Training loss')
# plt.plot(test_losses, label='Validation loss')
# plt.legend(frameon=False)
# plt.subplot(122)
# plt.xlabel('epochs')
# plt.ylabel('test accuracy')
# plt.plot(test_accuracies)
# plt.show()