sportowe_wizualizacja/xGStatsbomb.ipynb
Koushik R Kirugulige 2bbf9dbc46 small change
2020-04-25 20:43:12 +05:30

233 KiB
Raw Blame History

Open In Colab

%%time
!git clone https://github.com/statsbomb/open-data.git
Cloning into 'open-data'...
remote: Enumerating objects: 1088, done.
remote: Counting objects: 100% (1088/1088), done.
remote: Compressing objects: 100% (591/591), done.
remote: Total 9810 (delta 893), reused 674 (delta 479), pack-reused 8722
Receiving objects: 100% (9810/9810), 995.57 MiB | 14.28 MiB/s, done.
Resolving deltas: 100% (8640/8640), done.
Checking out files: 100% (1648/1648), done.
CPU times: user 548 ms, sys: 115 ms, total: 663 ms
Wall time: 2min 44s
#import all modules
import json
import os
import codecs
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.patches import Arc, Rectangle, ConnectionPatch
from matplotlib.offsetbox import  OffsetImage
from matplotlib.patches import Ellipse
from functools import reduce
import math
%%time
comp = ['FIFA World Cup','La Liga']
main_df = pd.DataFrame(data=None)
path_match = "/content/open-data/data/events/" #location for play by play events
for root, dirs, files in os.walk('/content/open-data/data/matches/'):
     for file in files:
        with open(os.path.join(root, file), "r") as auto:
            with codecs.open(root + str('/') + file,encoding='utf-8') as data_file:
                data = json.load(data_file)
                df = pd.DataFrame(data=None)
                df = pd.json_normalize(data, sep = "_")
            #for x in df.competition_country_name:
            #    if x == 'Spain':
            #        print(df.match_id)
            #print(df['competition_competition_name'])
            for i in range(len(df)):
                if df.iloc[i]['competition_competition_name'] in comp  :
                    match_no = df.iloc[i]['match_id'] #gets match with Spain as country
                    match_no = str(match_no) # from int to str 
                    #print('match list \n',match_no)
                    with codecs.open(path_match + match_no + str(r'.json'),encoding="utf8") as event_file: #open the respective file
                        df_match = json.load(event_file)
                        df_match2 = pd.DataFrame(data=None)
                        df_match2 = pd.json_normalize(df_match,sep="_")    
                        df_match2 =  df_match2[(df_match2['type_name'] == "Shot")]
                    main_df = main_df.append(df_match2,ignore_index=True,sort=False)                    
#print('total matches ',len(match_no)) 
print('Done')
Done
CPU times: user 6min 3s, sys: 1.3 s, total: 6min 4s
Wall time: 6min 4s
main_df.head()
id index period timestamp minute second possession duration type_id type_name possession_team_id possession_team_name play_pattern_id play_pattern_name team_id team_name tactics_formation tactics_lineup related_events location player_id player_name position_id position_name pass_recipient_id pass_recipient_name pass_length pass_angle pass_height_id pass_height_name pass_end_location pass_type_id pass_type_name pass_body_part_id pass_body_part_name carry_end_location under_pressure pass_outcome_id pass_outcome_name pass_aerial_won ... substitution_outcome_id substitution_outcome_name substitution_replacement_id substitution_replacement_name shot_one_on_one bad_behaviour_card_id bad_behaviour_card_name 50_50_outcome_id 50_50_outcome_name dribble_overrun goalkeeper_punched_out pass_miscommunication block_deflection pass_goal_assist clearance_other injury_stoppage_in_chain shot_deflected dribble_no_touch pass_deflected shot_saved_off_target goalkeeper_shot_saved_off_target ball_recovery_offensive pass_straight foul_committed_penalty foul_won_penalty block_save_block shot_open_goal goalkeeper_lost_out goalkeeper_success_in_play player_off_permanent goalkeeper_shot_saved_to_post shot_redirect shot_saved_to_post shot_follows_dribble goalkeeper_success_out half_start_late_video_start goalkeeper_lost_in_play goalkeeper_saved_to_post pass_backheel half_end_early_video_end
0 2f046b33-685c-4122-8af2-8ceadf56c83d 294 1 00:06:50.216 6 50 12 0.115400 16 Shot 217 Barcelona 4 From Throw In 217 Barcelona NaN NaN [58295c63-1ffa-4e27-9258-818ea90c6b04, f514442... [104.4, 41.8] 5503.0 Lionel Andrés Messi Cuccittini 17.0 Right Wing NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
1 855d47fc-9017-4508-8b41-0275dfb4d755 962 1 00:22:27.038 22 27 38 2.046458 16 Shot 217 Barcelona 2 From Corner 217 Barcelona NaN NaN [aec80f5c-807e-47ac-8c33-092c92b222d1] [110.8, 35.8] 5470.0 Ivan Rakitić 10.0 Center Defensive Midfield NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2 7c69fb86-c77d-463b-8f00-503e447492a4 1153 1 00:27:08.522 27 8 46 0.804175 16 Shot 217 Barcelona 2 From Corner 217 Barcelona NaN NaN [350f13e2-16cc-449d-a72d-f7ccd571fc50, 662299b... [109.9, 40.5] 5492.0 Samuel Yves Umtiti 5.0 Left Center Back NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN True NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
3 77ea8775-f9f4-4bf7-b3f9-7635ab861ab5 1254 1 00:30:13.151 30 13 59 0.380900 16 Shot 217 Barcelona 3 From Free Kick 217 Barcelona NaN NaN [30b9d0e1-5eeb-4cb0-86ea-a6e8967893e2, ae620c7... [90.0, 36.2] 5503.0 Lionel Andrés Messi Cuccittini 17.0 Right Wing NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
4 09c2667a-4827-4871-a70a-96adb1d73243 1381 1 00:33:19.875 33 19 63 0.222600 16 Shot 217 Barcelona 4 From Throw In 217 Barcelona NaN NaN [19491e5f-dd7c-47a8-994d-b6aae0630b55, a81b342... [97.3, 28.8] 6998.0 Rafael Alcântara do Nascimento 15.0 Left Center Midfield NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

5 rows × 147 columns

"""Distance of shot location to centre of goal"""
def distFormula(coordinate):
  a =(math.sqrt(((coordinate.location[0] - 120)**2) + ((coordinate.location[1] - 36)**2))) 
  b =(math.sqrt(((coordinate.location[0] - 120)**2) + ((coordinate.location[1] - 44)**2))) 
  return ((a+b)/2)
""" near x y (nx,ny) (120,44)and far x y (fx,fy) (120,36)""" 
nx = 120
ny = 44
fx = 120
fy = 36

goalpostLength = 8
def shot_angle(points):
  len1 = (math.sqrt(((points.location[0] - nx)**2) + ((points.location[1] - ny)**2))) 
  len2 = (math.sqrt(((points.location[0] - fx)**2) + ((points.location[1] - fy)**2)))
  ang = (len1**2 + len2**2 - goalpostLength**2)/(2 * len1 * len2)
  if ang > 1:
    ang = 1
  elif ang < -1:
    ang = -1   
  angRad = math.acos(ang)
  return( (angRad * 180)/math.pi) 
"""If shot was taken under Pressure?"""
def under_pressure(coordinate):
  if coordinate['under_pressure'] == True:
    return 1
  return 0
"""The Shot type Id"""
def shot_type(coordinate):
  if coordinate['shot_type_id'] == 61:
    return 1
  if coordinate['shot_type_id'] == 62:
    return 2
  if coordinate['shot_type_id'] == 87:
    return 3
  if coordinate['shot_type_id'] == 88:
    return 4
  return 5
"""The Shot Body part"""
def shot_body_part(coordinate):
  if coordinate['shot_body_part_id'] == 37:
    return 1
  if coordinate['shot_body_part_id'] == 38:
    return 2
  if coordinate['shot_body_part_id'] == 70:
    return 3
  return 4
"""The Shot Technique Id"""
def shot_technique(coordinate):
  if coordinate['shot_technique_id'] == 89:
    return 1
  if coordinate['shot_technique_id'] == 90:
    return 2
  if coordinate['shot_technique_id'] == 91:
    return 3
  if coordinate['shot_technique_id'] == 92:
    return 4
  if coordinate['shot_technique_id'] == 93:
    return 5
  if coordinate['shot_technique_id'] == 94:
    return 6
  return 7
"""If shot was taken first time?"""
def shot_first_time(coordinate):
  if coordinate['shot_first_time'] == True:
    return 1
  return 0
"""If shot was taken first time?"""
def shot_one_on_one(coordinate):
  if coordinate['shot_one_on_one'] == True:
    return 1
  return 0
main_df['Distance'] = main_df.apply(distFormula,axis = 1)
main_df['Angle'] = main_df.apply(shot_angle,axis = 1)
main_df['UnderPressure'] = main_df.apply(under_pressure,axis = 1)
main_df['ShotType'] = main_df.apply(shot_type,axis = 1)
main_df['ShotBodyPart'] = main_df.apply(shot_body_part,axis = 1)
main_df['ShotTechnique'] = main_df.apply(shot_technique,axis = 1)
main_df['ShotFirstTime'] = main_df.apply(shot_first_time,axis = 1)
main_df['ShotOneonOne']= main_df.apply(shot_one_on_one,axis = 1)
goals_lst = main_df[main_df['shot_outcome_id'] == 97].index.tolist()
#if shot is a goal 
main_df['isGoal'] = False
goals_lst
main_df.loc[main_df.index.isin(goals_lst),'isGoal'] = True
main_df[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne','isGoal']]
location Distance Angle UnderPressure ShotType ShotBodyPart ShotTechnique ShotFirstTime ShotOneonOne isGoal
0 [104.4, 41.8] 16.198841 28.422114 0 3 4 5 1 0 False
1 [110.8, 35.8] 10.763067 40.465393 0 3 1 5 0 0 False
2 [109.9, 40.5] 10.873186 43.128076 1 3 1 5 0 0 False
3 [90.0, 36.2] 30.499043 14.956182 0 2 2 5 0 0 False
4 [97.3, 28.8] 25.566766 16.208386 0 3 4 5 0 0 False
... ... ... ... ... ... ... ... ... ... ...
12952 [111.0, 27.0] 15.981653 17.102729 0 3 2 5 0 0 False
12953 [114.0, 33.0] 9.619084 34.824489 0 3 2 5 0 0 True
12954 [107.0, 32.0] 15.646638 25.606661 0 3 2 5 0 0 False
12955 [97.0, 22.0] 29.376742 12.398277 0 3 4 5 0 0 False
12956 [109.0, 52.0] 16.508979 19.464104 0 3 4 5 0 0 False

12957 rows × 10 columns

#xG Model

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
from sklearn import svm
from sklearn import linear_model
xgModel = main_df[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne','isGoal']]
X_train,X_test,y_train,y_test = train_test_split(xgModel[['location','Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']],xgModel['isGoal'],test_size = 0.2,shuffle = True)

Logistic Regression Model

clf = LogisticRegression(random_state=0,max_iter = 5000).fit(X_train[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']], y_train)
#model weights
clf.coef_[0]
array([-0.06605534,  0.02878253, -0.60546461,  1.03559372,  0.18762927,
        0.01151648,  0.18877916,  0.57099517])

SGD Model

xG = clf.predict_proba(X_test[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']])[:,1]
#SGD
sgdclf = linear_model.SGDClassifier(loss='log', alpha = 0.17)
sgdclf.fit(X_train[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']], y_train)
SGDClassifier(alpha=0.17, average=False, class_weight=None,
              early_stopping=False, epsilon=0.1, eta0=0.0, fit_intercept=True,
              l1_ratio=0.15, learning_rate='optimal', loss='log', max_iter=1000,
              n_iter_no_change=5, n_jobs=None, penalty='l2', power_t=0.5,
              random_state=None, shuffle=True, tol=0.001,
              validation_fraction=0.1, verbose=0, warm_start=False)

Predict Shot Probability

# change model here sgcclf(SGD) or clf(LR)
xG = sgdclf.predict_proba(X_test[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']])[:,1]
X_test['xG'] = xG
#X_test.head()
location Distance Angle UnderPressure ShotType ShotBodyPart ShotTechnique ShotFirstTime ShotOneonOne xG
2961 [92.2, 58.9] 33.779300 11.289656 0 3 4 5 0 0 0.035840
10990 [115.2, 45.8] 8.019390 43.348531 0 3 1 5 0 1 0.340789
12649 [115.0, 41.0] 6.451010 75.963757 0 3 1 5 0 0 0.453033
5264 [111.9, 32.5] 11.445052 31.472019 1 3 1 5 0 0 0.082841
9283 [111.6, 37.0] 9.696832 46.594546 1 3 1 5 0 0 0.135449
sortxg = X_test.sort_values(by = ['xG'],ascending=False)
sortxg
location Distance Angle UnderPressure ShotType ShotBodyPart ShotTechnique ShotFirstTime ShotOneonOne xG
4624 [119.3, 41.4] 4.068882 157.545469 0 3 4 5 1 0 0.955584
3818 [119.1, 42.6] 4.162706 139.499608 0 3 4 5 1 0 0.927110
6952 [118.4, 39.4] 4.313989 135.619868 0 3 4 5 1 0 0.918449
8311 [119.2, 37.0] 4.163095 134.820390 0 3 1 5 0 1 0.902713
12822 [119.0, 43.0] 4.242641 126.869898 0 3 4 5 1 0 0.897920
... ... ... ... ... ... ... ... ... ... ...
3937 [69.2, 77.6] 63.283107 5.832625 0 3 4 4 0 0 0.004453
2834 [81.1, 5.9] 51.817864 6.672792 0 2 4 5 0 0 0.003497
6385 [57.2, 34.0] 63.211517 7.223482 0 3 2 5 0 0 0.003241
11776 [62.0, 36.0] 58.274562 7.853313 1 3 2 5 0 0 0.002498
6659 [51.9, 43.4] 68.301760 6.706436 0 3 2 4 0 0 0.002257

2592 rows × 10 columns

import StatsbombPitch as sb
sb.sb_pitch("#195905","#faf0e6","horizontal","full")
plt.gca().invert_yaxis()
for i in range(len(sortxg)):
    xe = sortxg.iloc[i]['location'][0]
    ye = sortxg.iloc[i]['location'][1]
    
    if sortxg.iloc[i]['xG'] >= 0.75:
      g = plt.scatter(xe,ye,color="#ee3e32",edgecolors="none",zorder=10,alpha=1,s = 40 )
    elif sortxg.iloc[i]['xG'] < 0.75 and sortxg.iloc[i]['xG'] >=0.5:
      o = plt.scatter(xe,ye,color="#f68838",edgecolors="none",zorder=8,alpha=0.75,s = 30 )
    elif sortxg.iloc[i]['xG'] < 0.5 and sortxg.iloc[i]['xG'] >=0.25:
      a = plt.scatter(xe,ye,color="#fbb021",edgecolors="none",zorder=6,alpha=0.5,s = 20 )  
    else:
      b = plt.scatter(xe,ye,color="#1b8a5a",edgecolors="none",zorder=4,alpha=0.25,s = 10 )    
plt.axis('off')
plt.legend((g,o,a,b),('>=0.75','>=0.5','>=0.25','<0.25'),scatterpoints=1,loc=2,title = 'xG Value',fontsize='small', fancybox=True)
#plt.title('xG SGD model')
#plt.savefig('xgSGDmodel.png')
plt.show()
import StatsbombPitch as sb
sb.sb_pitch("#195905","#faf0e6","vertical","half")
#plt.gca().invert_xaxis()
for i in range(len(sortxg)):
    xe = sortxg.iloc[i]['location'][0]
    ye = sortxg.iloc[i]['location'][1]
    
    if sortxg.iloc[i]['xG'] >= 0.75:
      g = plt.scatter(ye,xe,color="#ee3e32",edgecolors="none",zorder=10,alpha=1,s = 40 )
    elif sortxg.iloc[i]['xG'] < 0.75 and sortxg.iloc[i]['xG'] >=0.5:
      o = plt.scatter(ye,xe,color="#f68838",edgecolors="none",zorder=8,alpha=0.75,s = 30 )
    elif sortxg.iloc[i]['xG'] < 0.5 and sortxg.iloc[i]['xG'] >=0.25:
      a = plt.scatter(ye,xe,color="#fbb021",edgecolors="none",zorder=6,alpha=0.5,s = 20 )  
    else:
      b = plt.scatter(ye,xe,color="#1b8a5a",edgecolors="none",zorder=4,alpha=0.25,s = 10 )    
plt.axis('off')
plt.legend((g,o,a,b),('>=0.75','>=0.5','>=0.25','<0.25'),scatterpoints=1,loc=3,title = 'xG Value',fontsize='small', fancybox=True,edgecolor = 'black',framealpha = 2
           )


#ax = plt.subplot()

#plt.savefig('MessiValverdeEraScatter.png')
plt.show()
#[['Distance','Angle','UnderPressure','ShotType','ShotBodyPart','ShotTechnique','ShotFirstTime','ShotOneonOne']]
clf.predict_proba(np.array([12.55,37.156,0,4,2,5,0,0]).reshape(1, -1))[:,1]
array([0.38105829])