projekt-glebokie/gpt2.py

205 lines
7.8 KiB
Python
Raw Normal View History

import logging
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
from transformers import GPT2Model, GPT2ForSequenceClassification
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
logger = logging.getLogger(__name__)
# Simple version #
class GPT2ClassificationHeadCustomSimple(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.n_embd
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
self.dropout = nn.Dropout(config.resid_pdrop)
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
def forward(self, x):
x = self.dense_1(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.dense_2(x)
x = torch.relu(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class GPT2ForSequenceClassificationCustomSimple(GPT2ForSequenceClassification):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = GPT2ClassificationHeadCustomSimple(config)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
# Version with custom forward 1 #
class GPT2ClassificationHeadCustom(nn.Module):
def __init__(self, config):
super().__init__()
hidden_size = config.n_embd
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
self.dropout = nn.Dropout(config.resid_pdrop)
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
def forward(self, x, **kwargs):
if 'hidden_states' in kwargs and kwargs['hidden_states'] is not None:
# Get hidden states from second from the end
hidden = kwargs['hidden_states'][-2]
else:
hidden = torch.zeros(x.size(), dtype=x.dtype, device=x.device)
x = self.dense_1_input(x)
x = torch.relu(x)
x = self.dropout(x)
hidden = self.dense_1_hidden(hidden)
hidden = torch.relu(hidden)
hidden = self.dropout(hidden)
x = torch.cat((x, hidden), dim=2)
x = self.dense_2(x)
x = torch.relu(x)
x = self.dropout(x)
2023-02-12 19:04:16 +01:00
x = torch.relu(x)
x = self.dense_2(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification):
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
self.score = GPT2ClassificationHeadCustom(config)
# Model parallel
self.model_parallel = False
self.device_map = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states or self.config.use_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert (
self.config.pad_token_id is not None or batch_size == 1
), "Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)