projekt-glebokie/ROBERTA.ipynb
2023-02-12 21:42:54 +01:00

77 KiB
Raw Blame History

Setup

Requirements

!pip install torch
!pip install datasets
!pip install transformers
!pip install scikit-learn
!pip install evaluate
!pip install accelerate
!pip install sentencepiece
!pip install protobuf
!pip install sacrebleu
!pip install py7zr
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: torch in /usr/local/lib/python3.8/dist-packages (1.13.1+cu116)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch) (4.4.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: datasets in /usr/local/lib/python3.8/dist-packages (2.9.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from datasets) (1.21.6)
Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets) (3.8.3)
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (2.25.1)
Requirement already satisfied: multiprocess in /usr/local/lib/python3.8/dist-packages (from datasets) (0.70.14)
Requirement already satisfied: dill<0.3.7 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.3.6)
Requirement already satisfied: huggingface-hub<1.0.0,>=0.2.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.12.0)
Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from datasets) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from datasets) (23.0)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (6.0)
Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.18.0)
Requirement already satisfied: xxhash in /usr/local/lib/python3.8/dist-packages (from datasets) (3.2.0)
Requirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (2023.1.0)
Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (4.64.1)
Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (9.0.0)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (2.1.1)
Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (22.2.0)
Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (6.0.4)
Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.8.2)
Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.3)
Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (4.0.2)
Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (3.9.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.4.0)
Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (4.0.0)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2.10)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2022.12.7)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (1.26.14)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2022.7.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2.8.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: transformers in /usr/local/lib/python3.8/dist-packages (4.26.1)
Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.9.0)
Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)
Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.25.1)
Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.13.2)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (23.0)
Requirement already satisfied: huggingface-hub<1.0,>=0.11.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (0.12.0)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.11.0->transformers) (4.4.0)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)
Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (4.0.0)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.26.14)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.12.7)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.8/dist-packages (1.0.2)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.2.0)
Requirement already satisfied: scipy>=1.1.0 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.7.3)
Requirement already satisfied: numpy>=1.14.6 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (1.21.6)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from scikit-learn) (3.1.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: evaluate in /usr/local/lib/python3.8/dist-packages (0.4.0)
Requirement already satisfied: xxhash in /usr/local/lib/python3.8/dist-packages (from evaluate) (3.2.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from evaluate) (23.0)
Requirement already satisfied: responses<0.19 in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.18.0)
Requirement already satisfied: fsspec[http]>=2021.05.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2023.1.0)
Requirement already satisfied: dill in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.3.6)
Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.8/dist-packages (from evaluate) (4.64.1)
Requirement already satisfied: datasets>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2.9.0)
Requirement already satisfied: huggingface-hub>=0.7.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.12.0)
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.8/dist-packages (from evaluate) (2.25.1)
Requirement already satisfied: multiprocess in /usr/local/lib/python3.8/dist-packages (from evaluate) (0.70.14)
Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from evaluate) (1.3.5)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from evaluate) (1.21.6)
Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (9.0.0)
Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (3.8.3)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from datasets>=2.0.0->evaluate) (6.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub>=0.7.0->evaluate) (3.9.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub>=0.7.0->evaluate) (4.4.0)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (1.26.14)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (2022.12.7)
Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (4.0.0)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->evaluate) (2.10)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->evaluate) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->evaluate) (2022.7.1)
Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.0.4)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (2.1.1)
Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)
Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.8.2)
Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (22.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.3)
Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->evaluate) (1.15.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: accelerate in /usr/local/lib/python3.8/dist-packages (0.16.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from accelerate) (1.21.6)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from accelerate) (23.0)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.8/dist-packages (from accelerate) (6.0)
Requirement already satisfied: torch>=1.4.0 in /usr/local/lib/python3.8/dist-packages (from accelerate) (1.13.1+cu116)
Requirement already satisfied: psutil in /usr/local/lib/python3.8/dist-packages (from accelerate) (5.4.8)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.8/dist-packages (from torch>=1.4.0->accelerate) (4.4.0)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: sentencepiece in /usr/local/lib/python3.8/dist-packages (0.1.97)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: protobuf in /usr/local/lib/python3.8/dist-packages (3.19.6)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: sacrebleu in /usr/local/lib/python3.8/dist-packages (2.3.1)
Requirement already satisfied: regex in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (2022.6.2)
Requirement already satisfied: portalocker in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (2.7.0)
Requirement already satisfied: lxml in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (4.9.2)
Requirement already satisfied: colorama in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (0.4.6)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (1.21.6)
Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.8/dist-packages (from sacrebleu) (0.8.10)
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: py7zr in /usr/local/lib/python3.8/dist-packages (0.20.4)
Requirement already satisfied: brotli>=1.0.9 in /usr/local/lib/python3.8/dist-packages (from py7zr) (1.0.9)
Requirement already satisfied: pycryptodomex>=3.6.6 in /usr/local/lib/python3.8/dist-packages (from py7zr) (3.17)
Requirement already satisfied: inflate64>=0.3.1 in /usr/local/lib/python3.8/dist-packages (from py7zr) (0.3.1)
Requirement already satisfied: multivolumefile>=0.2.3 in /usr/local/lib/python3.8/dist-packages (from py7zr) (0.2.3)
Requirement already satisfied: pyzstd>=0.14.4 in /usr/local/lib/python3.8/dist-packages (from py7zr) (0.15.3)
Requirement already satisfied: pybcj>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from py7zr) (1.0.1)
Requirement already satisfied: psutil in /usr/local/lib/python3.8/dist-packages (from py7zr) (5.4.8)
Requirement already satisfied: texttable in /usr/local/lib/python3.8/dist-packages (from py7zr) (1.6.7)
Requirement already satisfied: pyppmd<1.1.0,>=0.18.1 in /usr/local/lib/python3.8/dist-packages (from py7zr) (1.0.0)

Imports

import os
import json
import torch
from google.colab import drive
from pathlib import Path
from typing import Dict, List
from datasets import load_dataset
from transformers import T5Tokenizer

Loading data

loaded_data = load_dataset('emotion')
!mkdir -v -p data
train_path = Path('data/train.json')
valid_path = Path('data/valid.json')
test_path = Path('data/test.json')
data_train, data_valid, data_test = [], [], []
WARNING:datasets.builder:No config specified, defaulting to: emotion/split
WARNING:datasets.builder:Found cached dataset emotion (/root/.cache/huggingface/datasets/emotion/split/1.0.0/cca5efe2dfeb58c1d098e0f9eeb200e9927d889b5a03c67097275dfb5fe463bd)
  0%|          | 0/3 [00:00<?, ?it/s]
for source_data, dataset, max_size in [
  (loaded_data['train'], data_train, None),
  (loaded_data['validation'], data_valid, None),
  (loaded_data['test'], data_test, None),
]:
  for i, data in enumerate(source_data):
    if max_size is not None and i >= max_size:
      break
    data_line = {
      'label': int(data['label']),
      'text': data['text'],
    }
    dataset.append(data_line)

print(f'Train: {len(data_train):6d}')
print(f'Valid: {len(data_valid):6d}')
print(f'Test: {len(data_test):6d}')
Train:  16000
Valid:   2000
Test:   2000
MAP_LABEL_TRANSLATION = {
    0: 'sadness',
    1: 'joy',
    2: 'love',
    3: 'anger',
    4: 'fear',
    5: 'surprise',
}
def save_as_translations(original_save_path: Path, data_to_save: List[Dict]) -> None:
    file_name = 's2s-' + original_save_path.name
    file_path = original_save_path.parent / file_name

    print(f'Saving into: {file_path}')
    with open(file_path, 'wt') as f_write:
        for data_line in data_to_save:
            label = data_line['label']
            new_label = MAP_LABEL_TRANSLATION[label]
            data_line['label'] = new_label
            data_line_str = json.dumps(data_line)
            f_write.write(f'{data_line_str}\n')
for file_path, data_to_save in [(train_path, data_train), (valid_path, data_valid), (test_path, data_test)]:
  print(f'Saving into: {file_path}')
  with open(file_path, 'wt') as f_write:
    for data_line in data_to_save:
      data_line_str = json.dumps(data_line)
      f_write.write(f'{data_line_str}\n')
  
  save_as_translations(file_path, data_to_save)
Saving into: data/train.json
Saving into: data/s2s-train.json
Saving into: data/valid.json
Saving into: data/s2s-valid.json
Saving into: data/test.json
Saving into: data/s2s-test.json
!head data/train.json
{"label": 0, "text": "i didnt feel humiliated"}
{"label": 0, "text": "i can go from feeling so hopeless to so damned hopeful just from being around someone who cares and is awake"}
{"label": 3, "text": "im grabbing a minute to post i feel greedy wrong"}
{"label": 2, "text": "i am ever feeling nostalgic about the fireplace i will know that it is still on the property"}
{"label": 3, "text": "i am feeling grouchy"}
{"label": 0, "text": "ive been feeling a little burdened lately wasnt sure why that was"}
{"label": 5, "text": "ive been taking or milligrams or times recommended amount and ive fallen asleep a lot faster but i also feel like so funny"}
{"label": 4, "text": "i feel as confused about life as a teenager or as jaded as a year old man"}
{"label": 1, "text": "i have been with petronas for years i feel that petronas has performed well and made a huge profit"}
{"label": 2, "text": "i feel romantic too"}
!head data/s2s-train.json
{"label": "sadness", "text": "i didnt feel humiliated"}
{"label": "sadness", "text": "i can go from feeling so hopeless to so damned hopeful just from being around someone who cares and is awake"}
{"label": "anger", "text": "im grabbing a minute to post i feel greedy wrong"}
{"label": "love", "text": "i am ever feeling nostalgic about the fireplace i will know that it is still on the property"}
{"label": "anger", "text": "i am feeling grouchy"}
{"label": "sadness", "text": "ive been feeling a little burdened lately wasnt sure why that was"}
{"label": "surprise", "text": "ive been taking or milligrams or times recommended amount and ive fallen asleep a lot faster but i also feel like so funny"}
{"label": "fear", "text": "i feel as confused about life as a teenager or as jaded as a year old man"}
{"label": "joy", "text": "i have been with petronas for years i feel that petronas has performed well and made a huge profit"}
{"label": "love", "text": "i feel romantic too"}
# create tiny datasets for debugging purposes
for file_name in ["train", "valid", "test"]:
  print(f"=== {file_name} ===")
  all_text = Path(f"data/{file_name}.json").read_text().split('\n')
  text = all_text[:250] + all_text[-250:]
  Path(f"data/{file_name}-500.json").write_text("\n".join(text))
=== train ===
=== valid ===
=== test ===
!wc -l data/*
   2000 data/s2s-test.json
  16000 data/s2s-train.json
   2000 data/s2s-valid.json
    499 data/test-500.json
   2000 data/test.json
    499 data/train-500.json
  16000 data/train.json
    499 data/valid-500.json
   2000 data/valid.json
  41497 total

GPU Info

!nvidia-smi
Sun Feb 12 20:27:48 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 510.47.03    CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   58C    P0    25W /  70W |      0MiB / 15360MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
os.environ['TOKENIZERS_PARALLELISM'] = 'true'

Run

!wget 'https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/run_glue.py' -O 'run_glue.py'
--2023-02-12 20:27:48--  https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/run_glue.py
Resolving git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)... 150.254.78.40
Connecting to git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)|150.254.78.40|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 30601 (30K) [text/plain]
Saving to: run_glue.py

run_glue.py         100%[===================>]  29.88K   141KB/s    in 0.2s    

2023-02-12 20:27:50 (141 KB/s) - run_glue.py saved [30601/30601]

!wget 'https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/roberta.py' -O 'roberta.py'
--2023-02-12 20:27:50--  https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/roberta.py
Resolving git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)... 150.254.78.40
Connecting to git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)|150.254.78.40|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 12783 (12K) [text/plain]
Saving to: roberta.py

roberta.py          100%[===================>]  12.48K  --.-KB/s    in 0s      

2023-02-12 20:27:51 (205 MB/s) - roberta.py saved [12783/12783]

!wget 'https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/gpt2.py' -O 'gpt2.py'
--2023-02-12 20:27:51--  https://git.wmi.amu.edu.pl/s444465/projekt-glebokie/raw/branch/master/gpt2.py
Resolving git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)... 150.254.78.40
Connecting to git.wmi.amu.edu.pl (git.wmi.amu.edu.pl)|150.254.78.40|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 7976 (7.8K) [text/plain]
Saving to: gpt2.py

gpt2.py             100%[===================>]   7.79K  --.-KB/s    in 0s      

2023-02-12 20:27:52 (1.04 GB/s) - gpt2.py saved [7976/7976]

torch.cuda.empty_cache()
! python run_glue.py \
  --cache_dir .cache_training \
  --model_name_or_path roberta-base \
  --custom_model roberta_hidden \
  --train_file data/train.json  \
  --validation_file data/valid.json \
  --test_file data/test.json \
  --per_device_train_batch_size 8 \
  --per_device_eval_batch_size 8 \
  --do_train \
  --do_eval \
  --do_predict \
  --max_seq_length 128 \
  --num_train_epochs 1 \
  --metric_for_best_model accuracy \
  --greater_is_better True \
  --overwrite_output_dir \
  --output_dir out/emotion/roberta
2023-02-12 20:28:03.583437: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-02-12 20:28:03.583984: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2023-02-12 20:28:03.584030: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
WARNING:__main__:Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
INFO:__main__:Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=-1,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=out/emotion/roberta/runs/Feb12_20-28-08_00b63043f6e8,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=accuracy,
mp_parameters=,
no_cuda=False,
num_train_epochs=1.0,
optim=adamw_hf,
optim_args=None,
output_dir=out/emotion/roberta,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=8,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=out/emotion/roberta,
save_on_each_node=False,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
INFO:__main__:load a local file for train: data/train.json
INFO:__main__:load a local file for validation: data/valid.json
INFO:__main__:load a local file for test: data/test.json
WARNING:datasets.builder:Using custom data configuration default-445b68a727bf2b5b
INFO:datasets.info:Loading Dataset Infos from /usr/local/lib/python3.8/dist-packages/datasets/packaged_modules/json
INFO:datasets.builder:Generating dataset json (/content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)
Downloading and preparing dataset json/default to /content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...
Downloading data files: 100% 3/3 [00:00<00:00, 13559.17it/s]
INFO:datasets.download.download_manager:Downloading took 0.0 min
INFO:datasets.download.download_manager:Checksum Computation took 0.0 min
Extracting data files: 100% 3/3 [00:00<00:00, 2173.59it/s]
INFO:datasets.utils.info_utils:Unable to verify checksums.
INFO:datasets.builder:Generating train split
INFO:datasets.builder:Generating validation split
INFO:datasets.builder:Generating test split
INFO:datasets.utils.info_utils:Unable to verify splits sizes.
Dataset json downloaded and prepared to /content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51. Subsequent calls will reuse this data.
100% 3/3 [00:00<00:00, 904.92it/s]
[INFO|configuration_utils.py:660] 2023-02-12 20:28:11,697 >> loading configuration file config.json from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/config.json
[INFO|configuration_utils.py:712] 2023-02-12 20:28:11,697 >> Model config RobertaConfig {
  "_name_or_path": "roberta-base",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "id2label": {
    "0": "LABEL_0",
    "1": "LABEL_1",
    "2": "LABEL_2",
    "3": "LABEL_3",
    "4": "LABEL_4",
    "5": "LABEL_5"
  },
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "label2id": {
    "LABEL_0": 0,
    "LABEL_1": 1,
    "LABEL_2": 2,
    "LABEL_3": 3,
    "LABEL_4": 4,
    "LABEL_5": 5
  },
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.26.1",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50265
}

[INFO|tokenization_auto.py:458] 2023-02-12 20:28:12,604 >> Could not locate the tokenizer configuration file, will try to use the model config instead.
[INFO|configuration_utils.py:660] 2023-02-12 20:28:13,508 >> loading configuration file config.json from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/config.json
[INFO|configuration_utils.py:712] 2023-02-12 20:28:13,509 >> Model config RobertaConfig {
  "_name_or_path": "roberta-base",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.26.1",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50265
}

[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file vocab.json from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/vocab.json
[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file merges.txt from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/merges.txt
[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file tokenizer.json from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/tokenizer.json
[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file special_tokens_map.json from cache at None
[INFO|tokenization_utils_base.py:1802] 2023-02-12 20:28:15,328 >> loading file tokenizer_config.json from cache at None
[INFO|configuration_utils.py:660] 2023-02-12 20:28:15,328 >> loading configuration file config.json from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/config.json
[INFO|configuration_utils.py:712] 2023-02-12 20:28:15,329 >> Model config RobertaConfig {
  "_name_or_path": "roberta-base",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.26.1",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50265
}

INFO:__main__:Using hidden states in model: True
INFO:__main__:Using implementation from class: RobertaForSequenceClassificationCustom
[INFO|modeling_utils.py:2275] 2023-02-12 20:28:15,406 >> loading weights file pytorch_model.bin from cache at .cache_training/models--roberta-base/snapshots/ff46155979338ff8063cdad90908b498ab91b181/pytorch_model.bin
[WARNING|modeling_utils.py:2847] 2023-02-12 20:28:21,448 >> Some weights of the model checkpoint at roberta-base were not used when initializing RobertaForSequenceClassificationCustom: ['roberta.pooler.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.dense.bias', 'lm_head.bias', 'roberta.pooler.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.decoder.weight', 'lm_head.dense.weight']
- This IS expected if you are initializing RobertaForSequenceClassificationCustom from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForSequenceClassificationCustom from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:2859] 2023-02-12 20:28:21,449 >> Some weights of RobertaForSequenceClassificationCustom were not initialized from the model checkpoint at roberta-base and are newly initialized: ['classifier.dense_1.weight', 'classifier.dense_2.weight', 'classifier.out_proj.bias', 'classifier.out_proj.weight', 'classifier.dense_2.bias', 'classifier.dense_1.bias']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Running tokenizer on dataset:   0% 0/16 [00:00<?, ?ba/s]INFO:datasets.arrow_dataset:Caching processed dataset at /content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-8a9b1fbca2a716a7.arrow
Running tokenizer on dataset: 100% 16/16 [00:02<00:00,  6.82ba/s]
Running tokenizer on dataset:   0% 0/2 [00:00<?, ?ba/s]INFO:datasets.arrow_dataset:Caching processed dataset at /content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-8f309c505895ef97.arrow
Running tokenizer on dataset: 100% 2/2 [00:00<00:00, 10.75ba/s]
Running tokenizer on dataset:   0% 0/2 [00:00<?, ?ba/s]INFO:datasets.arrow_dataset:Caching processed dataset at /content/.cache_training/json/default-445b68a727bf2b5b/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/cache-1ddf83c390fe9022.arrow
Running tokenizer on dataset: 100% 2/2 [00:00<00:00, 10.53ba/s]
INFO:__main__:Sample 10476 of the training set: {'label': 0, 'text': 'i do find new friends i m going to try extra hard to make them stay and if i decide that i don t want to feel hurt again and just ride out the last year of school on my own i m going to have to try extra hard not to care what people think of me being a loner', 'input_ids': [0, 118, 109, 465, 92, 964, 939, 475, 164, 7, 860, 1823, 543, 7, 146, 106, 1095, 8, 114, 939, 2845, 14, 939, 218, 326, 236, 7, 619, 2581, 456, 8, 95, 3068, 66, 5, 94, 76, 9, 334, 15, 127, 308, 939, 475, 164, 7, 33, 7, 860, 1823, 543, 45, 7, 575, 99, 82, 206, 9, 162, 145, 10, 784, 9604, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}.
INFO:__main__:Sample 1824 of the training set: {'label': 1, 'text': 'i asked them to join me in creating a world where all year old girls could grow up feeling hopeful and powerful', 'input_ids': [0, 118, 553, 106, 7, 1962, 162, 11, 2351, 10, 232, 147, 70, 76, 793, 1972, 115, 1733, 62, 2157, 7917, 8, 2247, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}.
INFO:__main__:Sample 409 of the training set: {'label': 2, 'text': 'i feel when you are a caring person you attract other caring people into your life', 'input_ids': [0, 118, 619, 77, 47, 32, 10, 10837, 621, 47, 5696, 97, 10837, 82, 88, 110, 301, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}.
[INFO|trainer.py:710] 2023-02-12 20:28:32,162 >> The following columns in the training set don't have a corresponding argument in `RobertaForSequenceClassificationCustom.forward` and have been ignored: text. If text are not expected by `RobertaForSequenceClassificationCustom.forward`,  you can safely ignore this message.
/usr/local/lib/python3.8/dist-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
  warnings.warn(
[INFO|trainer.py:1650] 2023-02-12 20:28:32,170 >> ***** Running training *****
[INFO|trainer.py:1651] 2023-02-12 20:28:32,170 >>   Num examples = 16000
[INFO|trainer.py:1652] 2023-02-12 20:28:32,170 >>   Num Epochs = 1
[INFO|trainer.py:1653] 2023-02-12 20:28:32,170 >>   Instantaneous batch size per device = 8
[INFO|trainer.py:1654] 2023-02-12 20:28:32,170 >>   Total train batch size (w. parallel, distributed & accumulation) = 8
[INFO|trainer.py:1655] 2023-02-12 20:28:32,170 >>   Gradient Accumulation steps = 1
[INFO|trainer.py:1656] 2023-02-12 20:28:32,170 >>   Total optimization steps = 2000
[INFO|trainer.py:1657] 2023-02-12 20:28:32,171 >>   Number of trainable parameters = 133506054
{'loss': 1.0674, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.25}
 25% 500/2000 [01:49<05:17,  4.73it/s][INFO|trainer.py:2709] 2023-02-12 20:30:21,614 >> Saving model checkpoint to out/emotion/roberta/checkpoint-500
[INFO|configuration_utils.py:453] 2023-02-12 20:30:21,616 >> Configuration saved in out/emotion/roberta/checkpoint-500/config.json
[INFO|modeling_utils.py:1704] 2023-02-12 20:30:23,483 >> Model weights saved in out/emotion/roberta/checkpoint-500/pytorch_model.bin
[INFO|tokenization_utils_base.py:2160] 2023-02-12 20:30:23,485 >> tokenizer config file saved in out/emotion/roberta/checkpoint-500/tokenizer_config.json
[INFO|tokenization_utils_base.py:2167] 2023-02-12 20:30:23,487 >> Special tokens file saved in out/emotion/roberta/checkpoint-500/special_tokens_map.json
{'loss': 0.4706, 'learning_rate': 2.5e-05, 'epoch': 0.5}
 50% 1000/2000 [03:42<03:35,  4.65it/s][INFO|trainer.py:2709] 2023-02-12 20:32:15,052 >> Saving model checkpoint to out/emotion/roberta/checkpoint-1000
[INFO|configuration_utils.py:453] 2023-02-12 20:32:15,054 >> Configuration saved in out/emotion/roberta/checkpoint-1000/config.json
[INFO|modeling_utils.py:1704] 2023-02-12 20:32:16,906 >> Model weights saved in out/emotion/roberta/checkpoint-1000/pytorch_model.bin
[INFO|tokenization_utils_base.py:2160] 2023-02-12 20:32:16,907 >> tokenizer config file saved in out/emotion/roberta/checkpoint-1000/tokenizer_config.json
[INFO|tokenization_utils_base.py:2167] 2023-02-12 20:32:16,908 >> Special tokens file saved in out/emotion/roberta/checkpoint-1000/special_tokens_map.json
{'loss': 0.3568, 'learning_rate': 1.25e-05, 'epoch': 0.75}
 75% 1500/2000 [05:36<01:48,  4.62it/s][INFO|trainer.py:2709] 2023-02-12 20:34:08,529 >> Saving model checkpoint to out/emotion/roberta/checkpoint-1500
[INFO|configuration_utils.py:453] 2023-02-12 20:34:08,531 >> Configuration saved in out/emotion/roberta/checkpoint-1500/config.json
[INFO|modeling_utils.py:1704] 2023-02-12 20:34:10,329 >> Model weights saved in out/emotion/roberta/checkpoint-1500/pytorch_model.bin
[INFO|tokenization_utils_base.py:2160] 2023-02-12 20:34:10,330 >> tokenizer config file saved in out/emotion/roberta/checkpoint-1500/tokenizer_config.json
[INFO|tokenization_utils_base.py:2167] 2023-02-12 20:34:10,330 >> Special tokens file saved in out/emotion/roberta/checkpoint-1500/special_tokens_map.json
{'loss': 0.2889, 'learning_rate': 0.0, 'epoch': 1.0}
100% 2000/2000 [07:29<00:00,  4.63it/s][INFO|trainer.py:2709] 2023-02-12 20:36:02,065 >> Saving model checkpoint to out/emotion/roberta/checkpoint-2000
[INFO|configuration_utils.py:453] 2023-02-12 20:36:02,067 >> Configuration saved in out/emotion/roberta/checkpoint-2000/config.json
[INFO|modeling_utils.py:1704] 2023-02-12 20:36:03,859 >> Model weights saved in out/emotion/roberta/checkpoint-2000/pytorch_model.bin
[INFO|tokenization_utils_base.py:2160] 2023-02-12 20:36:03,860 >> tokenizer config file saved in out/emotion/roberta/checkpoint-2000/tokenizer_config.json
[INFO|tokenization_utils_base.py:2167] 2023-02-12 20:36:03,861 >> Special tokens file saved in out/emotion/roberta/checkpoint-2000/special_tokens_map.json
[INFO|trainer.py:1901] 2023-02-12 20:36:08,221 >> 

Training completed. Do not forget to share your model on huggingface.co/models =)


{'train_runtime': 456.0498, 'train_samples_per_second': 35.084, 'train_steps_per_second': 4.385, 'train_loss': 0.5459538650512695, 'epoch': 1.0}
100% 2000/2000 [07:36<00:00,  4.38it/s]
[INFO|trainer.py:2709] 2023-02-12 20:36:08,504 >> Saving model checkpoint to out/emotion/roberta
[INFO|configuration_utils.py:453] 2023-02-12 20:36:08,505 >> Configuration saved in out/emotion/roberta/config.json
[INFO|modeling_utils.py:1704] 2023-02-12 20:36:10,579 >> Model weights saved in out/emotion/roberta/pytorch_model.bin
[INFO|tokenization_utils_base.py:2160] 2023-02-12 20:36:10,580 >> tokenizer config file saved in out/emotion/roberta/tokenizer_config.json
[INFO|tokenization_utils_base.py:2167] 2023-02-12 20:36:10,581 >> Special tokens file saved in out/emotion/roberta/special_tokens_map.json
***** train metrics *****
  epoch                    =        1.0
  train_loss               =      0.546
  train_runtime            = 0:07:36.04
  train_samples            =      16000
  train_samples_per_second =     35.084
  train_steps_per_second   =      4.385
INFO:__main__:*** Evaluate ***
[INFO|trainer.py:710] 2023-02-12 20:36:10,705 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForSequenceClassificationCustom.forward` and have been ignored: text. If text are not expected by `RobertaForSequenceClassificationCustom.forward`,  you can safely ignore this message.
[INFO|trainer.py:2964] 2023-02-12 20:36:10,709 >> ***** Running Evaluation *****
[INFO|trainer.py:2966] 2023-02-12 20:36:10,709 >>   Num examples = 2000
[INFO|trainer.py:2969] 2023-02-12 20:36:10,710 >>   Batch size = 8
100% 250/250 [00:13<00:00, 18.17it/s]
***** eval metrics *****
  epoch                   =        1.0
  eval_accuracy           =      0.936
  eval_loss               =     0.2195
  eval_runtime            = 0:00:13.86
  eval_samples            =       2000
  eval_samples_per_second =    144.228
  eval_steps_per_second   =     18.029
INFO:__main__:*** Predict ***
[INFO|trainer.py:710] 2023-02-12 20:36:24,586 >> The following columns in the test set don't have a corresponding argument in `RobertaForSequenceClassificationCustom.forward` and have been ignored: text. If text are not expected by `RobertaForSequenceClassificationCustom.forward`,  you can safely ignore this message.
[INFO|trainer.py:2964] 2023-02-12 20:36:24,587 >> ***** Running Prediction *****
[INFO|trainer.py:2966] 2023-02-12 20:36:24,587 >>   Num examples = 2000
[INFO|trainer.py:2969] 2023-02-12 20:36:24,587 >>   Batch size = 8
100% 250/250 [00:14<00:00, 17.75it/s]
INFO:__main__:***** Predict results None *****
[INFO|modelcard.py:449] 2023-02-12 20:36:39,641 >> Dropping the following result as it does not have all the necessary fields:
{'task': {'name': 'Text Classification', 'type': 'text-classification'}, 'metrics': [{'name': 'Accuracy', 'type': 'accuracy', 'value': 0.9359999895095825}]}

Save model

drive.mount('/content/drive')
!cp -r /content/out/emotion /content/drive/MyDrive/models
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).