Compare commits
No commits in common. "master" and "0455752e54b3e32f50a9b2c943df173cdfc63fab" have entirely different histories.
master
...
0455752e54
21038
dev-0/out.tsv
21038
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
2261
lab8.ipynb
2261
lab8.ipynb
File diff suppressed because it is too large
Load Diff
18
run.py
18
run.py
@ -1,20 +1,4 @@
|
|||||||
#!/usr/bin/python3
|
#!/usr/bin/python3
|
||||||
import sys
|
import sys
|
||||||
for line in sys.stdin:
|
for line in sys.stdin:
|
||||||
spitted_line = line.split('\t')
|
print('the:0.6 a:0.4')
|
||||||
left_context = spitted_line[6]
|
|
||||||
right_context = spitted_line[7]
|
|
||||||
left_context_words = left_context.split(' ')
|
|
||||||
right_context_words = right_context.split(' ')
|
|
||||||
# print(left_context_words)
|
|
||||||
# print()
|
|
||||||
# print(right_context_words)
|
|
||||||
|
|
||||||
if left_context_words[-1] == 'At' or left_context_words[-1] == 'at':
|
|
||||||
print('first:0.6 which:0.3 :01')
|
|
||||||
elif left_context_words[-1] == 'the':
|
|
||||||
print('it:0.5 a:0.4 :01')
|
|
||||||
elif left_context_words[-1] == 'a':
|
|
||||||
print('the:0.7 it:0.2 :01')
|
|
||||||
else:
|
|
||||||
print('the:0.6 a:0.3 :01')
|
|
2436
run17.ipynb
2436
run17.ipynb
File diff suppressed because it is too large
Load Diff
36
run2.py
36
run2.py
@ -1,36 +0,0 @@
|
|||||||
import torch
|
|
||||||
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
||||||
import sys
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
||||||
model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")
|
|
||||||
|
|
||||||
for line in sys.stdin:
|
|
||||||
splitted_line = line.split("\t")
|
|
||||||
left_context = splitted_line[6].split(" ")[-1]
|
|
||||||
right_context = splitted_line[7].split(" ")[0]
|
|
||||||
|
|
||||||
word = "[MASK]"
|
|
||||||
|
|
||||||
text = f"{left_context} {word} {right_context}"
|
|
||||||
|
|
||||||
input_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt", max_length=512, truncation=True)
|
|
||||||
|
|
||||||
mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1][0]
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
|
||||||
outputs = model(input_ids)
|
|
||||||
predictions = outputs[0][0, mask_token_index].softmax(dim=0)
|
|
||||||
|
|
||||||
top_k = 500
|
|
||||||
top_k_tokens = torch.topk(predictions, top_k).indices.tolist()
|
|
||||||
result = ''
|
|
||||||
prob_sum = 0
|
|
||||||
for token in top_k_tokens:
|
|
||||||
word = tokenizer.convert_ids_to_tokens([token])[0]
|
|
||||||
prob = predictions[token].item()
|
|
||||||
prob_sum += prob
|
|
||||||
result += f"{word}:{prob} "
|
|
||||||
diff = 1.0 - prob_sum
|
|
||||||
result += f":{diff}"
|
|
||||||
print(result)
|
|
File diff suppressed because one or more lines are too long
273
run7.ipynb
273
run7.ipynb
@ -1,273 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": true,
|
|
||||||
"pycharm": {
|
|
||||||
"is_executing": true
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import itertools\n",
|
|
||||||
"import lzma\n",
|
|
||||||
"\n",
|
|
||||||
"import regex as re\n",
|
|
||||||
"import torch\n",
|
|
||||||
"from torch import nn\n",
|
|
||||||
"from torch.utils.data import IterableDataset, DataLoader\n",
|
|
||||||
"from torchtext.vocab import build_vocab_from_iterator"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"from google.colab import drive"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def clean_line(line: str):\n",
|
|
||||||
" separated = line.split('\\t')\n",
|
|
||||||
" prefix = separated[6].replace(r'\\n', ' ')\n",
|
|
||||||
" suffix = separated[7].replace(r'\\n', ' ')\n",
|
|
||||||
" return prefix + ' ' + suffix\n",
|
|
||||||
"\n",
|
|
||||||
"def get_words_from_line(line):\n",
|
|
||||||
" line = clean_line(line)\n",
|
|
||||||
" for m in re.finditer(r'[\\p{L}0-9\\*]+|\\p{P}+', line):\n",
|
|
||||||
" yield m.group(0).lower()\n",
|
|
||||||
"\n",
|
|
||||||
"def get_word_lines_from_file(file_name):\n",
|
|
||||||
" with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:\n",
|
|
||||||
" for line in fid:\n",
|
|
||||||
" yield get_words_from_line(line)\n",
|
|
||||||
"\n",
|
|
||||||
"def look_ahead_iterator(gen):\n",
|
|
||||||
" prev = None\n",
|
|
||||||
" for item in gen:\n",
|
|
||||||
" if prev is not None:\n",
|
|
||||||
" yield (prev, item)\n",
|
|
||||||
" prev = item\n",
|
|
||||||
"\n",
|
|
||||||
"def prediction(word: str) -> str:\n",
|
|
||||||
" ixs = torch.tensor(vocab.forward([word])).to(device)\n",
|
|
||||||
" out = model(ixs)\n",
|
|
||||||
" top = torch.topk(out[0], 5)\n",
|
|
||||||
" top_indices = top.indices.tolist()\n",
|
|
||||||
" top_probs = top.values.tolist()\n",
|
|
||||||
" top_words = vocab.lookup_tokens(top_indices)\n",
|
|
||||||
" zipped = list(zip(top_words, top_probs))\n",
|
|
||||||
" for index, element in enumerate(zipped):\n",
|
|
||||||
" unk = None\n",
|
|
||||||
" if '<unk>' in element:\n",
|
|
||||||
" unk = zipped.pop(index)\n",
|
|
||||||
" zipped.append(('', unk[1]))\n",
|
|
||||||
" break\n",
|
|
||||||
" if unk is None:\n",
|
|
||||||
" zipped[-1] = ('', zipped[-1][1])\n",
|
|
||||||
" return ' '.join([f'{x[0]}:{x[1]}' for x in zipped])\n",
|
|
||||||
"\n",
|
|
||||||
"def create_outputs(folder_name):\n",
|
|
||||||
" print(f'Creating outputs in {folder_name}')\n",
|
|
||||||
" with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid:\n",
|
|
||||||
" with open(f'{folder_name}/out.tsv', 'w', encoding='utf-8', newline='\\n') as f:\n",
|
|
||||||
" for line in fid:\n",
|
|
||||||
" separated = line.split('\\t')\n",
|
|
||||||
" prefix = separated[6].replace(r'\\n', ' ').split()[-1]\n",
|
|
||||||
" output_line = prediction(prefix)\n",
|
|
||||||
" f.write(output_line + '\\n')\n",
|
|
||||||
"\n",
|
|
||||||
"class Bigrams(IterableDataset):\n",
|
|
||||||
" def __init__(self, text_file, vocabulary_size):\n",
|
|
||||||
" self.vocab = build_vocab_from_iterator(\n",
|
|
||||||
" get_word_lines_from_file(text_file),\n",
|
|
||||||
" max_tokens=vocabulary_size,\n",
|
|
||||||
" specials=['<unk>'])\n",
|
|
||||||
" self.vocab.set_default_index(self.vocab['<unk>'])\n",
|
|
||||||
" self.vocabulary_size = vocabulary_size\n",
|
|
||||||
" self.text_file = text_file\n",
|
|
||||||
"\n",
|
|
||||||
" def __iter__(self):\n",
|
|
||||||
" return look_ahead_iterator(\n",
|
|
||||||
" (self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))\n",
|
|
||||||
"\n",
|
|
||||||
"class SimpleBigramNeuralLanguageModel(nn.Module):\n",
|
|
||||||
" def __init__(self, vocabulary_size, embedding_size):\n",
|
|
||||||
" super(SimpleBigramNeuralLanguageModel, self).__init__()\n",
|
|
||||||
" self.model = nn.Sequential(\n",
|
|
||||||
" nn.Embedding(vocabulary_size, embedding_size),\n",
|
|
||||||
" nn.Linear(embedding_size, vocabulary_size),\n",
|
|
||||||
" nn.Softmax()\n",
|
|
||||||
" )\n",
|
|
||||||
"\n",
|
|
||||||
" def forward(self, x):\n",
|
|
||||||
" return self.model(x)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"vocab_size = 15000\n",
|
|
||||||
"embed_size = 150\n",
|
|
||||||
"batch_size = 3000\n",
|
|
||||||
"device = 'cuda'\n",
|
|
||||||
"path_to_train = 'train/in.tsv.xz'\n",
|
|
||||||
"path_to_model = 'model1.bin'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"drive.mount('/content/drive')\n",
|
|
||||||
"%cd /content/drive/MyDrive/"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"vocab = build_vocab_from_iterator(\n",
|
|
||||||
" get_word_lines_from_file(path_to_train),\n",
|
|
||||||
" max_tokens=vocab_size,\n",
|
|
||||||
" specials=['<unk>']\n",
|
|
||||||
")\n",
|
|
||||||
"\n",
|
|
||||||
"vocab.set_default_index(vocab['<unk>'])"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"train_dataset = Bigrams(path_to_train, vocab_size)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n",
|
|
||||||
"data = DataLoader(train_dataset, batch_size=batch_size)\n",
|
|
||||||
"optimizer = torch.optim.Adam(model.parameters())\n",
|
|
||||||
"criterion = torch.nn.NLLLoss()\n",
|
|
||||||
"\n",
|
|
||||||
"model.train()\n",
|
|
||||||
"step = 0\n",
|
|
||||||
"for x, y in data:\n",
|
|
||||||
" x = x.to(device)\n",
|
|
||||||
" y = y.to(device)\n",
|
|
||||||
" optimizer.zero_grad()\n",
|
|
||||||
" ypredicted = model(x)\n",
|
|
||||||
" loss = criterion(torch.log(ypredicted), y)\n",
|
|
||||||
" if step % 100 == 0:\n",
|
|
||||||
" print(step, loss)\n",
|
|
||||||
" step += 1\n",
|
|
||||||
" loss.backward()\n",
|
|
||||||
" optimizer.step()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"torch.save(model.state_dict(), path_to_model)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)\n",
|
|
||||||
"model.load_state_dict(torch.load(path_to_model))\n",
|
|
||||||
"model.eval()"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"create_outputs('dev-0')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"create_outputs('test-A')"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 2
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython2",
|
|
||||||
"version": "2.7.6"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 0
|
|
||||||
}
|
|
14828
test-A/out.tsv
14828
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user