This commit is contained in:
Krystian Wasilewski 2023-01-07 22:35:00 +01:00
parent dd63ddc9ce
commit 38578e007f
2 changed files with 58 additions and 31 deletions

View File

@ -4,45 +4,45 @@ FS = FuzzySystem()
# Define fuzzy sets for the variable
# RELEASE_YEAR
release_year_newer = TriangleFuzzySet(-68, -68, 0, term="newer")
release_year_similar = TriangleFuzzySet(-68, 0, 68, term="similar")
release_year_older = TriangleFuzzySet(0, 68, 68, term="older")
release_year_newer = TriangleFuzzySet(-20, -20, 0, term="newer")
release_year_similar = TriangleFuzzySet(-20, 0, 20, term="similar")
release_year_older = TriangleFuzzySet(0, 20, 20, term="older")
FS.add_linguistic_variable("RELEASE_YEAR",
LinguisticVariable([release_year_newer, release_year_similar, release_year_older],
universe_of_discourse=[-136, 136]))
# RUNTIME
runtime_shorter = TriangleFuzzySet(-238, -238, 0, term="shorter")
runtime_similar = TriangleFuzzySet(-238, 0, 238, term="similar")
runtime_longer = TriangleFuzzySet(0, 238, 238, term="longer")
runtime_shorter = TriangleFuzzySet(-90, -90, 0, term="shorter")
runtime_similar = TriangleFuzzySet(-90, 0, 90, term="similar")
runtime_longer = TriangleFuzzySet(0, 90, 90, term="longer")
FS.add_linguistic_variable("RUNTIME", LinguisticVariable([runtime_shorter, runtime_similar, runtime_longer],
universe_of_discourse=[-476, 476]))
# SEASONS
seasons_less = TriangleFuzzySet(-42, -42, 0, term="less")
seasons_similar = TriangleFuzzySet(-42, 0, 42, term="similar")
seasons_more = TriangleFuzzySet(0, 42, 42, term="more")
seasons_less = TriangleFuzzySet(-5, -5, 0, term="less")
seasons_similar = TriangleFuzzySet(-5, 0, 5, term="similar")
seasons_more = TriangleFuzzySet(0, 5, 5, term="more")
FS.add_linguistic_variable("SEASONS", LinguisticVariable([seasons_less, seasons_similar, seasons_more],
universe_of_discourse=[-84, 84]))
# GENRES
genres_different = TriangleFuzzySet(-100, -100, 0, term="different")
genres_similar = TriangleFuzzySet(-100, 0, 100, term="similar")
genres_same = TriangleFuzzySet(0, 100, 100, term="same")
genres_different = TriangleFuzzySet(0, 0, 0.5, term="different")
genres_similar = TriangleFuzzySet(0, 0.5, 1, term="similar")
genres_same = TriangleFuzzySet(0.5, 1, 1, term="same")
FS.add_linguistic_variable("GENRES", LinguisticVariable([genres_different, genres_similar, genres_same],
universe_of_discourse=[-200, 200]))
universe_of_discourse=[0, 1]))
# EMOTIONS
emotions_different = TriangleFuzzySet(-4, -4, 0, term="different")
emotions_similar = TriangleFuzzySet(-4, 0, 4, term="similar")
emotions_same = TriangleFuzzySet(0, 4, 4, term="same")
emotions_different = TriangleFuzzySet(0, 0, 0.5, term="different")
emotions_similar = TriangleFuzzySet(0, 0.5, 1, term="similar")
emotions_same = TriangleFuzzySet(0.5, 1, 1, term="same")
FS.add_linguistic_variable("EMOTIONS", LinguisticVariable([emotions_different, emotions_similar, emotions_same],
universe_of_discourse=[-8, 8]))
universe_of_discourse=[0, 1]))
# RECOMMENDATION
low_recommendation = TriangleFuzzySet(0, 0, 50, term="low_recommendation")

55
main.py
View File

@ -18,6 +18,32 @@ app = FastAPI()
data = pd.DataFrame()
def inference(first_id: str, second_id: str):
first = data.loc[first_id]
second = data.loc[second_id]
year_diff = int(first['release_year'] - second['release_year'])
FS.set_variable('RELEASE_YEAR', year_diff)
runtime_diff = int(first['runtime'] - second['runtime'])
FS.set_variable('RUNTIME', runtime_diff)
if not (np.isnan(first['seasons']) or np.isnan(second['seasons'])):
season_diff = int(first['seasons'] - second['seasons'])
FS.set_variable('SEASONS', season_diff)
else:
FS.set_variable('SEASONS', 0)
genre_diff = 1 - cosine(first['genres'], second['genres'])
FS.set_variable('GENRES', genre_diff)
emotion_diff = 1 - cosine(first['emotions'], second['emotions'])
FS.set_variable('EMOTIONS', emotion_diff)
return FS.inference(['RECOMMENDATION'])
@app.on_event('startup')
async def startup_event():
global data
@ -40,22 +66,23 @@ def rec_score(first_id: str, second_id: str):
except KeyError:
return {'error': f'{second_id} is not a valid id'}
year_diff = int(first['release_year'] - second['release_year'])
FS.set_variable('RELEASE_YEAR', year_diff)
return inference(first_id, second_id)
runtime_diff = int(first['runtime'] - second['runtime'])
FS.set_variable('RUNTIME', runtime_diff)
if not (np.isnan(first['seasons']) or np.isnan(second['seasons'])):
season_diff = int(first['seasons'] - second['seasons'])
FS.set_variable('SEASONS', season_diff)
else:
FS.set_variable('SEASONS', 0)
@app.get('/recs/{production_id}')
async def recs(production_id: str, count: int | None):
try:
first = data.loc[production_id]
except KeyError:
return {'error': f'{production_id} is not a valid id'}
genre_diff = 1 - cosine(first['genres'], second['genres'])
FS.set_variable('GENRES', genre_diff)
scores = []
emotion_diff = 1 - cosine(first['emotions'], second['emotions'])
FS.set_variable('EMOTIONS', emotion_diff)
for index, row in data.iterrows():
if str(index) == production_id:
continue
scores.append((index, inference(production_id, str(index))['RECOMMENDATION']))
return FS.inference(['RECOMMENDATION'])
scores = [idx[0] for idx in sorted(scores, key=lambda x: x[1], reverse=True)[:count]]
return list(scores)