Merge pull request 'comparison' (#3) from comparison into main

Reviewed-on: #3
This commit is contained in:
Mateusz Tylka 2023-01-29 23:02:13 +01:00
commit 0dafe720b9
5 changed files with 6775 additions and 16 deletions

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
data
.idea
# Byte-compiled / optimized / DLL files
__pycache__/

42
comparisons.py Normal file
View File

@ -0,0 +1,42 @@
import cv2
import numpy as np
from skimage.metrics import structural_similarity
def histogram_comparison(data_a: np.ndarray, data_b: np.ndarray) -> dict:
hsv_a = cv2.cvtColor(data_a, cv2.COLOR_BGR2HSV)
hsv_b = cv2.cvtColor(data_b, cv2.COLOR_BGR2HSV)
histSize = [50, 60]
hue_ranges = [0, 180]
sat_ranges = [0, 256]
channels = [0, 1]
ranges = hue_ranges + sat_ranges
hist_a = cv2.calcHist([hsv_a], channels, None, histSize, ranges, accumulate=False)
cv2.normalize(hist_a, hist_a, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
hist_b = cv2.calcHist([hsv_b], channels, None, histSize, ranges, accumulate=False)
cv2.normalize(hist_b, hist_b, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX)
return {
'correlation': cv2.compareHist(hist_a, hist_b, 0),
'chi-square': cv2.compareHist(hist_a, hist_b, 1),
'intersection': cv2.compareHist(hist_a, hist_b, 2),
'bhattacharyya-distance': cv2.compareHist(hist_a, hist_b, 3),
}
def structural_similarity_index(data_a: np.ndarray, data_b: np.ndarray) -> float:
return structural_similarity(cv2.cvtColor(data_a, cv2.COLOR_BGR2GRAY), cv2.cvtColor(data_b, cv2.COLOR_BGR2GRAY))
def euclidean_distance(data_a: np.ndarray, data_b: np.ndarray) -> float:
gray_a = cv2.cvtColor(data_a, cv2.COLOR_BGR2GRAY)
histogram_a = cv2.calcHist([gray_a], [0], None, [256], [0, 256])
gray_b = cv2.cvtColor(data_b, cv2.COLOR_BGR2GRAY)
histogram_b = cv2.calcHist([gray_b], [0], None, [256], [0, 256])
result, i = [0.], 0
while i < len(histogram_a) and i < len(histogram_b):
result += (histogram_a[i] - histogram_b[i]) ** 2
i += 1
return result[0] ** (1 / 2)

File diff suppressed because it is too large Load Diff

50
main.py
View File

@ -1,40 +1,60 @@
# Allows imports from the style transfer submodule
import sys
sys.path.append('DCT-Net')
import cv2
import os
import numpy as np
import matplotlib.pyplot as plt
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
# Allows imports from the style transfer submodule
sys.path.append('DCT-Net')
from source.cartoonize import Cartoonizer
def load_source(filename: str) -> np.ndarray:
return cv2.imread(filename)[...,::-1]
return cv2.imread(filename)[..., ::-1]
def find_and_crop_face(data: np.ndarray) -> np.ndarray:
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
face = face_cascade.detectMultiScale(data_gray, 1.3, 4)
face_cascade = cv2.CascadeClassifier(classifier_file)
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
face = max(face, key=len)
x, y, w, h = face
face = data[y:y + h, x:x + w]
return face
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def compare_with_anime_characters(data: np.ndarray) -> int:
# TODO
return 1
# Example will be one face from anime dataset
example = load_source('data/images/Aisaka, Taiga.jpg')
# TODO: Use a different face detection method for anime images
example_face = find_and_crop_face(example, 'haarcascades/lbpcascade_animeface.xml')
data_rescaled = cv2.resize(data, example_face.shape[:2])
plot_two_images(example_face, data_rescaled)
print(histogram_comparison(data_rescaled, example_face))
print(f'structural-similarity: {structural_similarity_index(data_rescaled, example_face)}')
print(f'euclidean-distance: {euclidean_distance(data_rescaled, example_face)}')
def transfer_to_anime(img: np.ndarray):
algo = Cartoonizer(dataroot='damo/cv_unet_person-image-cartoon_compound-models')
return algo.cartoonize(img)
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
return algo.cartoonize(img).astype(np.uint8)
if __name__ == '__main__':
source = load_source('input.png')
source_face = find_and_crop_face(source)
source_face_anime = transfer_to_anime(source)
source = load_source('UAM-Andre.jpg')
source_anime = transfer_to_anime(source)
source_face_anime = find_and_crop_face(source_anime)
print(compare_with_anime_characters(source_face_anime))

View File

@ -5,4 +5,7 @@ modelscope==1.1.3
requests==2.28.2
beautifulsoup4==4.11.1
lxml==4.9.2
opencv-python==4.7.0.68
opencv-python==4.7.0.68
torch==1.13.1
matplotlib==3.6.3
scikit-image==0.19.3