find and crop face implementation
This commit is contained in:
parent
46f0f7fa10
commit
58d2f6f83c
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 67 KiB |
10
main.py
10
main.py
@ -8,13 +8,17 @@ import numpy as np
|
||||
|
||||
from source.cartoonize import Cartoonizer
|
||||
|
||||
|
||||
def load_source(filename: str) -> np.ndarray:
|
||||
return cv2.imread(filename)[...,::-1]
|
||||
|
||||
|
||||
def find_and_crop_face(data: np.ndarray) -> np.ndarray:
|
||||
# TODO
|
||||
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
|
||||
face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
|
||||
face = face_cascade.detectMultiScale(data_gray, 1.3, 4)
|
||||
face = max(face, key=len)
|
||||
(x, y, w, h) = face
|
||||
face = data[y:y + h, x:x + w]
|
||||
return data
|
||||
|
||||
|
||||
@ -23,7 +27,7 @@ def compare_with_anime_characters(data: np.ndarray) -> int:
|
||||
return 1
|
||||
|
||||
|
||||
def transfer_to_anime(ima: np.ndarray):
|
||||
def transfer_to_anime(img: np.ndarray):
|
||||
algo = Cartoonizer(dataroot='damo/cv_unet_person-image-cartoon_compound-models')
|
||||
return algo.cartoonize(img)
|
||||
|
||||
|
76
test.ipynb
76
test.ipynb
@ -1,76 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Number of detected faces: 1\n",
|
||||
"face0.jpg is saved\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# import required libraries\n",
|
||||
"import cv2\n",
|
||||
"\n",
|
||||
"# read the input image\n",
|
||||
"img = cv2.imread('data/UAM-Andrzej-Wójtowicz.jpg')\n",
|
||||
"\n",
|
||||
"# convert to grayscale of each frames\n",
|
||||
"gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n",
|
||||
"\n",
|
||||
"# read the haarcascade to detect the faces in an image\n",
|
||||
"face_cascade = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')\n",
|
||||
"\n",
|
||||
"# detects faces in the input image\n",
|
||||
"faces = face_cascade.detectMultiScale(gray, 1.3, 4)\n",
|
||||
"print('Number of detected faces:', len(faces))\n",
|
||||
"\n",
|
||||
"# loop over all detected faces\n",
|
||||
"if len(faces) > 0:\n",
|
||||
" for i, (x, y, w, h) in enumerate(faces):\n",
|
||||
" # To draw a rectangle in a face\n",
|
||||
" cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 2)\n",
|
||||
" face = img[y:y + h, x:x + w]\n",
|
||||
" cv2.imshow(\"Cropped Face\", face)\n",
|
||||
" cv2.imwrite(f'face{i}.jpg', face)\n",
|
||||
" print(f\"face{i}.jpg is saved\")\n",
|
||||
" \n",
|
||||
"# display the image with detected faces\n",
|
||||
"cv2.imshow(\"image\", img)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3.10.8 64-bit",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.8"
|
||||
},
|
||||
"orig_nbformat": 4,
|
||||
"vscode": {
|
||||
"interpreter": {
|
||||
"hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90"
|
||||
}
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
Loading…
Reference in New Issue
Block a user