Compare commits
No commits in common. "main" and "comparison" have entirely different histories.
main
...
comparison
1
.gitignore
vendored
@ -1,6 +1,5 @@
|
|||||||
data
|
data
|
||||||
.idea
|
.idea
|
||||||
.yoloface
|
|
||||||
|
|
||||||
# Byte-compiled / optimized / DLL files
|
# Byte-compiled / optimized / DLL files
|
||||||
__pycache__/
|
__pycache__/
|
||||||
|
40
README.md
@ -1,40 +0,0 @@
|
|||||||
# wko_anime-face-similarity
|
|
||||||
Projekt przygotowany na zajęcia z widzenia komputerowego.
|
|
||||||
|
|
||||||
Rozpoznaje twarz na zdjęciu wejściowym i dokonując transferu stylu do anime, porównuje zdjęcie ze zbiorem postaci
|
|
||||||
z anime i wskazuje podobieństwa według wybranych metryk.
|
|
||||||
|
|
||||||
## Instalacja
|
|
||||||
1. Pobranie submodułów:
|
|
||||||
```shell
|
|
||||||
$ git submodule update --init
|
|
||||||
```
|
|
||||||
2. Instalacja zależności:
|
|
||||||
* Windows/Linux
|
|
||||||
```shell
|
|
||||||
$ pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
* MacOS
|
|
||||||
```shell
|
|
||||||
$ pip install -r requirements-osx.txt
|
|
||||||
```
|
|
||||||
3. Konfiguracja DCT-Netu (anime style transfer)
|
|
||||||
```shell
|
|
||||||
$ cd DCT-Net && python download.py
|
|
||||||
```
|
|
||||||
4. Pobranie datasetu twarzy postaci z anime (MyAnimeList)
|
|
||||||
```shell
|
|
||||||
$ python scrape_data.py
|
|
||||||
```
|
|
||||||
|
|
||||||
## Uruchomienie
|
|
||||||
Na tę chwilę zdjęcie poddawane porównaniu to `UAM-Andre.jpg`
|
|
||||||
```shell
|
|
||||||
$ python main.py
|
|
||||||
```
|
|
||||||
|
|
||||||
### Walidacja
|
|
||||||
Do walidacji metryk na postawie testowego datasetu z cosplayerami (`test_set`) uruchamiamy
|
|
||||||
```shell
|
|
||||||
$ python --validate_only 1
|
|
||||||
```
|
|
@ -40,42 +40,3 @@ def euclidean_distance(data_a: np.ndarray, data_b: np.ndarray) -> float:
|
|||||||
result += (histogram_a[i] - histogram_b[i]) ** 2
|
result += (histogram_a[i] - histogram_b[i]) ** 2
|
||||||
i += 1
|
i += 1
|
||||||
return result[0] ** (1 / 2)
|
return result[0] ** (1 / 2)
|
||||||
|
|
||||||
|
|
||||||
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
|
|
||||||
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
|
|
||||||
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
|
|
||||||
|
|
||||||
|
|
||||||
class AccuracyGatherer:
|
|
||||||
all_metric_names = [
|
|
||||||
'structural-similarity',
|
|
||||||
'euclidean-distance',
|
|
||||||
'chi-square',
|
|
||||||
'correlation',
|
|
||||||
'intersection',
|
|
||||||
'bhattacharyya-distance'
|
|
||||||
]
|
|
||||||
|
|
||||||
def __init__(self, count, top_ks=(1, 3, 5)):
|
|
||||||
self.top_ks = top_ks
|
|
||||||
self.hits = {k: {metric: 0 for metric in AccuracyGatherer.all_metric_names} for k in top_ks}
|
|
||||||
self.count = count
|
|
||||||
|
|
||||||
def print(self):
|
|
||||||
for k in self.top_ks:
|
|
||||||
all_metrics = {metric: self.hits[k][metric] / self.count for metric in AccuracyGatherer.all_metric_names}
|
|
||||||
print(f'Top {k} matches results:')
|
|
||||||
[print(f'\t{key}: {value * 100}%') for key, value in all_metrics.items()]
|
|
||||||
|
|
||||||
def for_results(self, results, test_label):
|
|
||||||
top_results_all_metrics = {
|
|
||||||
k: {m: get_top_results(results, m, k) for m in AccuracyGatherer.all_metric_names} for k in self.top_ks
|
|
||||||
}
|
|
||||||
for metric_name in AccuracyGatherer.all_metric_names:
|
|
||||||
self.add_if_hit(top_results_all_metrics, test_label, metric_name)
|
|
||||||
|
|
||||||
def add_if_hit(self, results, test_label, metric_name):
|
|
||||||
for k in self.top_ks:
|
|
||||||
if any(map(lambda single_result: single_result['name'] == test_label, results[k][metric_name])):
|
|
||||||
self.hits[k][metric_name] += 1
|
|
@ -1,54 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from yoloface import face_analysis
|
|
||||||
|
|
||||||
face_detector = face_analysis()
|
|
||||||
|
|
||||||
|
|
||||||
def equalize_image(data: np.ndarray):
|
|
||||||
data_hsv = cv2.cvtColor(data, cv2.COLOR_RGB2HSV)
|
|
||||||
data_hsv[:, :, 2] = cv2.equalizeHist(data_hsv[:, :, 2])
|
|
||||||
return cv2.cvtColor(data_hsv, cv2.COLOR_HSV2RGB)
|
|
||||||
|
|
||||||
|
|
||||||
def find_face_bbox_yolo(data: np.ndarray):
|
|
||||||
_, box, conf = face_detector.face_detection(frame_arr=data, frame_status=True, model='full')
|
|
||||||
if len(box) < 1:
|
|
||||||
return None, None
|
|
||||||
return box, conf
|
|
||||||
|
|
||||||
|
|
||||||
def find_face_bbox(data: np.ndarray):
|
|
||||||
classifier_files = [
|
|
||||||
'haarcascades/haarcascade_frontalface_default.xml',
|
|
||||||
'haarcascades/haarcascade_frontalface_alt.xml',
|
|
||||||
'haarcascades/haarcascade_frontalface_alt2.xml',
|
|
||||||
'haarcascades/haarcascade_profileface.xml',
|
|
||||||
'haarcascades/haarcascade_glasses.xml',
|
|
||||||
'lbpcascade_animeface.xml',
|
|
||||||
]
|
|
||||||
data_equalized = equalize_image(data)
|
|
||||||
data_gray = cv2.cvtColor(data_equalized, cv2.COLOR_RGB2GRAY)
|
|
||||||
face_coords, conf = find_face_bbox_yolo(cv2.cvtColor(data_equalized, cv2.COLOR_RGB2BGR))
|
|
||||||
if face_coords is not None:
|
|
||||||
return face_coords[0]
|
|
||||||
|
|
||||||
for classifier in classifier_files:
|
|
||||||
face_cascade = cv2.CascadeClassifier(classifier)
|
|
||||||
face_coords = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
|
||||||
if face_coords is not None:
|
|
||||||
break
|
|
||||||
return max(face_coords, key=lambda v: v[2]*v[3])
|
|
||||||
|
|
||||||
|
|
||||||
def crop_face(data: np.ndarray, bounding_box) -> np.ndarray:
|
|
||||||
x, y, w, h = bounding_box
|
|
||||||
# Extending the boxes
|
|
||||||
factor = 0.4
|
|
||||||
x, y = round(x - factor * w), round(y - factor * h)
|
|
||||||
w, h = round(w + factor * w * 2), round(h + factor * h * 2)
|
|
||||||
y = max(y, 0)
|
|
||||||
x = max(x, 0)
|
|
||||||
|
|
||||||
face = data[y:y + h, x:x + w]
|
|
||||||
return face
|
|
12
helpers.py
@ -1,12 +0,0 @@
|
|||||||
import os
|
|
||||||
import sys
|
|
||||||
|
|
||||||
|
|
||||||
def no_stdout(func):
|
|
||||||
def wrapper(*args, **kwargs):
|
|
||||||
old_stdout = sys.stdout
|
|
||||||
sys.stdout = open(os.devnull, "w")
|
|
||||||
ret = func(*args, **kwargs)
|
|
||||||
sys.stdout = old_stdout
|
|
||||||
return ret
|
|
||||||
return wrapper
|
|
@ -1,43 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import os
|
|
||||||
from skimage.io import imread
|
|
||||||
import cv2 as cv
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
|
|
||||||
def load_source(filename: str) -> np.ndarray:
|
|
||||||
return cv.imread(filename)[..., ::-1]
|
|
||||||
|
|
||||||
|
|
||||||
def load_data(input_dir):
|
|
||||||
image_path = Path(input_dir)
|
|
||||||
file_names = os.listdir(image_path)
|
|
||||||
categories_name = []
|
|
||||||
categories_count = []
|
|
||||||
count = 0
|
|
||||||
n = file_names[0]
|
|
||||||
for name in file_names:
|
|
||||||
if name != n:
|
|
||||||
categories_count.append(count)
|
|
||||||
n = name
|
|
||||||
count = 1
|
|
||||||
else:
|
|
||||||
count += 1
|
|
||||||
if not name in categories_name:
|
|
||||||
categories_name.append(name)
|
|
||||||
categories_count.append(count)
|
|
||||||
test_img = []
|
|
||||||
labels = []
|
|
||||||
|
|
||||||
for n in file_names:
|
|
||||||
p = image_path / n
|
|
||||||
img = load_source(str(p)) # zwraca ndarry postaci xSize x ySize x colorDepth
|
|
||||||
test_img.append(img)
|
|
||||||
labels.append(n)
|
|
||||||
|
|
||||||
X = {}
|
|
||||||
X["values"] = np.array(test_img)
|
|
||||||
X["name"] = categories_name
|
|
||||||
X["names_count"] = categories_count
|
|
||||||
X["labels"] = labels
|
|
||||||
return X
|
|
136
main.py
@ -1,16 +1,9 @@
|
|||||||
import argparse
|
|
||||||
import sys
|
import sys
|
||||||
import cv2
|
import cv2
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from metrics import histogram_comparison, structural_similarity_index, euclidean_distance, AccuracyGatherer
|
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
|
||||||
|
|
||||||
from face_detect import find_face_bbox, crop_face
|
|
||||||
from helpers import no_stdout
|
|
||||||
from load_test_data import load_data, load_source
|
|
||||||
from metrics import get_top_results
|
|
||||||
from plots import plot_two_images, plot_results
|
|
||||||
|
|
||||||
# Allows imports from the style transfer submodule
|
# Allows imports from the style transfer submodule
|
||||||
sys.path.append('DCT-Net')
|
sys.path.append('DCT-Net')
|
||||||
@ -18,97 +11,50 @@ sys.path.append('DCT-Net')
|
|||||||
from source.cartoonize import Cartoonizer
|
from source.cartoonize import Cartoonizer
|
||||||
|
|
||||||
|
|
||||||
anime_transfer = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
def load_source(filename: str) -> np.ndarray:
|
||||||
|
return cv2.imread(filename)[..., ::-1]
|
||||||
|
|
||||||
|
|
||||||
def compare_with_anime_characters(source_image: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
|
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
|
||||||
all_metrics = []
|
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
|
||||||
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
|
face_cascade = cv2.CascadeClassifier(classifier_file)
|
||||||
current_result = {
|
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
||||||
'name': label,
|
face = max(face, key=len)
|
||||||
'metrics': {}
|
x, y, w, h = face
|
||||||
}
|
face = data[y:y + h, x:x + w]
|
||||||
# TODO: Use a different face detection method for anime images
|
return face
|
||||||
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
|
|
||||||
anime_face = anime_image
|
|
||||||
source_rescaled = cv2.resize(source_image, anime_face.shape[:2])
|
def plot_two_images(a: np.ndarray, b: np.ndarray):
|
||||||
if verbose:
|
plt.figure(figsize=[10, 10])
|
||||||
plot_two_images(anime_face, source_rescaled)
|
plt.subplot(121)
|
||||||
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
|
plt.imshow(a)
|
||||||
current_result['metrics']['structural-similarity'] = structural_similarity_index(source_rescaled, anime_face)
|
plt.title("A")
|
||||||
current_result['metrics']['euclidean-distance'] = euclidean_distance(source_rescaled, anime_face)
|
plt.subplot(122)
|
||||||
all_metrics.append(current_result)
|
plt.imshow(b)
|
||||||
|
plt.title("B")
|
||||||
return all_metrics
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def compare_with_anime_characters(data: np.ndarray) -> int:
|
||||||
|
# Example will be one face from anime dataset
|
||||||
|
example = load_source('data/images/Aisaka, Taiga.jpg')
|
||||||
|
# TODO: Use a different face detection method for anime images
|
||||||
|
example_face = find_and_crop_face(example, 'haarcascades/lbpcascade_animeface.xml')
|
||||||
|
data_rescaled = cv2.resize(data, example_face.shape[:2])
|
||||||
|
plot_two_images(example_face, data_rescaled)
|
||||||
|
print(histogram_comparison(data_rescaled, example_face))
|
||||||
|
print(f'structural-similarity: {structural_similarity_index(data_rescaled, example_face)}')
|
||||||
|
print(f'euclidean-distance: {euclidean_distance(data_rescaled, example_face)}')
|
||||||
|
|
||||||
|
|
||||||
@no_stdout
|
|
||||||
def transfer_to_anime(img: np.ndarray):
|
def transfer_to_anime(img: np.ndarray):
|
||||||
model_out = anime_transfer.cartoonize(img).astype(np.uint8)
|
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
||||||
return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
|
return algo.cartoonize(img).astype(np.uint8)
|
||||||
|
|
||||||
|
|
||||||
def similarity_to_anime(source_image, anime_faces_set, debug=False):
|
|
||||||
try:
|
|
||||||
source_face_bbox = find_face_bbox(source_image)
|
|
||||||
except ValueError:
|
|
||||||
return None
|
|
||||||
source_anime = transfer_to_anime(source_image)
|
|
||||||
source_face_anime = crop_face(source_anime, source_face_bbox)
|
|
||||||
|
|
||||||
if debug:
|
|
||||||
source_image_with_box = source_image.copy()
|
|
||||||
x, y, w, h = source_face_bbox
|
|
||||||
cv2.rectangle(source_image_with_box, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
|
||||||
plt.figure(figsize=[12, 4])
|
|
||||||
plt.subplot(131)
|
|
||||||
plt.imshow(source_image_with_box)
|
|
||||||
plt.subplot(132)
|
|
||||||
plt.imshow(source_anime)
|
|
||||||
plt.subplot(133)
|
|
||||||
plt.imshow(source_face_anime)
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
return compare_with_anime_characters(source_face_anime, anime_faces_set, verbose=debug)
|
|
||||||
|
|
||||||
|
|
||||||
def validate(test_set, anime_faces_set):
|
|
||||||
all_entries = len(test_set['values'])
|
|
||||||
accuracy = AccuracyGatherer(all_entries)
|
|
||||||
for test_image, test_label in zip(test_set['values'], test_set['labels']):
|
|
||||||
test_results = similarity_to_anime(test_image, anime_faces_set)
|
|
||||||
|
|
||||||
if test_results is None:
|
|
||||||
print(f"cannot find face for {test_label}")
|
|
||||||
all_entries -= 1
|
|
||||||
continue
|
|
||||||
|
|
||||||
accuracy.for_results(test_results, test_label)
|
|
||||||
|
|
||||||
accuracy.count = all_entries
|
|
||||||
accuracy.print()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('-v', '--validate_only')
|
|
||||||
args = parser.parse_args()
|
|
||||||
anime_faces_set = load_data('data/croped_anime_faces')
|
|
||||||
|
|
||||||
if args.validate_only:
|
|
||||||
print('Validating')
|
|
||||||
test_set = load_data('test_set')
|
|
||||||
validate(test_set, anime_faces_set)
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
source = load_source('test_set/Ayanokouji, Kiyotaka.jpg')
|
|
||||||
results = similarity_to_anime(source, anime_faces_set)
|
|
||||||
method = 'correlation'
|
|
||||||
top_results = get_top_results(results, count=4, metric=method)
|
|
||||||
print(top_results)
|
|
||||||
plot_results(source, transfer_to_anime(source), top_results, anime_faces_set, method)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
source = load_source('UAM-Andre.jpg')
|
||||||
|
source_anime = transfer_to_anime(source)
|
||||||
|
source_face_anime = find_and_crop_face(source_anime)
|
||||||
|
print(compare_with_anime_characters(source_face_anime))
|
||||||
|
45
plots.py
@ -1,45 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
from matplotlib import pyplot as plt, gridspec
|
|
||||||
|
|
||||||
|
|
||||||
def plot_two_images(a: np.ndarray, b: np.ndarray):
|
|
||||||
plt.figure(figsize=[10, 10])
|
|
||||||
plt.subplot(121)
|
|
||||||
plt.imshow(a)
|
|
||||||
plt.title("A")
|
|
||||||
plt.subplot(122)
|
|
||||||
plt.imshow(b)
|
|
||||||
plt.title("B")
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
def plot_results(source, source_anime, results, anime_faces_set, method):
|
|
||||||
cols = len(results)
|
|
||||||
plt.figure(figsize=[3*cols, 7])
|
|
||||||
gs = gridspec.GridSpec(2, cols)
|
|
||||||
|
|
||||||
plt.subplot(gs[0, cols // 2 - 1])
|
|
||||||
plt.imshow(source)
|
|
||||||
plt.title('Your image')
|
|
||||||
plt.axis('off')
|
|
||||||
|
|
||||||
plt.subplot(gs[0, cols // 2])
|
|
||||||
plt.imshow(source_anime)
|
|
||||||
plt.title('Your image in Anime style')
|
|
||||||
plt.axis('off')
|
|
||||||
|
|
||||||
plt.figtext(0.5, 0.525, "Predictions", ha="center", va="top", fontsize=16)
|
|
||||||
|
|
||||||
for idx, prediction in enumerate(results):
|
|
||||||
result_img = anime_faces_set['values'][anime_faces_set['labels'].index(prediction['name'])]
|
|
||||||
plt.subplot(gs[1, idx])
|
|
||||||
plt.imshow(result_img, interpolation='bicubic')
|
|
||||||
plt.title(f'{prediction["name"].partition(".")[0]}, score={str(round(prediction["score"], 4))}')
|
|
||||||
plt.axis('off')
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
|
|
||||||
plt.figtext(0.5, 0.01, f"Metric: {method}", ha="center", va="bottom", fontsize=12)
|
|
||||||
plt.subplots_adjust(wspace=0, hspace=0.1)
|
|
||||||
|
|
||||||
plt.show()
|
|
@ -1,11 +0,0 @@
|
|||||||
tensorflow-macos==2.11.0
|
|
||||||
easydict==1.10
|
|
||||||
numpy==1.23.1
|
|
||||||
modelscope==1.1.3
|
|
||||||
requests==2.28.2
|
|
||||||
beautifulsoup4==4.11.1
|
|
||||||
lxml==4.9.2
|
|
||||||
opencv-python==4.7.0.68
|
|
||||||
torch==1.13.1
|
|
||||||
matplotlib==3.6.3
|
|
||||||
scikit-image==0.19.3
|
|
@ -9,5 +9,3 @@ opencv-python==4.7.0.68
|
|||||||
torch==1.13.1
|
torch==1.13.1
|
||||||
matplotlib==3.6.3
|
matplotlib==3.6.3
|
||||||
scikit-image==0.19.3
|
scikit-image==0.19.3
|
||||||
yoloface==0.0.4
|
|
||||||
ipython==8.9.0
|
|
Before Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 69 KiB |
Before Width: | Height: | Size: 9.9 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 167 KiB |
Before Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 116 KiB |
Before Width: | Height: | Size: 112 KiB |
Before Width: | Height: | Size: 67 KiB |
Before Width: | Height: | Size: 455 KiB |
Before Width: | Height: | Size: 90 KiB |
Before Width: | Height: | Size: 187 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 56 KiB |
Before Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 97 KiB |
Before Width: | Height: | Size: 35 KiB |
Before Width: | Height: | Size: 136 KiB |
Before Width: | Height: | Size: 114 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 100 KiB |
Before Width: | Height: | Size: 243 KiB |
Before Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 114 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 108 KiB |
Before Width: | Height: | Size: 239 KiB |
Before Width: | Height: | Size: 814 KiB |
Before Width: | Height: | Size: 138 KiB |
BIN
test_set/Rem.jpg
Before Width: | Height: | Size: 145 KiB |
Before Width: | Height: | Size: 84 KiB |
Before Width: | Height: | Size: 195 KiB |
Before Width: | Height: | Size: 155 KiB |
Before Width: | Height: | Size: 7.3 KiB |
Before Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 338 KiB |
Before Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 496 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 492 KiB |
Before Width: | Height: | Size: 5.4 KiB |
Before Width: | Height: | Size: 96 KiB |
Before Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 405 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 39 KiB |
Before Width: | Height: | Size: 115 KiB |