Porównanie z całym datasetem z twarzami oraz walidacja #4

Merged
s444498 merged 3 commits from full-dataset-comparison into main 2023-02-01 11:03:06 +01:00
Showing only changes of commit e212795fab - Show all commits

30
main.py
View File

@ -37,10 +37,9 @@ def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.show()
def compare_with_anime_characters(source: np.ndarray, verbose=False) -> list[dict]:
dataset = load_data('data/images')
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
all_metrics = []
for anime_image, label in zip(dataset['values'], dataset['labels']):
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
current_result = {
'name': label,
'metrics': {}
@ -69,9 +68,32 @@ def transfer_to_anime(img: np.ndarray):
return algo.cartoonize(img).astype(np.uint8)
def validate(test_set, anime_faces_set, metric='correlation'):
all_entries = len(test_set['values'])
correct = 0
for test_image, test_label in zip(test_set['values'], test_set['labels']):
output = get_top_results(compare_with_anime_characters(test_image), metric)[0]['name']
if output == test_label:
correct += 1
accuracy = correct / all_entries
print(f'Accuracy using {metric}: {accuracy * 100}%')
return accuracy
if __name__ == '__main__':
anime_faces_set = load_data('data/images')
# Uncomment for validation (takes a while)
# test_set = load_data('test_set')
# validate(test_set, anime_faces_set, 'structural-similarity')
# validate(test_set, anime_faces_set, 'euclidean-distance')
# validate(test_set, anime_faces_set, 'chi-square')
# validate(test_set, anime_faces_set, 'correlation')
# validate(test_set, anime_faces_set, 'intersection')
# validate(test_set, anime_faces_set, 'bhattacharyya-distance')
source = load_source('UAM-Andre.jpg')
source_anime = transfer_to_anime(source)
source_face_anime = find_and_crop_face(source_anime)
results = compare_with_anime_characters(source_face_anime)
results = compare_with_anime_characters(source_face_anime, anime_faces_set)
print(get_top_results(results, count=5))