Plot results #6

Merged
s444409 merged 10 commits from pretty-results into main 2023-02-01 22:14:52 +01:00
2 changed files with 51 additions and 14 deletions
Showing only changes of commit 30d8247273 - Show all commits

20
main.py
View File

@ -2,10 +2,10 @@ import argparse
import sys import sys
import cv2 import cv2
import numpy as np import numpy as np
import matplotlib.pyplot as plt
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
from load_test_data import load_data from load_test_data import load_data
from plots import plot_two_images, plot_results
# Allows imports from the style transfer submodule # Allows imports from the style transfer submodule
sys.path.append('DCT-Net') sys.path.append('DCT-Net')
@ -27,17 +27,6 @@ def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcasca
return face return face
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]: def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
all_metrics = [] all_metrics = []
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']): for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
@ -86,7 +75,7 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-v', '--validate_only') parser.add_argument('-v', '--validate_only')
args = parser.parse_args() args = parser.parse_args()
anime_faces_set = load_data('data/images') anime_faces_set = load_data('data/images', (256, 256))
if args.validate_only: if args.validate_only:
print('Validating') print('Validating')
@ -103,4 +92,7 @@ if __name__ == '__main__':
source_anime = transfer_to_anime(source) source_anime = transfer_to_anime(source)
source_face_anime = find_and_crop_face(source_anime) source_face_anime = find_and_crop_face(source_anime)
results = compare_with_anime_characters(source_face_anime, anime_faces_set) results = compare_with_anime_characters(source_face_anime, anime_faces_set)
print(get_top_results(results, count=5)) method = 'structural-similarity'
top_results = get_top_results(results, count=4, metric=method)
print(top_results)
plot_results(source, source_anime, top_results, anime_faces_set, method)

45
plots.py Normal file
View File

@ -0,0 +1,45 @@
import numpy as np
from matplotlib import pyplot as plt, gridspec
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def plot_results(source, source_anime, results, anime_faces_set, method):
cols = len(results)
plt.figure(figsize=[3*cols, 7])
gs = gridspec.GridSpec(2, cols)
plt.subplot(gs[0, cols // 2 - 1])
plt.imshow(source)
plt.title('Your image')
plt.axis('off')
plt.subplot(gs[0, cols // 2])
plt.imshow(source_anime)
plt.title('Your image in Anime style')
plt.axis('off')
plt.figtext(0.5, 0.525, "Predictions", ha="center", va="top", fontsize=16)
for idx, prediction in enumerate(results):
result_img = anime_faces_set['values'][anime_faces_set['labels'].index(prediction['name'])]
plt.subplot(gs[1, idx])
plt.imshow(result_img, interpolation='bicubic')
plt.title(f'{prediction["name"].partition(".")[0]}, score={str(round(prediction["score"], 4))}')
plt.axis('off')
plt.tight_layout()
plt.figtext(0.5, 0.01, f"Metric: {method}", ha="center", va="bottom", fontsize=12)
plt.subplots_adjust(wspace=0, hspace=0.1)
plt.show()