Plot results #6
@ -2,10 +2,29 @@ import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def find_face_bbox(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml'):
|
||||
data_gray = cv2.cvtColor(data, cv2.COLOR_RGB2GRAY)
|
||||
face_cascade = cv2.CascadeClassifier(classifier_file)
|
||||
face_coords = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
||||
def equalize_image(data: np.ndarray):
|
||||
data_hsv = cv2.cvtColor(data, cv2.COLOR_RGB2HSV)
|
||||
data_hsv[:, :, 2] = cv2.equalizeHist(data_hsv[:, :, 2])
|
||||
return cv2.cvtColor(data_hsv, cv2.COLOR_HSV2RGB)
|
||||
|
||||
|
||||
def find_face_bbox(data: np.ndarray):
|
||||
classifier_files = [
|
||||
'haarcascades/haarcascade_frontalface_default.xml',
|
||||
'haarcascades/haarcascade_frontalface_alt.xml',
|
||||
'haarcascades/haarcascade_frontalface_alt2.xml',
|
||||
'haarcascades/haarcascade_profileface.xml',
|
||||
'haarcascades/haarcascade_glasses.xml',
|
||||
'lbpcascade_animeface.xml',
|
||||
]
|
||||
data_equalized = equalize_image(data)
|
||||
data_gray = cv2.cvtColor(data_equalized, cv2.COLOR_RGB2GRAY)
|
||||
face_coords = None
|
||||
for classifier in classifier_files:
|
||||
face_cascade = cv2.CascadeClassifier(classifier)
|
||||
face_coords = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
||||
if face_coords is not None:
|
||||
break
|
||||
return max(face_coords, key=len)
|
||||
|
||||
|
||||
|
23550
haarcascades/haarcascade_frontalface_alt2.xml
Normal file
23550
haarcascades/haarcascade_frontalface_alt2.xml
Normal file
File diff suppressed because it is too large
Load Diff
33158
haarcascades/haarcascade_glasses.xml
Normal file
33158
haarcascades/haarcascade_glasses.xml
Normal file
File diff suppressed because it is too large
Load Diff
31930
haarcascades/haarcascade_profileface.xml
Normal file
31930
haarcascades/haarcascade_profileface.xml
Normal file
File diff suppressed because it is too large
Load Diff
17
main.py
17
main.py
@ -1,6 +1,7 @@
|
||||
import argparse
|
||||
import sys
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from metrics import histogram_comparison, structural_similarity_index, euclidean_distance, AccuracyGatherer
|
||||
@ -47,13 +48,27 @@ def transfer_to_anime(img: np.ndarray):
|
||||
return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
|
||||
|
||||
|
||||
def similarity_to_anime(source_image, anime_faces_set):
|
||||
def similarity_to_anime(source_image, anime_faces_set, debug=True):
|
||||
try:
|
||||
source_face_bbox = find_face_bbox(source_image)
|
||||
except ValueError:
|
||||
return None
|
||||
source_anime = transfer_to_anime(source_image)
|
||||
source_face_anime = crop_face(source_anime, source_face_bbox)
|
||||
|
||||
if debug:
|
||||
source_image_with_box = source_image.copy()
|
||||
x, y, w, h = source_face_bbox
|
||||
cv2.rectangle(source_image_with_box, (x, y), (x + w, y + h), (255, 0, 0), 2)
|
||||
plt.figure(figsize=[12, 4])
|
||||
plt.subplot(131)
|
||||
plt.imshow(source_image_with_box)
|
||||
plt.subplot(132)
|
||||
plt.imshow(source_anime)
|
||||
plt.subplot(133)
|
||||
plt.imshow(source_face_anime)
|
||||
plt.show()
|
||||
|
||||
return compare_with_anime_characters(source_face_anime, anime_faces_set)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user