Fixes #8
15
face_detect.py
Normal file
15
face_detect.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
def find_face_bbox(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml'):
|
||||||
|
data_gray = cv2.cvtColor(data, cv2.COLOR_RGB2GRAY)
|
||||||
|
face_cascade = cv2.CascadeClassifier(classifier_file)
|
||||||
|
face_coords = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
||||||
|
return max(face_coords, key=len)
|
||||||
|
|
||||||
|
|
||||||
|
def crop_face(data: np.ndarray, bounding_box) -> np.ndarray:
|
||||||
|
x, y, w, h = bounding_box
|
||||||
|
face = data[y:y + h, x:x + w]
|
||||||
|
return face
|
12
helpers.py
Normal file
12
helpers.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
|
||||||
|
def no_stdout(func):
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
old_stdout = sys.stdout
|
||||||
|
sys.stdout = open(os.devnull, "w")
|
||||||
|
ret = func(*args, **kwargs)
|
||||||
|
sys.stdout = old_stdout
|
||||||
|
return ret
|
||||||
|
return wrapper
|
@ -5,7 +5,11 @@ import cv2 as cv
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
|
||||||
def load_data(input_dir, newSize=(64,64)):
|
def load_source(filename: str) -> np.ndarray:
|
||||||
|
return cv.imread(filename)[..., ::-1]
|
||||||
|
|
||||||
|
|
||||||
|
def load_data(input_dir):
|
||||||
image_path = Path(input_dir)
|
image_path = Path(input_dir)
|
||||||
file_names = os.listdir(image_path)
|
file_names = os.listdir(image_path)
|
||||||
categories_name = []
|
categories_name = []
|
||||||
@ -27,8 +31,7 @@ def load_data(input_dir, newSize=(64,64)):
|
|||||||
|
|
||||||
for n in file_names:
|
for n in file_names:
|
||||||
p = image_path / n
|
p = image_path / n
|
||||||
img = imread(p) # zwraca ndarry postaci xSize x ySize x colorDepth
|
img = load_source(str(p)) # zwraca ndarry postaci xSize x ySize x colorDepth
|
||||||
img = cv.resize(img, newSize, interpolation=cv.INTER_AREA) # zwraca ndarray
|
|
||||||
test_img.append(img)
|
test_img.append(img)
|
||||||
labels.append(n)
|
labels.append(n)
|
||||||
|
|
||||||
|
97
main.py
97
main.py
@ -3,8 +3,12 @@ import sys
|
|||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
|
from metrics import histogram_comparison, structural_similarity_index, euclidean_distance, AccuracyGatherer
|
||||||
from load_test_data import load_data
|
|
||||||
|
from face_detect import find_face_bbox, crop_face
|
||||||
|
from helpers import no_stdout
|
||||||
|
from load_test_data import load_data, load_source
|
||||||
|
from metrics import get_top_results
|
||||||
from plots import plot_two_images, plot_results
|
from plots import plot_two_images, plot_results
|
||||||
|
|
||||||
# Allows imports from the style transfer submodule
|
# Allows imports from the style transfer submodule
|
||||||
@ -13,21 +17,10 @@ sys.path.append('DCT-Net')
|
|||||||
from source.cartoonize import Cartoonizer
|
from source.cartoonize import Cartoonizer
|
||||||
|
|
||||||
|
|
||||||
def load_source(filename: str) -> np.ndarray:
|
anime_transfer = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
||||||
return cv2.imread(filename)[..., ::-1]
|
|
||||||
|
|
||||||
|
|
||||||
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
|
def compare_with_anime_characters(source_image: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
|
||||||
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
|
|
||||||
face_cascade = cv2.CascadeClassifier(classifier_file)
|
|
||||||
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
|
||||||
face = max(face, key=len)
|
|
||||||
x, y, w, h = face
|
|
||||||
face = data[y:y + h, x:x + w]
|
|
||||||
return face
|
|
||||||
|
|
||||||
|
|
||||||
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
|
|
||||||
all_metrics = []
|
all_metrics = []
|
||||||
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
|
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
|
||||||
current_result = {
|
current_result = {
|
||||||
@ -37,7 +30,7 @@ def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict,
|
|||||||
# TODO: Use a different face detection method for anime images
|
# TODO: Use a different face detection method for anime images
|
||||||
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
|
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
|
||||||
anime_face = anime_image
|
anime_face = anime_image
|
||||||
source_rescaled = cv2.resize(source, anime_face.shape[:2])
|
source_rescaled = cv2.resize(source_image, anime_face.shape[:2])
|
||||||
if verbose:
|
if verbose:
|
||||||
plot_two_images(anime_face, source_rescaled)
|
plot_two_images(anime_face, source_rescaled)
|
||||||
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
|
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
|
||||||
@ -48,61 +41,59 @@ def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict,
|
|||||||
return all_metrics
|
return all_metrics
|
||||||
|
|
||||||
|
|
||||||
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
|
@no_stdout
|
||||||
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
|
|
||||||
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
|
|
||||||
|
|
||||||
|
|
||||||
def transfer_to_anime(img: np.ndarray):
|
def transfer_to_anime(img: np.ndarray):
|
||||||
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
model_out = anime_transfer.cartoonize(img).astype(np.uint8)
|
||||||
model_out = algo.cartoonize(img).astype(np.uint8)
|
|
||||||
return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
|
return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
|
||||||
|
|
||||||
|
|
||||||
def validate(test_set, anime_faces_set, top_n=1):
|
def similarity_to_anime(source_image, anime_faces_set):
|
||||||
|
try:
|
||||||
|
source_face_bbox = find_face_bbox(source_image)
|
||||||
|
except ValueError:
|
||||||
|
return None
|
||||||
|
source_anime = transfer_to_anime(source_image)
|
||||||
|
source_face_anime = crop_face(source_anime, source_face_bbox)
|
||||||
|
return compare_with_anime_characters(source_face_anime, anime_faces_set)
|
||||||
|
|
||||||
|
|
||||||
|
def validate(test_set, anime_faces_set):
|
||||||
all_entries = len(test_set['values'])
|
all_entries = len(test_set['values'])
|
||||||
all_metric_names = [
|
accuracy = AccuracyGatherer(all_entries)
|
||||||
'structural-similarity',
|
|
||||||
'euclidean-distance',
|
|
||||||
'chi-square',
|
|
||||||
'correlation',
|
|
||||||
'intersection',
|
|
||||||
'bhattacharyya-distance'
|
|
||||||
]
|
|
||||||
hits_per_metric = {metric: 0 for metric in all_metric_names}
|
|
||||||
for test_image, test_label in zip(test_set['values'], test_set['labels']):
|
for test_image, test_label in zip(test_set['values'], test_set['labels']):
|
||||||
test_results = compare_with_anime_characters(test_image, anime_faces_set)
|
test_results = similarity_to_anime(test_image, anime_faces_set)
|
||||||
top_results_all_metrics = {m: get_top_results(test_results, m, top_n) for m in all_metric_names}
|
|
||||||
for metric_name in all_metric_names:
|
|
||||||
top_current_metric_results = top_results_all_metrics[metric_name]
|
|
||||||
if any(map(lambda single_result: single_result['name'] == test_label, top_current_metric_results)):
|
|
||||||
hits_per_metric[metric_name] += 1
|
|
||||||
|
|
||||||
all_metrics = {metric: hits_per_metric[metric] / all_entries for metric in all_metric_names}
|
if test_results is None:
|
||||||
print(f'Top {top_n} matches results:')
|
print(f"cannot find face for {test_label}")
|
||||||
[print(f'\t{key}: {value*100}%') for key, value in all_metrics.items()]
|
all_entries -= 1
|
||||||
return all_metrics
|
continue
|
||||||
|
|
||||||
|
accuracy.for_results(test_results, test_label)
|
||||||
|
|
||||||
|
accuracy.count = all_entries
|
||||||
|
accuracy.print()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
|
def main():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('-v', '--validate_only')
|
parser.add_argument('-v', '--validate_only')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
anime_faces_set = load_data('data/croped_anime_faces', (256, 256))
|
anime_faces_set = load_data('data/croped_anime_faces')
|
||||||
|
|
||||||
if args.validate_only:
|
if args.validate_only:
|
||||||
print('Validating')
|
print('Validating')
|
||||||
test_set = load_data('test_set')
|
test_set = load_data('test_set')
|
||||||
validate(test_set, anime_faces_set, 1)
|
validate(test_set, anime_faces_set)
|
||||||
validate(test_set, anime_faces_set, 3)
|
|
||||||
validate(test_set, anime_faces_set, 5)
|
|
||||||
exit(0)
|
exit(0)
|
||||||
|
|
||||||
source = load_source('UAM-Andre.jpg')
|
source = load_source('test_set/Ayanokouji, Kiyotaka.jpg')
|
||||||
source_anime = transfer_to_anime(source)
|
results = similarity_to_anime(source, anime_faces_set)
|
||||||
source_face_anime = find_and_crop_face(source_anime)
|
|
||||||
results = compare_with_anime_characters(source_face_anime, anime_faces_set)
|
|
||||||
method = 'structural-similarity'
|
method = 'structural-similarity'
|
||||||
top_results = get_top_results(results, count=4, metric=method)
|
top_results = get_top_results(results, count=4, metric=method)
|
||||||
print(top_results)
|
print(top_results)
|
||||||
plot_results(source, source_anime, top_results, anime_faces_set, method)
|
plot_results(source, transfer_to_anime(source), top_results, anime_faces_set, method)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
@ -40,3 +40,42 @@ def euclidean_distance(data_a: np.ndarray, data_b: np.ndarray) -> float:
|
|||||||
result += (histogram_a[i] - histogram_b[i]) ** 2
|
result += (histogram_a[i] - histogram_b[i]) ** 2
|
||||||
i += 1
|
i += 1
|
||||||
return result[0] ** (1 / 2)
|
return result[0] ** (1 / 2)
|
||||||
|
|
||||||
|
|
||||||
|
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
|
||||||
|
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
|
||||||
|
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
|
||||||
|
|
||||||
|
|
||||||
|
class AccuracyGatherer:
|
||||||
|
all_metric_names = [
|
||||||
|
'structural-similarity',
|
||||||
|
'euclidean-distance',
|
||||||
|
'chi-square',
|
||||||
|
'correlation',
|
||||||
|
'intersection',
|
||||||
|
'bhattacharyya-distance'
|
||||||
|
]
|
||||||
|
|
||||||
|
def __init__(self, count, top_ks=(1, 3, 5)):
|
||||||
|
self.top_ks = top_ks
|
||||||
|
self.hits = {k: {metric: 0 for metric in AccuracyGatherer.all_metric_names} for k in top_ks}
|
||||||
|
self.count = count
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
for k in self.top_ks:
|
||||||
|
all_metrics = {metric: self.hits[k][metric] / self.count for metric in AccuracyGatherer.all_metric_names}
|
||||||
|
print(f'Top {k} matches results:')
|
||||||
|
[print(f'\t{key}: {value * 100}%') for key, value in all_metrics.items()]
|
||||||
|
|
||||||
|
def for_results(self, results, test_label):
|
||||||
|
top_results_all_metrics = {
|
||||||
|
k: {m: get_top_results(results, m, k) for m in AccuracyGatherer.all_metric_names} for k in self.top_ks
|
||||||
|
}
|
||||||
|
for metric_name in AccuracyGatherer.all_metric_names:
|
||||||
|
self.add_if_hit(top_results_all_metrics, test_label, metric_name)
|
||||||
|
|
||||||
|
def add_if_hit(self, results, test_label, metric_name):
|
||||||
|
for k in self.top_ks:
|
||||||
|
if any(map(lambda single_result: single_result['name'] == test_label, results[k][metric_name])):
|
||||||
|
self.hits[k][metric_name] += 1
|
Loading…
Reference in New Issue
Block a user