wko_anime-face-similarity/plots.py
2023-02-01 13:16:46 +01:00

46 lines
1.3 KiB
Python

import numpy as np
from matplotlib import pyplot as plt, gridspec
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def plot_results(source, source_anime, results, anime_faces_set, method):
cols = len(results)
plt.figure(figsize=[3*cols, 7])
gs = gridspec.GridSpec(2, cols)
plt.subplot(gs[0, cols // 2 - 1])
plt.imshow(source)
plt.title('Your image')
plt.axis('off')
plt.subplot(gs[0, cols // 2])
plt.imshow(source_anime)
plt.title('Your image in Anime style')
plt.axis('off')
plt.figtext(0.5, 0.525, "Predictions", ha="center", va="top", fontsize=16)
for idx, prediction in enumerate(results):
result_img = anime_faces_set['values'][anime_faces_set['labels'].index(prediction['name'])]
plt.subplot(gs[1, idx])
plt.imshow(result_img, interpolation='bicubic')
plt.title(f'{prediction["name"].partition(".")[0]}, score={str(round(prediction["score"], 4))}')
plt.axis('off')
plt.tight_layout()
plt.figtext(0.5, 0.01, f"Metric: {method}", ha="center", va="bottom", fontsize=12)
plt.subplots_adjust(wspace=0, hspace=0.1)
plt.show()