wko_anime-face-similarity/main.py

109 lines
4.2 KiB
Python

import argparse
import sys
import cv2
import numpy as np
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
from load_test_data import load_data
from plots import plot_two_images, plot_results
# Allows imports from the style transfer submodule
sys.path.append('DCT-Net')
from source.cartoonize import Cartoonizer
def load_source(filename: str) -> np.ndarray:
return cv2.imread(filename)[..., ::-1]
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(classifier_file)
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
face = max(face, key=len)
x, y, w, h = face
face = data[y:y + h, x:x + w]
return face
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
all_metrics = []
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
current_result = {
'name': label,
'metrics': {}
}
# TODO: Use a different face detection method for anime images
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
anime_face = anime_image
source_rescaled = cv2.resize(source, anime_face.shape[:2])
if verbose:
plot_two_images(anime_face, source_rescaled)
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
current_result['metrics']['structural-similarity'] = structural_similarity_index(source_rescaled, anime_face)
current_result['metrics']['euclidean-distance'] = euclidean_distance(source_rescaled, anime_face)
all_metrics.append(current_result)
return all_metrics
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
def transfer_to_anime(img: np.ndarray):
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
model_out = algo.cartoonize(img).astype(np.uint8)
return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
def validate(test_set, anime_faces_set, metric='correlation', top_n=1):
all_entries = len(test_set['values'])
correct = 0
for test_image, test_label in zip(test_set['values'], test_set['labels']):
output = get_top_results(compare_with_anime_characters(test_image, anime_faces_set), metric, top_n)
if any(map(lambda single_result: single_result['name'] == test_label, output)):
correct += 1
accuracy = correct / all_entries
print(f'Accuracy using {metric}: {accuracy * 100}%')
return accuracy
def validate_all(test_set, anime_faces_set, metric='correlation', top_n=1):
validate(test_set, anime_faces_set, 'structural-similarity', top_n)
validate(test_set, anime_faces_set, 'euclidean-distance', top_n)
validate(test_set, anime_faces_set, 'chi-square', top_n)
validate(test_set, anime_faces_set, 'correlation', top_n)
validate(test_set, anime_faces_set, 'intersection', top_n)
validate(test_set, anime_faces_set, 'bhattacharyya-distance', top_n)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-v', '--validate_only')
args = parser.parse_args()
anime_faces_set = load_data('data/images', (256, 256))
if args.validate_only:
print('Validating')
test_set = load_data('test_set')
print('Top 1 matches results:')
validate_all(test_set, anime_faces_set, 'structural-similarity', 1)
print('Top 3 matches results:')
validate_all(test_set, anime_faces_set, 'structural-similarity', 3)
print('Top 5 matches results:')
validate_all(test_set, anime_faces_set, 'structural-similarity', 5)
exit(0)
source = load_source('UAM-Andre.jpg')
source_anime = transfer_to_anime(source)
source_face_anime = find_and_crop_face(source_anime)
results = compare_with_anime_characters(source_face_anime, anime_faces_set)
method = 'structural-similarity'
top_results = get_top_results(results, count=4, metric=method)
print(top_results)
plot_results(source, source_anime, top_results, anime_faces_set, method)