test
This commit is contained in:
parent
464857d8dd
commit
827d74893a
193
zad9.py
Normal file
193
zad9.py
Normal file
@ -0,0 +1,193 @@
|
||||
import itertools
|
||||
import lzma
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.utils.data import IterableDataset, DataLoader
|
||||
from torchtext.vocab import build_vocab_from_iterator
|
||||
|
||||
|
||||
def clean_line(line):
|
||||
# Preprocessing
|
||||
separated = line.split('\t')
|
||||
prefix = separated[6].replace(r'\n', ' ')
|
||||
suffix = separated[7].replace(r'\n', ' ')
|
||||
return prefix + ' ' + suffix
|
||||
|
||||
|
||||
def get_words_from_line(line):
|
||||
line = clean_line(line)
|
||||
for word in line.split():
|
||||
yield word
|
||||
|
||||
|
||||
def get_word_lines_from_file(file_name):
|
||||
with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:
|
||||
for line in fid:
|
||||
yield get_words_from_line(line)
|
||||
|
||||
|
||||
def n_look_ahead_iterator(n, gen):
|
||||
prevs = [None for _ in range(n)]
|
||||
for item in gen:
|
||||
if prevs[-1] is not None:
|
||||
ngram = prevs[::-1]
|
||||
ngram.append(item)
|
||||
yield np.asarray(ngram)
|
||||
prevs.insert(0, item)
|
||||
prevs = prevs[:n - 1]
|
||||
|
||||
|
||||
class Ngrams(IterableDataset):
|
||||
def __init__(self, text_file: str, context_size: int, vocabulary_size: int):
|
||||
self.vocab = build_vocab_from_iterator(
|
||||
get_word_lines_from_file(text_file),
|
||||
max_tokens=vocabulary_size,
|
||||
specials=['<unk>']
|
||||
)
|
||||
self.vocab.set_default_index(self.vocab['<unk>'])
|
||||
self.vocabulary_size = vocabulary_size
|
||||
self.text_file = text_file
|
||||
self.ngram_size = context_size + 1
|
||||
|
||||
def __iter__(self):
|
||||
return n_look_ahead_iterator(
|
||||
self.ngram_size,
|
||||
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))
|
||||
)
|
||||
|
||||
|
||||
class NgramWithBagLM(nn.Module):
|
||||
def __init__(self, smaller_context_size, context_size, embedding_size, vocabulary_size, hidden_size):
|
||||
super().__init__()
|
||||
self.smaller_context_size = smaller_context_size
|
||||
self.context_size = context_size
|
||||
self.embedding_size = embedding_size
|
||||
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.bag_embedding = nn.Embedding(vocabulary_size, embedding_size)
|
||||
self.lin1 = nn.Linear((smaller_context_size + 1) * embedding_size, hidden_size)
|
||||
self.rel = nn.ReLU()
|
||||
self.lin2 = nn.Linear(hidden_size, vocabulary_size)
|
||||
self.sm = nn.Softmax(dim=1)
|
||||
|
||||
def forward(self, words):
|
||||
smaller_context_embed = [
|
||||
self.embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size, self.context_size)
|
||||
]
|
||||
smaller_context_embed = torch.cat(smaller_context_embed, dim=-1)
|
||||
bag_embed = [
|
||||
self.bag_embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size)
|
||||
]
|
||||
bag_embed = torch.mean(torch.stack(bag_embed), dim=0)
|
||||
x = torch.cat((bag_embed, smaller_context_embed), dim=-1)
|
||||
|
||||
x = self.lin1(x)
|
||||
x = self.rel(x)
|
||||
x = self.lin2(x)
|
||||
return self.sm(x)
|
||||
|
||||
|
||||
def train_model():
|
||||
model = NgramWithBagLM(
|
||||
smaller_context,
|
||||
context_size,
|
||||
embed_size,
|
||||
vocab_size,
|
||||
hidden_size
|
||||
).to(device)
|
||||
|
||||
data = DataLoader(train_dataset, batch_size=batch_size)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
|
||||
criterion = torch.nn.NLLLoss()
|
||||
|
||||
model.train()
|
||||
|
||||
step = 0
|
||||
for batch in data:
|
||||
print(batch.shape)
|
||||
# x = batch[:, :context_size]
|
||||
# y = batch[:, context_size]
|
||||
x = batch
|
||||
y = batch[:, left_ctx:left_ctx + 1]
|
||||
print(x.shape)
|
||||
print(y.shape)
|
||||
x = x.to(device)
|
||||
y = y.type(torch.LongTensor)
|
||||
y = y.to(device)
|
||||
optimizer.zero_grad()
|
||||
ypredicted = model(x)
|
||||
loss = criterion(torch.log(ypredicted), y)
|
||||
if torch.isnan(loss):
|
||||
raise Exception("loss is nan")
|
||||
if step % 1000 == 0:
|
||||
print(step, loss)
|
||||
step += 1
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 5)
|
||||
optimizer.step()
|
||||
|
||||
# cond?
|
||||
torch.save(model.state_dict(), path_to_model)
|
||||
|
||||
|
||||
def prediction(model, words: list, top=500) -> str:
|
||||
words_tensor = [train_dataset.vocab.forward([word]) for word in words]
|
||||
ixs = torch.tensor(words_tensor).view(-1).to(device)
|
||||
out = model(ixs.view(1, -1))
|
||||
top = torch.topk(out[0], top)
|
||||
top_indices = top.indices.tolist()
|
||||
top_probs = top.values.tolist()
|
||||
top_words = train_dataset.vocab.lookup_tokens(top_indices)
|
||||
zipped = list(zip(top_words, top_probs))
|
||||
for index, element in enumerate(zipped):
|
||||
unk = None
|
||||
if '<unk>' in element:
|
||||
unk = zipped.pop(index)
|
||||
zipped.append(('', unk[1]))
|
||||
break
|
||||
if unk is None:
|
||||
zipped[-1] = ('', zipped[-1][1])
|
||||
return ' '.join([f'{x[0]}:{x[1]}' for x in zipped])
|
||||
|
||||
|
||||
device = 'cuda'
|
||||
vocab_size = 250
|
||||
#context_size = 40
|
||||
left_ctx = 20
|
||||
right_ctx = 20
|
||||
#smaller_context = 8
|
||||
smaller_left_ctx = 5
|
||||
smaller_right_ctx = 3
|
||||
embed_size = 20
|
||||
hidden_size = 10
|
||||
batch_size = 4000
|
||||
lr = 0.0001
|
||||
path_to_train = 'train/in.tsv.xz'
|
||||
path_to_model = 'model3.bin'
|
||||
|
||||
train_dataset = Ngrams(path_to_train, left_ctx + right_ctx, vocab_size)
|
||||
|
||||
|
||||
train_model()
|
||||
model = NgramWithBagLM(
|
||||
smaller_context,
|
||||
context_size,
|
||||
embed_size,
|
||||
vocab_size,
|
||||
hidden_size
|
||||
).to(device)
|
||||
|
||||
model.load_state_dict(torch.load(path_to_model))
|
||||
model.eval()
|
||||
|
||||
folder_name = 'dev-0'
|
||||
top = 500
|
||||
print(f'Creating outputs in {folder_name}')
|
||||
with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid:
|
||||
with open(f'{folder_name}/out-top={top}.tsv', 'w', encoding='utf-8', newline='\n') as f:
|
||||
for line in fid:
|
||||
separated = line.split('\t')
|
||||
prefix = separated[6].replace(r'\n', ' ').split()[-context_size:]
|
||||
output_line = prediction(model, prefix, top)
|
||||
f.write(output_line + '\n')
|
Loading…
Reference in New Issue
Block a user