This commit is contained in:
Krystian Wasilewski 2023-05-29 18:44:20 +02:00
parent 464857d8dd
commit 827d74893a

193
zad9.py Normal file
View File

@ -0,0 +1,193 @@
import itertools
import lzma
import numpy as np
import torch
from torch import nn
from torch.utils.data import IterableDataset, DataLoader
from torchtext.vocab import build_vocab_from_iterator
def clean_line(line):
# Preprocessing
separated = line.split('\t')
prefix = separated[6].replace(r'\n', ' ')
suffix = separated[7].replace(r'\n', ' ')
return prefix + ' ' + suffix
def get_words_from_line(line):
line = clean_line(line)
for word in line.split():
yield word
def get_word_lines_from_file(file_name):
with lzma.open(file_name, mode='rt', encoding='utf-8') as fid:
for line in fid:
yield get_words_from_line(line)
def n_look_ahead_iterator(n, gen):
prevs = [None for _ in range(n)]
for item in gen:
if prevs[-1] is not None:
ngram = prevs[::-1]
ngram.append(item)
yield np.asarray(ngram)
prevs.insert(0, item)
prevs = prevs[:n - 1]
class Ngrams(IterableDataset):
def __init__(self, text_file: str, context_size: int, vocabulary_size: int):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens=vocabulary_size,
specials=['<unk>']
)
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
self.ngram_size = context_size + 1
def __iter__(self):
return n_look_ahead_iterator(
self.ngram_size,
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file)))
)
class NgramWithBagLM(nn.Module):
def __init__(self, smaller_context_size, context_size, embedding_size, vocabulary_size, hidden_size):
super().__init__()
self.smaller_context_size = smaller_context_size
self.context_size = context_size
self.embedding_size = embedding_size
self.embedding = nn.Embedding(vocabulary_size, embedding_size)
self.bag_embedding = nn.Embedding(vocabulary_size, embedding_size)
self.lin1 = nn.Linear((smaller_context_size + 1) * embedding_size, hidden_size)
self.rel = nn.ReLU()
self.lin2 = nn.Linear(hidden_size, vocabulary_size)
self.sm = nn.Softmax(dim=1)
def forward(self, words):
smaller_context_embed = [
self.embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size, self.context_size)
]
smaller_context_embed = torch.cat(smaller_context_embed, dim=-1)
bag_embed = [
self.bag_embedding(words[:, i]) for i in range(self.context_size - self.smaller_context_size)
]
bag_embed = torch.mean(torch.stack(bag_embed), dim=0)
x = torch.cat((bag_embed, smaller_context_embed), dim=-1)
x = self.lin1(x)
x = self.rel(x)
x = self.lin2(x)
return self.sm(x)
def train_model():
model = NgramWithBagLM(
smaller_context,
context_size,
embed_size,
vocab_size,
hidden_size
).to(device)
data = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for batch in data:
print(batch.shape)
# x = batch[:, :context_size]
# y = batch[:, context_size]
x = batch
y = batch[:, left_ctx:left_ctx + 1]
print(x.shape)
print(y.shape)
x = x.to(device)
y = y.type(torch.LongTensor)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if torch.isnan(loss):
raise Exception("loss is nan")
if step % 1000 == 0:
print(step, loss)
step += 1
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
# cond?
torch.save(model.state_dict(), path_to_model)
def prediction(model, words: list, top=500) -> str:
words_tensor = [train_dataset.vocab.forward([word]) for word in words]
ixs = torch.tensor(words_tensor).view(-1).to(device)
out = model(ixs.view(1, -1))
top = torch.topk(out[0], top)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = train_dataset.vocab.lookup_tokens(top_indices)
zipped = list(zip(top_words, top_probs))
for index, element in enumerate(zipped):
unk = None
if '<unk>' in element:
unk = zipped.pop(index)
zipped.append(('', unk[1]))
break
if unk is None:
zipped[-1] = ('', zipped[-1][1])
return ' '.join([f'{x[0]}:{x[1]}' for x in zipped])
device = 'cuda'
vocab_size = 250
#context_size = 40
left_ctx = 20
right_ctx = 20
#smaller_context = 8
smaller_left_ctx = 5
smaller_right_ctx = 3
embed_size = 20
hidden_size = 10
batch_size = 4000
lr = 0.0001
path_to_train = 'train/in.tsv.xz'
path_to_model = 'model3.bin'
train_dataset = Ngrams(path_to_train, left_ctx + right_ctx, vocab_size)
train_model()
model = NgramWithBagLM(
smaller_context,
context_size,
embed_size,
vocab_size,
hidden_size
).to(device)
model.load_state_dict(torch.load(path_to_model))
model.eval()
folder_name = 'dev-0'
top = 500
print(f'Creating outputs in {folder_name}')
with lzma.open(f'{folder_name}/in.tsv.xz', mode='rt', encoding='utf-8') as fid:
with open(f'{folder_name}/out-top={top}.tsv', 'w', encoding='utf-8', newline='\n') as f:
for line in fid:
separated = line.split('\t')
prefix = separated[6].replace(r'\n', ' ').split()[-context_size:]
output_line = prediction(model, prefix, top)
f.write(output_line + '\n')