mlflow
This commit is contained in:
parent
f4d0ad9c06
commit
8eca92baef
@ -9,8 +9,7 @@ RUN pip3 install matplotlib
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install kaggle
|
||||
RUN pip3 install torch
|
||||
RUN pip3 install sacred
|
||||
RUN pip3 install pymongo
|
||||
RUN pip3 install mlflow
|
||||
|
||||
RUN mkdir /.kaggle && chmod o+w /.kaggle
|
||||
|
||||
|
12
MLproject
Normal file
12
MLproject
Normal file
@ -0,0 +1,12 @@
|
||||
name: s444501
|
||||
|
||||
docker_env:
|
||||
image: zadanie
|
||||
|
||||
entry_points:
|
||||
main:
|
||||
parameters:
|
||||
epochs: {type: float, default: 100}
|
||||
command: "python biblioteki_ml.py {epochs}"
|
||||
eval:
|
||||
command: "python eval.py"
|
@ -1,11 +1,23 @@
|
||||
import sys
|
||||
from urllib.parse import urlparse
|
||||
import numpy as np
|
||||
import mlflow
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from sacred.observers import FileStorageObserver, MongoObserver
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
import pandas as pd
|
||||
from sacred import Experiment
|
||||
|
||||
# MLFlow 1
|
||||
mlflow.set_experiment("s444501")
|
||||
|
||||
|
||||
# Parametry z konsoli
|
||||
try:
|
||||
epochs = int(sys.argv[1])
|
||||
except:
|
||||
print('No epoch number passed. Defaulting to 100')
|
||||
epochs = 100
|
||||
|
||||
|
||||
# Model
|
||||
@ -23,32 +35,7 @@ class Model(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
# Sacred
|
||||
ex = Experiment()
|
||||
ex.observers.append(FileStorageObserver('my_runs'))
|
||||
# Parametry treningu -> my_runs/X/config.json
|
||||
# Plik z modelem jako artefakt -> my_runs/X/model.pkl
|
||||
# Kod źródłowy -> my_runs/_sources/biblioteki_ml_XXXXXXXXXXX.py
|
||||
# Wyniki (ostateczny loss) -> my_runs/X/metrics.json
|
||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017',
|
||||
db_name='sacred'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
epochs = 100
|
||||
|
||||
|
||||
@ex.automain
|
||||
def train_main(epochs, _run):
|
||||
# Parametry z konsoli
|
||||
# try:
|
||||
# epochs = int(sys.argv[1])
|
||||
# except:
|
||||
# print('No epoch number passed. Defaulting to 100')
|
||||
# epochs = 100
|
||||
|
||||
|
||||
def train_main(epochs, run):
|
||||
# Ładowanie danych
|
||||
train_set = pd.read_csv('d_train.csv', encoding='latin-1')
|
||||
train_set = train_set[['Rating', 'Branch', 'Reviewer_Location']]
|
||||
@ -103,7 +90,6 @@ def train_main(epochs, _run):
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
_run.log_scalar("training.final_loss", losses[-1].item()) # Ostateczny loss
|
||||
|
||||
|
||||
# Testy
|
||||
@ -115,13 +101,36 @@ def train_main(epochs, _run):
|
||||
|
||||
df = pd.DataFrame({'Testing Y': y_test, 'Predicted Y': preds})
|
||||
df['Correct'] = [1 if corr == pred else 0 for corr, pred in zip(df['Testing Y'], df['Predicted Y'])]
|
||||
print(f"{df['Correct'].sum() / len(df)} percent of predictions correct")
|
||||
correct = df['Correct'].sum() / len(df)
|
||||
print(f"{correct} percent of predictions correct")
|
||||
|
||||
|
||||
# Logi
|
||||
mlflow.log_param("epochs", epochs)
|
||||
mlflow.log_metric("final_loss", losses[-1].item())
|
||||
mlflow.log_metric("accuracy", correct)
|
||||
|
||||
signature = mlflow.models.signature.infer_signature(X_train.numpy(), np.array(preds))
|
||||
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
|
||||
|
||||
if tracking_url_type_store != "file":
|
||||
mlflow.pytorch.log_model(model,
|
||||
's444501',
|
||||
registered_model_name='s444501',
|
||||
signature=signature,
|
||||
input_example=X_test.numpy())
|
||||
else:
|
||||
mlflow.pytorch.log_model(model,
|
||||
's444501',
|
||||
signature=signature,
|
||||
input_example=X_test.numpy())
|
||||
|
||||
# Zapis do pliku
|
||||
df.to_csv('neural_network_prediction_results.csv', index=False)
|
||||
torch.save(model, "model.pkl")
|
||||
|
||||
# Zapis Sacred
|
||||
ex.add_artifact("model.pkl")
|
||||
ex.add_artifact("neural_network_prediction_results.csv")
|
||||
|
||||
with mlflow.start_run() as run:
|
||||
print(f"MLflow run experiment_id: {run.info.experiment_id}")
|
||||
print(f"MLflow run artifact_uri: {run.info.artifact_uri}")
|
||||
train_main(epochs, run)
|
||||
|
@ -24,14 +24,14 @@ pipeline {
|
||||
stage('Train model') {
|
||||
steps {
|
||||
withEnv(["EPOCH=${params.EPOCH}"]) {
|
||||
sh 'python biblioteki_ml.py with "epochs=$EPOCH"'
|
||||
sh 'python biblioteki_ml.py $EPOCH'
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Archive artifacts') {
|
||||
steps {
|
||||
archiveArtifacts artifacts: 'model.pkl, neural_network_prediction_results.csv'
|
||||
archiveArtifacts artifacts: 'my_runs/**'
|
||||
archiveArtifacts artifacts: 'mlruns/**'
|
||||
}
|
||||
}
|
||||
stage ('Model - evaluation') {
|
||||
|
Loading…
Reference in New Issue
Block a user