97 lines
2.7 KiB
Python
97 lines
2.7 KiB
Python
|
#!/usr/bin/python
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
import pandas as pd
|
||
|
from sklearn import preprocessing
|
||
|
import numpy as np
|
||
|
from torch.autograd import Variable
|
||
|
from sklearn.metrics import accuracy_score, f1_score
|
||
|
from csv import DictWriter
|
||
|
import torch.nn.functional as F
|
||
|
import sys
|
||
|
import os
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, input_dim):
|
||
|
super(Model, self).__init__()
|
||
|
self.layer1 = nn.Linear(input_dim, 100)
|
||
|
self.layer2 = nn.Linear(100, 60)
|
||
|
self.layer3 = nn.Linear(60, 5)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.relu(self.layer1(x))
|
||
|
x = F.relu(self.layer2(x))
|
||
|
x = F.softmax(self.layer3(x)) # To check with the loss function
|
||
|
return x
|
||
|
|
||
|
|
||
|
def prepare_labels_features(dataset):
|
||
|
""" Label make column"""
|
||
|
dataset = dataset.dropna()
|
||
|
le = preprocessing.LabelEncoder()
|
||
|
mark_column = np.array(dataset[:]['0'])
|
||
|
le.fit(mark_column)
|
||
|
|
||
|
print(list(le.classes_))
|
||
|
lab = le.transform(mark_column)
|
||
|
feat = dataset.drop(['0'], axis=1).to_numpy()
|
||
|
|
||
|
mm_scaler = preprocessing.StandardScaler()
|
||
|
feat = mm_scaler.fit_transform(feat)
|
||
|
|
||
|
return lab, feat
|
||
|
|
||
|
|
||
|
def print_metrics(test_labels, predictions):
|
||
|
# take column with max predicted score
|
||
|
f1 = f1_score(labels_test, np.argmax(predictions, axis=1), average='weighted')
|
||
|
accuracy = accuracy_score(test_labels, np.argmax(predictions, axis=1))
|
||
|
print(f"The F1_score metric is: {f1}")
|
||
|
print(f"The accuracy metric is: {accuracy}")
|
||
|
|
||
|
if len(sys.argv) != 2:
|
||
|
return
|
||
|
|
||
|
|
||
|
build_number = sys.argv[1]
|
||
|
print(f"Build number: {build_number}")
|
||
|
field_names = ['BUILD_NUMBER', 'F1', 'ACCURACY']
|
||
|
dict = {'BUILD_NUMBER': build_number, 'F1': f1, 'ACCURACY': accuracy }
|
||
|
filename = "./metrics.csv"
|
||
|
file_exists = os.path.isfile(filename)
|
||
|
|
||
|
with open(filename, 'a') as metrics_file:
|
||
|
dictwriter_object = DictWriter(metrics_file, fieldnames=field_names)
|
||
|
if not file_exists:
|
||
|
dictwriter_object.writeheader()
|
||
|
dictwriter_object.writerow(dict)
|
||
|
metrics_file.close()
|
||
|
|
||
|
|
||
|
"""
|
||
|
Load model and data
|
||
|
"""
|
||
|
model = torch.load("CarPrices_pytorch_model.pkl")
|
||
|
cars_dev = pd.read_csv('data/Car_Prices_Poland_Kaggle_dev.csv', usecols=[1, 4, 5, 6, 10], sep=',', names=[str(i) for i in range(5)])
|
||
|
|
||
|
|
||
|
"""
|
||
|
Prepare data
|
||
|
"""
|
||
|
cars_dev = cars_dev.loc[(cars_dev['0'] == 'audi') | (cars_dev['0'] == 'bmw') | (cars_dev['0'] == 'ford') | (cars_dev['0'] == 'opel') | (cars_dev['0'] == 'volkswagen')]
|
||
|
labels_test, features_test = prepare_labels_features(cars_dev)
|
||
|
x_test = Variable(torch.from_numpy(features_test)).float()
|
||
|
|
||
|
"""
|
||
|
Make predictions
|
||
|
"""
|
||
|
pred = model(x_test)
|
||
|
pred = pred.detach().numpy()
|
||
|
print_metrics(labels_test, pred)
|
||
|
|
||
|
|
||
|
|