WKO_PROJEKT/yolov5/segment/tutorial.ipynb
2023-02-01 23:02:19 +01:00

42 KiB
Vendored
Raw Permalink Blame History


Run on Gradient Open In Colab Open In Kaggle

This YOLOv5 🚀 notebook by Ultralytics presents simple train, validate and predict examples to help start your AI adventure.
See GitHub for community support or contact us for professional support.

Setup

Clone GitHub repository, install dependencies and check PyTorch and GPU.

!git clone https://github.com/ultralytics/yolov5  # clone
%cd yolov5
%pip install -qr requirements.txt  # install

import torch
import utils
display = utils.notebook_init()  # checks
YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)
Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)

1. Predict

segment/predict.py runs YOLOv5 instance segmentation inference on a variety of sources, downloading models automatically from the latest YOLOv5 release, and saving results to runs/predict. Example inference sources are:

python segment/predict.py --source 0  # webcam
                             img.jpg  # image 
                             vid.mp4  # video
                             screen  # screenshot
                             path/  # directory
                             'path/*.jpg'  # glob
                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
!python segment/predict.py --weights yolov5s-seg.pt --img 640 --conf 0.25 --source data/images
#display.Image(filename='runs/predict-seg/exp/zidane.jpg', width=600)
segment/predict: weights=['yolov5s-seg.pt'], source=data/images, data=data/coco128.yaml, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/predict-seg, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1, retina_masks=False
YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)

Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt to yolov5s-seg.pt...
100% 14.9M/14.9M [00:01<00:00, 12.0MB/s]

Fusing layers... 
YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs
image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, 18.2ms
image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, 13.4ms
Speed: 0.5ms pre-process, 15.8ms inference, 18.5ms NMS per image at shape (1, 3, 640, 640)
Results saved to runs/predict-seg/exp

        

2. Validate

Validate a model's accuracy on the COCO dataset's val or test splits. Models are downloaded automatically from the latest YOLOv5 release. To show results by class use the --verbose flag.

# Download COCO val
!bash data/scripts/get_coco.sh --val --segments  # download (780M - 5000 images)
Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/coco2017labels-segments.zip  ...
Downloading http://images.cocodataset.org/zips/val2017.zip ...
######################################################################## 100.0%
######################################################################## 100.0%
# Validate YOLOv5s-seg on COCO val
!python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 --half
segment/val: data=/content/yolov5/data/coco.yaml, weights=['yolov5s-seg.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.6, max_det=300, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=False, project=runs/val-seg, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)

Fusing layers... 
YOLOv5s-seg summary: 224 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs
val: Scanning /content/datasets/coco/val2017... 4952 images, 48 backgrounds, 0 corrupt: 100% 5000/5000 [00:03<00:00, 1361.31it/s]
val: New cache created: /content/datasets/coco/val2017.cache
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 157/157 [01:54<00:00,  1.37it/s]
                   all       5000      36335      0.673      0.517      0.566      0.373      0.672       0.49      0.532      0.319
Speed: 0.6ms pre-process, 4.4ms inference, 2.9ms NMS per image at shape (32, 3, 640, 640)
Results saved to runs/val-seg/exp

3. Train

Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package

Train a YOLOv5s-seg model on the COCO128 dataset with --data coco128-seg.yaml, starting from pretrained --weights yolov5s-seg.pt, or from randomly initialized --weights '' --cfg yolov5s-seg.yaml.

A Mosaic Dataloader is used for training which combines 4 images into 1 mosaic.

Train on Custom Data with Roboflow 🌟 NEW

Roboflow enables you to easily organize, label, and prepare a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the roboflow pip package.

Label images lightning fast (including with model-assisted labeling)
#@title Select YOLOv5 🚀 logger {run: 'auto'}
logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']

if logger == 'TensorBoard':
  %load_ext tensorboard
  %tensorboard --logdir runs/train-seg
elif logger == 'Comet':
  %pip install -q comet_ml
  import comet_ml; comet_ml.init()
elif logger == 'ClearML':
  import clearml; clearml.browser_login()
# Train YOLOv5s on COCO128 for 3 epochs
!python segment/train.py --img 640 --batch 16 --epochs 3 --data coco128-seg.yaml --weights yolov5s-seg.pt --cache
segment/train: weights=yolov5s-seg.pt, cfg=, data=coco128-seg.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train-seg, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, mask_ratio=4, no_overlap=False
github: up to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5 🚀 v7.0-2-gc9d47ae Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
TensorBoard: Start with 'tensorboard --logdir runs/train-seg', view at http://localhost:6006/

Dataset not found ⚠️, missing paths ['/content/datasets/coco128-seg/images/train2017']
Downloading https://ultralytics.com/assets/coco128-seg.zip to coco128-seg.zip...
100% 6.79M/6.79M [00:01<00:00, 6.73MB/s]
Dataset download success ✅ (1.9s), saved to /content/datasets

                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1    615133  models.yolo.Segment                     [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], 32, 128, [128, 256, 512]]
Model summary: 225 layers, 7621277 parameters, 7621277 gradients, 26.6 GFLOPs

Transferred 367/367 items from yolov5s-seg.pt
AMP: checks passed ✅
optimizer: SGD(lr=0.01) with parameter groups 60 weight(decay=0.0), 63 weight(decay=0.0005), 63 bias
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
train: Scanning /content/datasets/coco128-seg/labels/train2017... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<00:00, 1389.59it/s]
train: New cache created: /content/datasets/coco128-seg/labels/train2017.cache
train: Caching images (0.1GB ram): 100% 128/128 [00:00<00:00, 238.86it/s]
val: Scanning /content/datasets/coco128-seg/labels/train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100% 128/128 [00:00<?, ?it/s]
val: Caching images (0.1GB ram): 100% 128/128 [00:01<00:00, 98.90it/s]

AutoAnchor: 4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Plotting labels to runs/train-seg/exp/labels.jpg... 
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to runs/train-seg/exp
Starting training for 3 epochs...

      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size
        0/2      4.92G     0.0417    0.04646    0.06066    0.02126        192        640: 100% 8/8 [00:08<00:00,  1.10s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.81it/s]
                   all        128        929      0.737      0.649      0.715      0.492      0.719      0.617      0.658      0.408

      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size
        1/2      6.29G    0.04157    0.04503    0.05772    0.01777        208        640: 100% 8/8 [00:09<00:00,  1.21s/it]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.87it/s]
                   all        128        929      0.756      0.674      0.738      0.506      0.725       0.64       0.68      0.422

      Epoch    GPU_mem   box_loss   seg_loss   obj_loss   cls_loss  Instances       Size
        2/2      6.29G     0.0425    0.04793    0.06784    0.01863        161        640: 100% 8/8 [00:03<00:00,  2.02it/s]
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:02<00:00,  1.88it/s]
                   all        128        929      0.736      0.694      0.747      0.522      0.769      0.622      0.683      0.427

3 epochs completed in 0.009 hours.
Optimizer stripped from runs/train-seg/exp/weights/last.pt, 15.6MB
Optimizer stripped from runs/train-seg/exp/weights/best.pt, 15.6MB

Validating runs/train-seg/exp/weights/best.pt...
Fusing layers... 
Model summary: 165 layers, 7611485 parameters, 0 gradients, 26.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100% 4/4 [00:06<00:00,  1.59s/it]
                   all        128        929      0.738      0.694      0.746      0.522      0.759      0.625      0.682      0.426
                person        128        254      0.845      0.756      0.836       0.55      0.861      0.669      0.759      0.407
               bicycle        128          6      0.475      0.333      0.549      0.341      0.711      0.333      0.526      0.322
                   car        128         46      0.612      0.565      0.539      0.257      0.555      0.435      0.477      0.171
            motorcycle        128          5       0.73        0.8      0.752      0.571      0.747        0.8      0.752       0.42
              airplane        128          6          1      0.943      0.995      0.732       0.92      0.833      0.839      0.555
                   bus        128          7      0.677      0.714      0.722      0.653      0.711      0.714      0.722      0.593
                 train        128          3          1      0.951      0.995      0.551          1      0.884      0.995      0.781
                 truck        128         12      0.555      0.417      0.457      0.285      0.624      0.417      0.397      0.277
                  boat        128          6      0.624        0.5      0.584      0.186          1      0.326      0.412      0.133
         traffic light        128         14      0.513      0.302      0.411      0.247      0.435      0.214      0.376      0.251
             stop sign        128          2      0.824          1      0.995      0.796      0.906          1      0.995      0.747
                 bench        128          9       0.75      0.667      0.763      0.367      0.724      0.585      0.698      0.209
                  bird        128         16      0.961          1      0.995      0.686      0.918      0.938       0.91      0.525
                   cat        128          4      0.771      0.857      0.945      0.752       0.76        0.8      0.945      0.728
                   dog        128          9      0.987      0.778      0.963      0.681          1      0.705       0.89      0.574
                 horse        128          2      0.703          1      0.995      0.697      0.759          1      0.995      0.249
              elephant        128         17      0.916      0.882       0.93      0.691      0.811      0.765      0.829      0.537
                  bear        128          1      0.664          1      0.995      0.995      0.701          1      0.995      0.895
                 zebra        128          4      0.864          1      0.995      0.921      0.879          1      0.995      0.804
               giraffe        128          9      0.883      0.889       0.94      0.683      0.845      0.778       0.78      0.463
              backpack        128          6          1       0.59      0.701      0.372          1      0.474       0.52      0.252
              umbrella        128         18      0.654      0.839      0.887       0.52      0.517      0.556      0.427      0.229
               handbag        128         19       0.54      0.211      0.408      0.221      0.796      0.206      0.396      0.196
                   tie        128          7      0.864      0.857      0.857      0.577      0.925      0.857      0.857      0.534
              suitcase        128          4      0.716          1      0.945      0.647      0.767          1      0.945      0.634
               frisbee        128          5      0.708        0.8      0.761      0.643      0.737        0.8      0.761      0.501
                  skis        128          1      0.691          1      0.995      0.796      0.761          1      0.995      0.199
             snowboard        128          7      0.918      0.857      0.904      0.604       0.32      0.286      0.235      0.137
           sports ball        128          6      0.902      0.667      0.701      0.466      0.727        0.5      0.497      0.471
                  kite        128         10      0.586        0.4      0.511      0.231      0.663      0.394      0.417      0.139
          baseball bat        128          4      0.359        0.5      0.401      0.169      0.631        0.5      0.526      0.133
        baseball glove        128          7          1      0.519       0.58      0.327      0.687      0.286      0.455      0.328
            skateboard        128          5      0.729        0.8      0.862      0.631      0.599        0.6      0.604      0.379
         tennis racket        128          7       0.57      0.714      0.645      0.448      0.608      0.714      0.645      0.412
                bottle        128         18      0.469      0.393      0.537      0.357      0.661      0.389      0.543      0.349
            wine glass        128         16      0.677      0.938      0.866      0.441       0.53      0.625       0.67      0.334
                   cup        128         36      0.777      0.722      0.812      0.466      0.725      0.583      0.762      0.467
                  fork        128          6      0.948      0.333      0.425       0.27      0.527      0.167       0.18      0.102
                 knife        128         16      0.757      0.587      0.669      0.458       0.79        0.5      0.552       0.34
                 spoon        128         22       0.74      0.364      0.559      0.269      0.925      0.364      0.513      0.213
                  bowl        128         28      0.766      0.714      0.725      0.559      0.803      0.584      0.665      0.353
                banana        128          1      0.408          1      0.995      0.398      0.539          1      0.995      0.497
              sandwich        128          2          1          0      0.695      0.536          1          0      0.498      0.448
                orange        128          4      0.467          1      0.995      0.693      0.518          1      0.995      0.663
              broccoli        128         11      0.462      0.455      0.383      0.259      0.548      0.455      0.384      0.256
                carrot        128         24      0.631      0.875       0.77      0.533      0.757      0.909      0.853      0.499
               hot dog        128          2      0.555          1      0.995      0.995      0.578          1      0.995      0.796
                 pizza        128          5       0.89        0.8      0.962      0.796          1      0.778      0.962      0.766
                 donut        128         14      0.695          1      0.893      0.772      0.704          1      0.893      0.696
                  cake        128          4      0.826          1      0.995       0.92      0.862          1      0.995      0.846
                 chair        128         35       0.53      0.571      0.613      0.336       0.67        0.6      0.538      0.271
                 couch        128          6      0.972      0.667      0.833      0.627          1       0.62      0.696      0.394
          potted plant        128         14        0.7      0.857      0.883      0.552      0.836      0.857      0.883      0.473
                   bed        128          3      0.979      0.667       0.83      0.366          1          0       0.83      0.373
          dining table        128         13      0.775      0.308      0.505      0.364      0.644      0.231       0.25     0.0804
                toilet        128          2      0.836          1      0.995      0.846      0.887          1      0.995      0.797
                    tv        128          2        0.6          1      0.995      0.846      0.655          1      0.995      0.896
                laptop        128          3      0.822      0.333      0.445      0.307          1          0      0.392       0.12
                 mouse        128          2          1          0          0          0          1          0          0          0
                remote        128          8      0.745        0.5       0.62      0.459      0.821        0.5      0.624      0.449
            cell phone        128          8      0.686      0.375      0.502      0.272      0.488       0.25       0.28      0.132
             microwave        128          3      0.831          1      0.995      0.722      0.867          1      0.995      0.592
                  oven        128          5      0.439        0.4      0.435      0.294      0.823        0.6      0.645      0.418
                  sink        128          6      0.677        0.5      0.565      0.448      0.722        0.5       0.46      0.362
          refrigerator        128          5      0.533        0.8      0.783      0.524      0.558        0.8      0.783      0.527
                  book        128         29      0.732      0.379      0.423      0.196       0.69      0.207       0.38      0.131
                 clock        128          9      0.889      0.778      0.917      0.677      0.908      0.778      0.875      0.604
                  vase        128          2      0.375          1      0.995      0.995      0.455          1      0.995      0.796
              scissors        128          1          1          0     0.0166    0.00166          1          0          0          0
            teddy bear        128         21      0.813      0.829      0.841      0.457      0.826      0.678      0.786      0.422
            toothbrush        128          5      0.806          1      0.995      0.733      0.991          1      0.995      0.628
Results saved to runs/train-seg/exp

4. Visualize

Comet Logging and Visualization 🌟 NEW

Comet is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with Comet Custom Panels! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!

Getting started is easy:

pip install comet_ml  # 1. install
export COMET_API_KEY=<Your API Key>  # 2. paste API key
python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train

To learn more about all of the supported Comet features for this integration, check out the Comet Tutorial. If you'd like to learn more about Comet, head over to our documentation. Get started by trying out the Comet Colab Notebook: Open In Colab

Comet Dashboard

ClearML Logging and Automation 🌟 NEW

ClearML is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):

You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).

You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the ClearML Tutorial for details!

ClearML Experiment Management UI

Local Logging

Training results are automatically logged with Tensorboard and CSV loggers to runs/train, with a new experiment directory created for each new training as runs/train/exp2, runs/train/exp3, etc.

This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices.

Local logging results

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

YOLOv5 CI

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), testing (val.py), inference (detect.py) and export (export.py) on macOS, Windows, and Ubuntu every 24 hours and on every commit.

Appendix

Additional content below.

# YOLOv5 PyTorch HUB Inference (DetectionModels only)
import torch

model = torch.hub.load('ultralytics/yolov5', 'yolov5s-seg')  # yolov5n - yolov5x6 or custom
im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list
results = model(im)  # inference
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.