forked from filipg/aitech-eks-pub
9.9 KiB
9.9 KiB
Podejście softmax z embeddingami na przykładzie NER
import numpy as np
import gensim
import torch
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from datasets import load_dataset
from torchtext.vocab import Vocab
from collections import Counter
from sklearn.datasets import fetch_20newsgroups
# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import accuracy_score
from tqdm.notebook import tqdm
import torch
from torchcrf import CRF
dataset = load_dataset("conll2003")
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
vocab = build_vocab(dataset['train']['tokens'])
len(vocab.itos)
vocab['on']
def data_process(dt):
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
def labels_process(dt):
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
train_tokens_ids = data_process(dataset['train']['tokens'])
test_tokens_ids = data_process(dataset['test']['tokens'])
validation_tokens_ids = data_process(dataset['validation']['tokens'])
train_labels = labels_process(dataset['train']['ner_tags'])
validation_labels = labels_process(dataset['validation']['ner_tags'])
test_labels = labels_process(dataset['test']['ner_tags'])
train_tokens_ids[0]
def get_scores(y_true, y_pred):
acc_score = 0
tp = 0
fp = 0
selected_items = 0
relevant_items = 0
for p,t in zip(y_pred, y_true):
if p == t:
acc_score +=1
if p > 0 and p == t:
tp +=1
if p > 0:
selected_items += 1
if t > 0 :
relevant_items +=1
if selected_items == 0:
precision = 1.0
else:
precision = tp / selected_items
if relevant_items == 0:
recall = 1.0
else:
recall = tp / relevant_items
if precision + recall == 0.0 :
f1 = 0.0
else:
f1 = 2* precision * recall / (precision + recall)
return precision, recall, f1
num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1
class FF(torch.nn.Module):
def __init__(self,):
super(FF, self).__init__()
self.emb = torch.nn.Embedding(23627,200)
self.fc1 = torch.nn.Linear(200,num_tags)
def forward(self, x):
x = self.emb(x)
x = self.fc1(x)
return x
ff = FF()
crf = CRF(num_tags)
params = list(ff.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(params)
def eval_model(dataset_tokens, dataset_labels):
Y_true = []
Y_pred = []
ff.eval()
crf.eval()
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i]
tags = list(dataset_labels[i].numpy())
emissions = ff(batch_tokens).unsqueeze(1)
Y_pred += crf.decode(emissions)[0]
Y_true += tags
return get_scores(Y_true, Y_pred)
NUM_EPOCHS = 4
for i in range(NUM_EPOCHS):
ff.train()
crf.train()
for i in tqdm(range(len(train_labels))):
batch_tokens = train_tokens_ids[i]
tags = train_labels[i].unsqueeze(1)
emissions = ff(batch_tokens).unsqueeze(1)
optimizer.zero_grad()
loss = -crf(emissions,tags)
loss.backward()
optimizer.step()
ff.eval()
crf.eval()
print(eval_model(validation_tokens_ids, validation_labels))
eval_model(validation_tokens_ids, validation_labels)
eval_model(test_tokens_ids, test_labels)
len(train_tokens_ids)
Zadanie domowe
- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003
- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu + CRF (można bazować na tym jupyterze lub nie).
- sieć feedforward powinna obejmować aktualne słowo, poprzednie i następne + dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)
- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv
- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65
- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo termin 15.06, 60 punktów, za najlepszy wynik- 100 punktów