workshops_recommender_systems/P4. Matrix Factorization.ipynb

75 KiB

Self made SVD

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random

train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None)
test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)
train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)
# Done similarly to https://github.com/albertauyeung/matrix-factorization-in-python
from tqdm import tqdm

class SVD():
    
    def __init__(self, train_ui, learning_rate, regularization, nb_factors, iterations):
        self.train_ui=train_ui
        self.uir=list(zip(*[train_ui.nonzero()[0],train_ui.nonzero()[1], train_ui.data]))
        
        self.learning_rate=learning_rate
        self.regularization=regularization
        self.iterations=iterations
        self.nb_users, self.nb_items=train_ui.shape
        self.nb_ratings=train_ui.nnz
        self.nb_factors=nb_factors
        
        self.Pu=np.random.normal(loc=0, scale=1./self.nb_factors, size=(self.nb_users, self.nb_factors))
        self.Qi=np.random.normal(loc=0, scale=1./self.nb_factors, size=(self.nb_items, self.nb_factors))

    def train(self, test_ui=None):
        if test_ui!=None:
            self.test_uir=list(zip(*[test_ui.nonzero()[0],test_ui.nonzero()[1], test_ui.data]))
            
        self.learning_process=[]
        pbar = tqdm(range(self.iterations))
        for i in pbar:
            pbar.set_description(f'Epoch {i} RMSE: {self.learning_process[-1][1] if i>0 else 0}. Training epoch {i+1}...')
            np.random.shuffle(self.uir)
            self.sgd(self.uir)
            if test_ui==None:
                self.learning_process.append([i+1, self.RMSE_total(self.uir)])
            else:
                self.learning_process.append([i+1, self.RMSE_total(self.uir), self.RMSE_total(self.test_uir)])
    
    def sgd(self, uir):
        
        for u, i, score in uir:
            # Computer prediction and error
            prediction = self.get_rating(u,i)
            e = (score - prediction)
            
            # Update user and item latent feature matrices
            Pu_update=self.learning_rate * (e * self.Qi[i] - self.regularization * self.Pu[u])
            Qi_update=self.learning_rate * (e * self.Pu[u] - self.regularization * self.Qi[i])
            
            self.Pu[u] += Pu_update
            self.Qi[i] += Qi_update
        
    def get_rating(self, u, i):
        prediction = self.Pu[u].dot(self.Qi[i].T)
        return prediction
    
    def RMSE_total(self, uir):
        RMSE=0
        for u,i, score in uir:
            prediction = self.get_rating(u,i)
            RMSE+=(score - prediction)**2
        return np.sqrt(RMSE/len(uir))
    
    def estimations(self):
        self.estimations=\
        np.dot(self.Pu,self.Qi.T)

    def recommend(self, user_code_id, item_code_id, topK=10):
        
        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):
            
            user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result=[]
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid]+list(chain(*item_scores[:topK])))
        return result
    
    def estimate(self, user_code_id, item_code_id, test_ui):
        result=[]
        for user, item in zip(*test_ui.nonzero()):
            result.append([user_code_id[user], item_code_id[item], 
                           self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])
        return result
model=SVD(train_ui, learning_rate=0.005, regularization=0.02, nb_factors=100, iterations=40)
model.train(test_ui)
Epoch 39 RMSE: 0.7481223595239049. Training epoch 40...: 100%|██████████| 40/40 [02:09<00:00,  3.25s/it]
import matplotlib.pyplot as plt

df=pd.DataFrame(model.learning_process).iloc[:,:2]
df.columns=['epoch', 'train_RMSE']
plt.plot('epoch', 'train_RMSE', data=df, color='blue')
plt.legend()
<matplotlib.legend.Legend at 0x7f40f450bf98>
import matplotlib.pyplot as plt

df=pd.DataFrame(model.learning_process[10:], columns=['epoch', 'train_RMSE', 'test_RMSE'])
plt.plot('epoch', 'train_RMSE', data=df, color='blue')
plt.plot('epoch', 'test_RMSE', data=df, color='yellow', linestyle='dashed')
plt.legend()
<matplotlib.legend.Legend at 0x7f40f148f710>

Saving and evaluating recommendations

model.estimations()

top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_SVD_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_SVD_estimations.csv', index=False, header=False)
import evaluation_measures as ev

estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_SVD_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_SVD_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 4506.01it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.915304 0.719016 0.100848 0.042228 0.051191 0.067885 0.092275 0.07073 0.104366 0.049606 0.192999 0.517831 0.465536 0.867869 0.150072 3.847796 0.972676
import evaluation_measures as ev

dir_path="Recommendations generated/ml-100k/"
super_reactions=[4,5]
test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 4962.65it/s]
943it [00:00, 4020.02it/s]
943it [00:00, 3974.62it/s]
943it [00:00, 4763.58it/s]
943it [00:00, 4203.99it/s]
943it [00:00, 4230.96it/s]
943it [00:00, 3909.05it/s]
943it [00:00, 4215.47it/s]
943it [00:00, 4293.30it/s]
943it [00:00, 4389.83it/s]
943it [00:00, 4410.76it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Ready_LightFMpureMF 7.953192 7.462008 0.334464 0.219997 0.217225 0.254981 0.233798 0.266952 0.398778 0.263058 0.629129 0.607709 0.913043 1.000000 0.275613 5.085818 0.913665
0 Ready_LightFM 162.707436 160.855483 0.340827 0.217682 0.217990 0.258010 0.243884 0.260663 0.403850 0.268266 0.637590 0.606568 0.898197 1.000000 0.351371 5.366291 0.885046
0 Self_P3 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 Ready_ImplicitALS 3.266101 3.065824 0.255037 0.188653 0.176852 0.201189 0.166631 0.214925 0.305908 0.172546 0.523871 0.591709 0.889714 1.000000 0.502886 5.722957 0.827507
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_LightFMcontent 182.471340 180.405210 0.160339 0.101224 0.102198 0.121074 0.102682 0.112455 0.180079 0.087429 0.337825 0.547572 0.704136 0.974973 0.264791 4.909893 0.926201
0 Self_SVD 0.915304 0.719016 0.100848 0.042228 0.051191 0.067885 0.092275 0.070730 0.104366 0.049606 0.192999 0.517831 0.465536 0.867869 0.150072 3.847796 0.972676
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003
0 Ready_Random 1.514355 1.216383 0.049735 0.022300 0.025782 0.033598 0.028219 0.021751 0.054383 0.021119 0.133978 0.507680 0.339343 0.986957 0.177489 5.088670 0.907676
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380

Embeddings

x=np.array([[1,2],[3,4]])
display(x)
x/np.linalg.norm(x, axis=1)[:,None]
array([[1, 2],
       [3, 4]])
array([[0.4472136 , 0.89442719],
       [0.6       , 0.8       ]])
item=random.choice(list(set(train_ui.indices)))

embeddings_norm=model.Qi/np.linalg.norm(model.Qi, axis=1)[:,None] # we do not mean-center here
# omitting normalization also makes sense, but items with a greater magnitude will be recommended more often

similarity_scores=np.dot(embeddings_norm,embeddings_norm[item].T)
top_similar_items=pd.DataFrame(enumerate(similarity_scores), columns=['code', 'score'])\
.sort_values(by=['score'], ascending=[False])[:10]

top_similar_items['item_id']=top_similar_items['code'].apply(lambda x: item_code_id[x])

items=pd.read_csv('./Datasets/ml-100k/movies.csv')

result=pd.merge(top_similar_items, items, left_on='item_id', right_on='id')

result
code score item_id id title genres
0 44 1.000000 45 45 Eat Drink Man Woman (1994) Comedy, Drama
1 855 0.966812 856 856 Night on Earth (1991) Comedy, Drama
2 1403 0.966571 1404 1404 Withnail and I (1987) Comedy
3 112 0.966115 113 113 Horseman on the Roof, The (Hussard sur le toit... Drama
4 955 0.965365 956 956 Nobody's Fool (1994) Drama
5 1222 0.965232 1223 1223 King of the Hill (1993) Drama
6 60 0.964481 61 61 Three Colors: White (1994) Drama
7 535 0.963322 536 536 Ponette (1996) Drama
8 1102 0.962597 1103 1103 Trust (1990) Comedy, Drama
9 713 0.962459 714 714 Carrington (1995) Drama, Romance

project task 5: implement SVD on top baseline (as it is in Surprise library)

# making changes to our implementation by considering additional parameters in the gradient descent procedure 
# seems to be the fastest option
# please save the output in 'Recommendations generated/ml-100k/Self_SVDBaseline_reco.csv' and
# 'Recommendations generated/ml-100k/Self_SVDBaseline_estimations.csv'

Ready-made SVD - Surprise implementation

SVD

import helpers
import surprise as sp
import imp
imp.reload(helpers)

algo = sp.SVD(biased=False) # to use unbiased version

helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_SVD_reco.csv',
          estimations_path='Recommendations generated/ml-100k/Ready_SVD_estimations.csv')
Generating predictions...
Generating top N recommendations...
Generating predictions...

SVD biased - on top baseline

import helpers
import surprise as sp
import imp
imp.reload(helpers)

algo = sp.SVD() # default is biased=True

helpers.ready_made(algo, reco_path='Recommendations generated/ml-100k/Ready_SVDBiased_reco.csv',
          estimations_path='Recommendations generated/ml-100k/Ready_SVDBiased_estimations.csv')
Generating predictions...
Generating top N recommendations...
Generating predictions...
import imp
imp.reload(ev)

import evaluation_measures as ev
dir_path="Recommendations generated/ml-100k/"
super_reactions=[4,5]
test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)

ev.evaluate_all(test, dir_path, super_reactions)
943it [00:00, 4110.82it/s]
943it [00:00, 4014.43it/s]
943it [00:00, 3946.85it/s]
943it [00:00, 4832.12it/s]
943it [00:00, 4090.40it/s]
943it [00:00, 4152.16it/s]
943it [00:00, 4456.22it/s]
943it [00:00, 3943.66it/s]
943it [00:00, 4298.65it/s]
943it [00:00, 4243.05it/s]
943it [00:00, 4391.40it/s]
943it [00:00, 4528.23it/s]
943it [00:00, 4419.43it/s]
Model RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 Ready_LightFMpureMF 7.953192 7.462008 0.334464 0.219997 0.217225 0.254981 0.233798 0.266952 0.398778 0.263058 0.629129 0.607709 0.913043 1.000000 0.275613 5.085818 0.913665
0 Ready_LightFM 162.707436 160.855483 0.340827 0.217682 0.217990 0.258010 0.243884 0.260663 0.403850 0.268266 0.637590 0.606568 0.898197 1.000000 0.351371 5.366291 0.885046
0 Self_P3 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 Ready_ImplicitALS 3.266101 3.065824 0.255037 0.188653 0.176852 0.201189 0.166631 0.214925 0.305908 0.172546 0.523871 0.591709 0.889714 1.000000 0.502886 5.722957 0.827507
0 Self_TopPop 2.508258 2.217909 0.188865 0.116919 0.118732 0.141584 0.130472 0.137473 0.214651 0.111707 0.400939 0.555546 0.765642 1.000000 0.038961 3.159079 0.987317
0 Ready_LightFMcontent 182.471340 180.405210 0.160339 0.101224 0.102198 0.121074 0.102682 0.112455 0.180079 0.087429 0.337825 0.547572 0.704136 0.974973 0.264791 4.909893 0.926201
0 Ready_SVD 0.951475 0.750225 0.099470 0.051407 0.056004 0.070229 0.088197 0.083166 0.115422 0.053515 0.253329 0.522434 0.522800 0.996713 0.216450 4.424505 0.952962
0 Self_SVD 0.915304 0.719016 0.100848 0.042228 0.051191 0.067885 0.092275 0.070730 0.104366 0.049606 0.192999 0.517831 0.465536 0.867869 0.150072 3.847796 0.972676
0 Ready_Baseline 0.949459 0.752487 0.091410 0.037652 0.046030 0.061286 0.079614 0.056463 0.095957 0.043178 0.198193 0.515501 0.437964 1.000000 0.033911 2.836513 0.991139
0 Ready_SVDBiased 0.937841 0.739906 0.079427 0.032570 0.039804 0.053022 0.071030 0.050639 0.088490 0.039308 0.201565 0.512929 0.425239 0.997031 0.170996 4.167051 0.963929
0 Self_GlobalAvg 1.125760 0.943534 0.061188 0.025968 0.031383 0.041343 0.040558 0.032107 0.067695 0.027470 0.171187 0.509546 0.384942 1.000000 0.025974 2.711772 0.992003
0 Ready_Random 1.514355 1.216383 0.049735 0.022300 0.025782 0.033598 0.028219 0.021751 0.054383 0.021119 0.133978 0.507680 0.339343 0.986957 0.177489 5.088670 0.907676
0 Self_BaselineUI 0.967585 0.762740 0.000954 0.000170 0.000278 0.000463 0.000644 0.000189 0.000752 0.000168 0.001677 0.496424 0.009544 0.600530 0.005051 1.803126 0.996380