workshops_recommender_systems/P5. Graph-based.ipynb

554 KiB
Raw Blame History

Self made RP3-beta

import helpers
import pandas as pd
import numpy as np
import scipy.sparse as sparse
from collections import defaultdict
from itertools import chain
import random
import time
import matplotlib.pyplot as plt

train_read=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None)
test_read=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None)
train_ui, test_ui, user_code_id, user_id_code, item_code_id, item_id_code = helpers.data_to_csr(train_read, test_read)
class RP3Beta():
    def fit(self, train_ui, alpha, beta):
        """We weight our edges by user's explicit ratings so if user rated movie high we'll follow that path
        with higher probability."""
        self.train_ui=train_ui
        self.train_iu=train_ui.transpose()
        
        self.alpha = alpha
        self.beta = beta
        
        # Define Pui 
        Pui=sparse.csr_matrix(self.train_ui/self.train_ui.sum(axis=1))
        
        # Define Piu
        to_divide=np.vectorize(lambda x: x if x>0 else 1)(self.train_iu.sum(axis=1)) # to avoid dividing by zero
        Piu=sparse.csr_matrix(self.train_iu/to_divide)
        item_orders=(self.train_ui>0).sum(axis=0)
        
        Pui = Pui.power(self.alpha)
        Piu = Piu.power(self.alpha)

        P3=Pui*Piu*Pui
        
        P3/=np.power(np.vectorize(lambda x: x if x>0 else 1)(item_orders), self.beta)
        
        self.estimations=np.array(P3)
    
    def recommend(self, user_code_id, item_code_id, topK=10):
        
        top_k = defaultdict(list)
        for nb_user, user in enumerate(self.estimations):
            
            user_rated=self.train_ui.indices[self.train_ui.indptr[nb_user]:self.train_ui.indptr[nb_user+1]]
            for item, score in enumerate(user):
                if item not in user_rated and not np.isnan(score):
                    top_k[user_code_id[nb_user]].append((item_code_id[item], score))
        result=[]
        # Let's choose k best items in the format: (user, item1, score1, item2, score2, ...)
        for uid, item_scores in top_k.items():
            item_scores.sort(key=lambda x: x[1], reverse=True)
            result.append([uid]+list(chain(*item_scores[:topK])))
        return result
    
    def estimate(self, user_code_id, item_code_id, test_ui):
        result=[]
        for user, item in zip(*test_ui.nonzero()):
            result.append([user_code_id[user], item_code_id[item], 
                           self.estimations[user,item] if not np.isnan(self.estimations[user,item]) else 1])
        return result
model=RP3Beta()
model.fit(train_ui, alpha=1, beta=0)
top_n=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))

top_n.to_csv('Recommendations generated/ml-100k/Self_P3_reco.csv', index=False, header=False)

estimations=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
estimations.to_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', index=False, header=False)
import evaluation_measures as ev
estimations_df=pd.read_csv('Recommendations generated/ml-100k/Self_P3_estimations.csv', header=None)
reco=np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')

ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=reco,
            super_reactions=[4,5])
943it [00:00, 7214.50it/s]
RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 3.702446 3.527273 0.282185 0.192092 0.186749 0.21698 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.0 0.077201 3.875892 0.974947

Let's check hiperparameters

Alpha
from tqdm import tqdm
result=[]
for alpha in tqdm([round(i,1) for i in np.arange(0.2,1.6001,0.2)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=alpha, beta=0)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Alpha", alpha)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|          | 0/8 [00:00<?, ?it/s]
0it [00:00, ?it/s]
943it [00:00, 6952.21it/s]
 12%|█▎        | 1/8 [00:09<01:06,  9.56s/it]
0it [00:00, ?it/s]
943it [00:00, 6822.51it/s]
 25%|██▌       | 2/8 [00:19<00:57,  9.53s/it]
0it [00:00, ?it/s]
943it [00:00, 6841.03it/s]
 38%|███▊      | 3/8 [00:28<00:48,  9.63s/it]
0it [00:00, ?it/s]
943it [00:00, 7086.32it/s]
 50%|█████     | 4/8 [00:38<00:38,  9.68s/it]
0it [00:00, ?it/s]
943it [00:00, 7470.38it/s]
 62%|██████▎   | 5/8 [00:48<00:29,  9.72s/it]
0it [00:00, ?it/s]
943it [00:00, 7429.22it/s]
 75%|███████▌  | 6/8 [00:58<00:19,  9.73s/it]
0it [00:00, ?it/s]
943it [00:00, 7042.01it/s]
 88%|████████▊ | 7/8 [01:07<00:09,  9.67s/it]
0it [00:00, ?it/s]
943it [00:00, 7035.02it/s]
100%|██████████| 8/8 [01:17<00:00,  9.67s/it]
Alpha RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.2 268.177832 211.732649 0.262672 0.166858 0.166277 0.197184 0.187661 0.203252 0.320910 0.196132 0.563378 0.580866 0.850477 1.000000 0.060606 3.669627 0.979636
0 0.4 10.546689 7.792373 0.268505 0.172669 0.171569 0.202643 0.192489 0.212653 0.326760 0.200172 0.565148 0.583801 0.854719 1.000000 0.064214 3.726996 0.978426
0 0.6 3.143988 2.948790 0.274655 0.180502 0.177820 0.208730 0.198176 0.222746 0.332872 0.203290 0.568872 0.587738 0.870626 1.000000 0.065657 3.785282 0.977090
0 0.8 3.670728 3.495735 0.281972 0.189868 0.185300 0.216071 0.203541 0.236751 0.339867 0.206688 0.573729 0.592432 0.874867 1.000000 0.070707 3.832415 0.975998
0 1.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 1.2 3.704441 3.529251 0.280912 0.193633 0.187311 0.216872 0.203004 0.240588 0.338049 0.203453 0.571830 0.594313 0.883351 1.000000 0.085859 3.910718 0.974073
0 1.4 3.704580 3.529388 0.273595 0.190651 0.183874 0.212183 0.199464 0.239118 0.329550 0.195433 0.566171 0.592793 0.871686 1.000000 0.107504 3.961915 0.972674
0 1.6 3.704591 3.529399 0.263097 0.186255 0.178709 0.205170 0.191094 0.232920 0.317439 0.184917 0.552349 0.590545 0.868505 0.999576 0.156566 4.060156 0.969203
metrics=list(result.columns[[i not in ['Alpha'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Alpha', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)
Beta
from tqdm import tqdm
result=[]
for beta in tqdm([round(i,1) for i in np.arange(0,1,0.1)]):
    model=RP3Beta()
    model.fit(train_ui, alpha=1, beta=beta)
    reco=pd.DataFrame(model.recommend(user_code_id, item_code_id, topK=10))
    estimations_df=pd.DataFrame(model.estimate(user_code_id, item_code_id, test_ui))
    to_append=ev.evaluate(test=pd.read_csv('./Datasets/ml-100k/test.csv', sep='\t', header=None),
            estimations_df=estimations_df, 
            reco=np.array(reco),
            super_reactions=[4,5])
    to_append.insert(0, "Beta", beta)
    result.append(to_append)
    
result=pd.concat(result)
result
  0%|          | 0/10 [00:00<?, ?it/s]
0it [00:00, ?it/s]
943it [00:00, 7111.67it/s]
 10%|█         | 1/10 [00:10<01:36, 10.70s/it]
0it [00:00, ?it/s]
943it [00:00, 7130.50it/s]
 20%|██        | 2/10 [00:21<01:26, 10.87s/it]
0it [00:00, ?it/s]
943it [00:00, 6952.85it/s]
 30%|███       | 3/10 [00:32<01:16, 10.90s/it]
0it [00:00, ?it/s]
943it [00:00, 7108.39it/s]
 40%|████      | 4/10 [00:43<01:05, 10.87s/it]
0it [00:00, ?it/s]
943it [00:00, 6175.82it/s]
 50%|█████     | 5/10 [00:54<00:54, 10.89s/it]
0it [00:00, ?it/s]
943it [00:00, 6668.87it/s]
 60%|██████    | 6/10 [01:05<00:43, 10.87s/it]
0it [00:00, ?it/s]
943it [00:00, 7369.27it/s]
 70%|███████   | 7/10 [01:16<00:33, 11.01s/it]
0it [00:00, ?it/s]
943it [00:00, 7014.52it/s]
 80%|████████  | 8/10 [01:27<00:21, 10.95s/it]
0it [00:00, ?it/s]
943it [00:00, 6965.11it/s]
 90%|█████████ | 9/10 [01:38<00:10, 10.91s/it]
0it [00:00, ?it/s]
943it [00:00, 7744.74it/s]
100%|██████████| 10/10 [01:49<00:00, 10.94s/it]
Beta RMSE MAE precision recall F_1 F_05 precision_super recall_super NDCG mAP MRR LAUC HR Reco in test Test coverage Shannon Gini
0 0.0 3.702446 3.527273 0.282185 0.192092 0.186749 0.216980 0.204185 0.240096 0.339114 0.204905 0.572157 0.593544 0.875928 1.000000 0.077201 3.875892 0.974947
0 0.1 3.703312 3.528128 0.290138 0.197597 0.192259 0.223336 0.210944 0.246153 0.347768 0.212034 0.581038 0.596328 0.884411 1.000000 0.085137 3.957416 0.972784
0 0.2 3.703825 3.528636 0.297137 0.201202 0.196067 0.228169 0.218026 0.252767 0.355655 0.219909 0.588904 0.598160 0.886532 1.000000 0.094517 4.053212 0.969980
0 0.3 3.704130 3.528939 0.303499 0.204749 0.199901 0.232829 0.225107 0.260797 0.363757 0.226825 0.599969 0.599964 0.888653 1.000000 0.105339 4.147779 0.966948
0 0.4 3.704313 3.529120 0.308908 0.208811 0.203854 0.237241 0.229614 0.266918 0.370758 0.232673 0.609385 0.602014 0.895016 0.999894 0.132035 4.259682 0.962989
0 0.5 3.704422 3.529229 0.314316 0.211411 0.206768 0.240986 0.237124 0.273416 0.378307 0.239297 0.622792 0.603327 0.903499 0.999046 0.168831 4.411281 0.956648
0 0.6 3.704488 3.529295 0.314634 0.206209 0.204818 0.240159 0.242489 0.273850 0.376438 0.238428 0.622042 0.600721 0.897137 0.996394 0.212843 4.621938 0.945932
0 0.7 3.704528 3.529335 0.304136 0.187298 0.191990 0.228749 0.238305 0.256201 0.358807 0.226808 0.593897 0.591207 0.868505 0.983033 0.256854 4.898568 0.928065
0 0.8 3.704552 3.529360 0.266384 0.147571 0.158660 0.194838 0.214485 0.209336 0.299850 0.184356 0.492852 0.571152 0.803818 0.936373 0.341270 5.257397 0.895882
0 0.9 3.704567 3.529375 0.162354 0.076967 0.089233 0.114583 0.134657 0.113253 0.160868 0.085486 0.243590 0.535405 0.580064 0.800106 0.415584 5.563910 0.857396
### import matplotlib.pyplot as plt

metrics=list(result.columns[[i not in ['Beta'] for i in result.columns]])

charts_per_row=6
charts_per_column=3

fig, axes = plt.subplots(nrows=charts_per_row, ncols=charts_per_column,figsize=(18, 7*charts_per_row ))
import itertools
to_iter=[i for i in itertools.product(range(charts_per_row), range(charts_per_column))]

for i in range(len(metrics)):
    df=result[['Beta', metrics[i]]]
    df.plot(ax=axes[to_iter[i]], title=metrics[i], x=0, y=1)

Check sample recommendations

train=pd.read_csv('./Datasets/ml-100k/train.csv', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'])
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

user=random.choice(list(set(train['user'])))

train_content=pd.merge(train, items, left_on='item', right_on='id')
display(train_content[train_content['user']==user][['user', 'rating', 'title', 'genres']]\
        .sort_values(by='rating', ascending=False)[:15])

reco = np.loadtxt('Recommendations generated/ml-100k/Self_P3_reco.csv', delimiter=',')
items=pd.read_csv('./Datasets/ml-100k/movies.csv')

# Let's ignore scores - they are not used in evaluation: 
reco_users=reco[:,:1]
reco_items=reco[:,1::2]
# Let's put them into one array
reco=np.concatenate((reco_users, reco_items), axis=1)

# Let's rebuild it user-item dataframe
recommended=[]
for row in reco:
    for rec_nb, entry in enumerate(row[1:]):
        recommended.append((row[0], rec_nb+1, entry))
recommended=pd.DataFrame(recommended, columns=['user','rec_nb', 'item'])

recommended_content=pd.merge(recommended, items, left_on='item', right_on='id')
recommended_content[recommended_content['user']==user][['user', 'rec_nb', 'title', 'genres']].sort_values(by='rec_nb')
user rating title genres
47381 504 5 Crow, The (1994) Action, Romance, Thriller
38682 504 5 First Wives Club, The (1996) Comedy
49310 504 5 Schindler's List (1993) Drama, War
47893 504 5 Nell (1994) Drama
22082 504 5 Men in Black (1997) Action, Adventure, Comedy, Sci-Fi
15938 504 5 Godfather, The (1972) Action, Crime, Drama
51421 504 5 Interview with the Vampire (1994) Drama, Horror
47837 504 5 Omen, The (1976) Horror
14267 504 5 Fargo (1996) Crime, Drama, Thriller
51759 504 5 Man Without a Face, The (1993) Drama
45355 504 5 Lion King, The (1994) Animation, Children's, Musical
77192 504 5 Ghosts of Mississippi (1996) Drama
19123 504 5 Scream (1996) Horror, Thriller
56591 504 5 My Favorite Year (1982) Comedy
41312 504 5 Gone with the Wind (1939) Drama, Romance, War
user rec_nb title genres
3231 504.0 1 Toy Story (1995) Animation, Children's, Comedy
6474 504.0 2 Pulp Fiction (1994) Crime, Drama
5823 504.0 3 Contact (1997) Drama, Sci-Fi
6689 504.0 4 Empire Strikes Back, The (1980) Action, Adventure, Drama, Romance, Sci-Fi, War
7779 504.0 5 Princess Bride, The (1987) Action, Adventure, Comedy, Romance
4212 504.0 6 Twelve Monkeys (1995) Drama, Sci-Fi
1420 504.0 7 Fugitive, The (1993) Action, Thriller
6847 504.0 8 Braveheart (1995) Action, Drama, War
7615 504.0 9 Rock, The (1996) Action, Adventure, Thriller
7914 504.0 10 Amadeus (1984) Drama, Mystery

project task 6: generate recommendations of RP3Beta for hiperparameters found to optimize recall

# use better values than (1,0) for alpha and beta
# if you want you can also modify the model to consider different weights (we took as weights user ratings, maybe take ones or squares of ratings instead)
# save the outptut in 'Recommendations generated/ml-100k/Self_RP3Beta_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_RP3Beta_reco.csv'

project task 7 (optional): implement graph-based model of your choice

# for example change length of paths in RP3beta
# save the outptut in 'Recommendations generated/ml-100k/Self_GraphTask_estimations.csv'
# and 'Recommendations generated/ml-100k/Self_GraphTask_reco.csv'