forked from pms/uczenie-maszynowe
1539 lines
525 KiB
Plaintext
1539 lines
525 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Uczenie maszynowe\n",
|
||
"# 3. Regresja liniowa – część 2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"## 3.1. Regresja liniowa wielu zmiennych"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Do przewidywania wartości $y$ możemy użyć więcej niż jednej cechy $x$:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Przykład – ceny mieszkań"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import pandas as pd\n",
|
||
"\n",
|
||
"data = pd.read_csv(\"data_flats_train.tsv\", sep=\"\\t\")\n",
|
||
"data.rename(\n",
|
||
" columns={\n",
|
||
" col: f\"x{i}:{col}\" if i > 0 else f\"y:{col}\"\n",
|
||
" for i, col in enumerate(data.columns)\n",
|
||
" },\n",
|
||
" inplace=True,\n",
|
||
")\n",
|
||
"data.index = np.arange(1, len(data) + 1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"scrolled": true,
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" y:price x1:isNew x2:rooms x3:floor x4:location x5:sqrMetres\n",
|
||
"1 476118.0 False 3 1 Centrum 78\n",
|
||
"2 459531.0 False 3 2 Sołacz 62\n",
|
||
"3 411557.0 False 3 0 Sołacz 15\n",
|
||
"4 496416.0 False 4 0 Sołacz 14\n",
|
||
"5 406032.0 False 3 0 Sołacz 15\n",
|
||
"... ... ... ... ... ... ...\n",
|
||
"1335 349000.0 False 4 0 Szczepankowo 29\n",
|
||
"1336 399000.0 False 5 0 Szczepankowo 68\n",
|
||
"1337 234000.0 True 2 7 Wilda 50\n",
|
||
"1338 210000.0 True 2 1 Wilda 65\n",
|
||
"1339 279000.0 True 2 2 Łazarz 36\n",
|
||
"\n",
|
||
"[1339 rows x 6 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(data)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$ x^{(2)} = ({\\rm \"False\"}, 3, 2, {\\rm \"Sołacz\"}, 62), \\quad x_3^{(2)} = 2 $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Hipoteza"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"W naszym przypadku (wybraliśmy 5 cech):\n",
|
||
"\n",
|
||
"$$ h_\\theta(x) = \\theta_0 + \\theta_1 x_1 + \\theta_2 x_2 + \\theta_3 x_3 + \\theta_4 x_4 + \\theta_5 x_5 $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"W ogólności ($n$ cech):\n",
|
||
"\n",
|
||
"$$ h_\\theta(x) = \\theta_0 + \\theta_1 x_1 + \\theta_2 x_2 + \\ldots + \\theta_n x_n $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Jeżeli zdefiniujemy $x_0 = 1$, będziemy mogli powyższy wzór zapisać w bardziej kompaktowy sposób:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\begin{array}{rcl}\n",
|
||
"h_\\theta(x)\n",
|
||
" & = & \\theta_0 x_0 + \\theta_1 x_1 + \\theta_2 x_2 + \\ldots + \\theta_n x_n \\\\\n",
|
||
" & = & \\displaystyle\\sum_{i=0}^{n} \\theta_i x_i \\\\\n",
|
||
" & = & \\theta^T \\, x \\\\\n",
|
||
" & = & x^T \\, \\theta \\\\\n",
|
||
"\\end{array}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"($x$ oznacza pojedynczy przykład ze zbioru uczącego)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Metoda gradientu prostego – notacja macierzowa"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Metoda gradientu prostego przyjmie bardzo elegancką formę, jeżeli do jej zapisu użyjemy wektorów i macierzy."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$\n",
|
||
"X=\\left[\\begin{array}{cc}\n",
|
||
"1 & \\left( \\vec x^{(1)} \\right)^T \\\\\n",
|
||
"1 & \\left( \\vec x^{(2)} \\right)^T \\\\\n",
|
||
"\\vdots & \\vdots\\\\\n",
|
||
"1 & \\left( \\vec x^{(m)} \\right)^T \\\\\n",
|
||
"\\end{array}\\right] \n",
|
||
"= \\left[\\begin{array}{cccc}\n",
|
||
"1 & x_1^{(1)} & \\cdots & x_n^{(1)} \\\\\n",
|
||
"1 & x_1^{(2)} & \\cdots & x_n^{(2)} \\\\\n",
|
||
"\\vdots & \\vdots & \\ddots & \\vdots\\\\\n",
|
||
"1 & x_1^{(m)} & \\cdots & x_n^{(m)} \\\\\n",
|
||
"\\end{array}\\right]\n",
|
||
"\\quad\n",
|
||
"\\vec{y} = \n",
|
||
"\\left[\\begin{array}{c}\n",
|
||
"y^{(1)}\\\\\n",
|
||
"y^{(2)}\\\\\n",
|
||
"\\vdots\\\\\n",
|
||
"y^{(m)}\\\\\n",
|
||
"\\end{array}\\right]\n",
|
||
"\\quad\n",
|
||
"\\theta = \\left[\\begin{array}{c}\n",
|
||
"\\theta_0\\\\\n",
|
||
"\\theta_1\\\\\n",
|
||
"\\vdots\\\\\n",
|
||
"\\theta_n\\\\\n",
|
||
"\\end{array}\\right]\n",
|
||
"$$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$h_\\theta(X) = X \\theta$$\n",
|
||
"\n",
|
||
"($X$ oznacza macierz reprezentującą cechy wszystkich przykładów ze zbioru uczącego)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "skip"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Wersje macierzowe funkcji rysowania wykresów punktowych oraz krzywej regresyjnej\n",
|
||
"\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import numpy as np\n",
|
||
"\n",
|
||
"\n",
|
||
"def h(theta, x):\n",
|
||
" return x * theta\n",
|
||
"\n",
|
||
"\n",
|
||
"def regdots(x, y, xlabel=\"\", ylabel=\"\"):\n",
|
||
" fig = plt.figure(figsize=(16 * 0.6, 9 * 0.6))\n",
|
||
" ax = fig.add_subplot(111)\n",
|
||
" fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n",
|
||
" ax.scatter([x], [y], c=\"r\", s=50, label=\"Dane\")\n",
|
||
"\n",
|
||
" ax.set_xlabel(xlabel)\n",
|
||
" ax.set_ylabel(ylabel)\n",
|
||
" ax.margins(0.05, 0.05)\n",
|
||
" plt.ylim(y.min() - 1, y.max() + 1)\n",
|
||
" plt.xlim(np.min(x) - 1, np.max(x) + 1)\n",
|
||
" return fig\n",
|
||
"\n",
|
||
"\n",
|
||
"def regline(fig, fun, theta, x, y, cost_fun):\n",
|
||
" ax = fig.axes[0]\n",
|
||
" x_min = np.min(x)\n",
|
||
" x_max = np.max(x)\n",
|
||
" x_range = [x_min, x_max]\n",
|
||
" x_matrix = np.matrix([1, x_min, 1, x_max]).reshape(2, 2)\n",
|
||
" cost = cost_fun(theta, x, y)\n",
|
||
" ax.plot(\n",
|
||
" x_range,\n",
|
||
" fun(theta, x_matrix),\n",
|
||
" linewidth=\"2\",\n",
|
||
" label=(\n",
|
||
" r\"$y={theta0:.1f}{op}{theta1:.1f}x, \\; J(\\theta)={cost:.3f}$\".format(\n",
|
||
" theta0=theta[0],\n",
|
||
" theta1=(theta[1] if theta[1] >= 0 else -theta[1]),\n",
|
||
" op=\"+\" if theta[1] >= 0 else \"-\",\n",
|
||
" cost=cost,\n",
|
||
" )\n",
|
||
" ),\n",
|
||
" )\n",
|
||
"\n",
|
||
"\n",
|
||
"def legend(fig):\n",
|
||
" ax = fig.axes[0]\n",
|
||
" handles, labels = ax.get_legend_handles_labels()\n",
|
||
" # try-except block is a fix for a bug in Poly3DCollection\n",
|
||
" try:\n",
|
||
" fig.legend(handles, labels, fontsize=\"15\", loc=\"lower right\")\n",
|
||
" except AttributeError:\n",
|
||
" pass\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"X[:5]=matrix([[ 1., 3., 1., 78.],\n",
|
||
" [ 1., 3., 2., 62.],\n",
|
||
" [ 1., 3., 0., 15.],\n",
|
||
" [ 1., 4., 0., 14.],\n",
|
||
" [ 1., 3., 0., 15.]])\n",
|
||
"X.shape=(1339, 4)\n",
|
||
"y[:5]=matrix([[476118.],\n",
|
||
" [459531.],\n",
|
||
" [411557.],\n",
|
||
" [496416.],\n",
|
||
" [406032.]])\n",
|
||
"y.shape=(1339, 1)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Wczytwanie danych z pliku – regresja liniowa wielu zmiennych – notacja macierzowa\n",
|
||
"\n",
|
||
"import pandas as pd\n",
|
||
"\n",
|
||
"data = pd.read_csv(\n",
|
||
" \"data_flats_train.tsv\",\n",
|
||
" delimiter=\"\\t\",\n",
|
||
" usecols=[\"price\", \"rooms\", \"floor\", \"sqrMetres\"],\n",
|
||
")\n",
|
||
"m, n_plus_1 = data.values.shape\n",
|
||
"n = n_plus_1 - 1\n",
|
||
"Xn = data.values[:, 1:].reshape(m, n)\n",
|
||
"\n",
|
||
"# Dodaj kolumnę jedynek do macierzy\n",
|
||
"X = np.matrix(np.concatenate((np.ones((m, 1)), Xn), axis=1)).reshape(m, n_plus_1)\n",
|
||
"y = np.matrix(data.values[:, 0]).reshape(m, 1)\n",
|
||
"\n",
|
||
"print(f\"{X[:5]=}\")\n",
|
||
"print(f\"{X.shape=}\")\n",
|
||
"print(f\"{y[:5]=}\")\n",
|
||
"print(f\"{y.shape=}\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Funkcja kosztu – notacja macierzowa"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$J(\\theta)=\\dfrac{1}{2|\\vec y|}\\left(X\\theta-\\vec{y}\\right)^T\\left(X\\theta-\\vec{y}\\right)$$ \n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle \\Large J(\\theta) = 85104141370.9717$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from IPython.display import display, Math, Latex\n",
|
||
"\n",
|
||
"\n",
|
||
"def J(theta, X, y):\n",
|
||
" \"\"\"Wersja macierzowa funkcji kosztu\"\"\"\n",
|
||
" m = len(y)\n",
|
||
" cost = 1.0 / (2.0 * m) * ((X * theta - y).T * (X * theta - y))\n",
|
||
" return cost.item()\n",
|
||
"\n",
|
||
"\n",
|
||
"theta = np.matrix([10, 90, -1, 2.5]).reshape(4, 1)\n",
|
||
"\n",
|
||
"cost = J(theta, X, y)\n",
|
||
"display(Math(r\"\\Large J(\\theta) = %.4f\" % cost))\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Gradient – notacja macierzowa"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$\\nabla J(\\theta) = \\frac{1}{|\\vec y|} X^T\\left(X\\theta-\\vec y\\right)$$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Wyświetlanie macierzy w LaTeX-u\n",
|
||
"\n",
|
||
"\n",
|
||
"def latex_matrix(matrix):\n",
|
||
" ltx = r\"\\left[\\begin{array}\"\n",
|
||
" m, n = matrix.shape\n",
|
||
" ltx += \"{\" + (\"r\" * n) + \"}\"\n",
|
||
" for i in range(m):\n",
|
||
" ltx += r\" & \".join([(\"%.4f\" % j.item()) for j in matrix[i]]) + r\" \\\\ \"\n",
|
||
" ltx += r\"\\end{array}\\right]\"\n",
|
||
" return ltx\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle \\large \\theta = \\left[\\begin{array}{r}10.0000 \\\\ 90.0000 \\\\ -1.0000 \\\\ 2.5000 \\\\ \\end{array}\\right]\\quad\\large \\nabla J(\\theta) = \\left[\\begin{array}{r}-373492.7442 \\\\ -1075656.5086 \\\\ -989554.4921 \\\\ -23806475.6561 \\\\ \\end{array}\\right]$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from IPython.display import display, Math, Latex\n",
|
||
"\n",
|
||
"\n",
|
||
"def dJ(theta, X, y):\n",
|
||
" \"\"\"Wersja macierzowa gradientu funckji kosztu\"\"\"\n",
|
||
" return 1.0 / len(y) * (X.T * (X * theta - y))\n",
|
||
"\n",
|
||
"\n",
|
||
"theta = np.matrix([10, 90, -1, 2.5]).reshape(4, 1)\n",
|
||
"\n",
|
||
"display(\n",
|
||
" Math(\n",
|
||
" r\"\\large \\theta = \"\n",
|
||
" + latex_matrix(theta)\n",
|
||
" + r\"\\quad\"\n",
|
||
" + r\"\\large \\nabla J(\\theta) = \"\n",
|
||
" + latex_matrix(dJ(theta, X, y))\n",
|
||
" )\n",
|
||
")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Algorytm gradientu prostego – notacja macierzowa"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"$$ \\theta := \\theta - \\alpha \\, \\nabla J(\\theta) $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def gradient_descent(fJ, fdJ, theta, X, y, alpha, eps):\n",
|
||
" \"\"\"Implementacja algorytmu gradientu prostego za pomocą numpy i macierzy\"\"\"\n",
|
||
" current_cost = fJ(theta, X, y)\n",
|
||
" history = [[current_cost, theta]]\n",
|
||
" while True:\n",
|
||
" theta = theta - alpha * fdJ(theta, X, y) # implementacja wzoru\n",
|
||
" current_cost, prev_cost = fJ(theta, X, y), current_cost\n",
|
||
" if abs(prev_cost - current_cost) <= eps:\n",
|
||
" break\n",
|
||
" if current_cost > prev_cost:\n",
|
||
" print(\"Długość kroku (alpha) jest zbyt duża!\")\n",
|
||
" break\n",
|
||
" history.append([current_cost, theta])\n",
|
||
" return theta, history"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle \\large\\textrm{Wynik:}\\quad \\theta = \\left[\\begin{array}{r}17446.2135 \\\\ 86476.7960 \\\\ -1374.8950 \\\\ 2165.0689 \\\\ \\end{array}\\right] \\quad J(\\theta) = 10324864803.1591 \\quad \\textrm{po 374575 iteracjach}$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"theta_start = np.zeros((n + 1, 1))\n",
|
||
"\n",
|
||
"# Zmieniamy wartości alpha (rozmiar kroku) oraz eps (kryterium stopu)\n",
|
||
"theta_best, history = gradient_descent(J, dJ, theta_start, X, y, alpha=0.0001, eps=0.1)\n",
|
||
"\n",
|
||
"display(\n",
|
||
" Math(\n",
|
||
" r\"\\large\\textrm{Wynik:}\\quad \\theta = \"\n",
|
||
" + latex_matrix(theta_best)\n",
|
||
" + (r\" \\quad J(\\theta) = %.4f\" % history[-1][0])\n",
|
||
" + r\" \\quad \\textrm{po %d iteracjach}\" % len(history)\n",
|
||
" )\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"## 3.2. Metoda gradientu prostego w praktyce"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Kryterium stopu"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Algorytm gradientu prostego polega na wykonywaniu określonych kroków w pętli. Pytanie brzmi: kiedy należy zatrzymać wykonywanie tej pętli?\n",
|
||
"\n",
|
||
"W każdej kolejnej iteracji wartość funkcji kosztu maleje o coraz mniejszą wartość.\n",
|
||
"Parametr `eps` określa, jaka wartość graniczna tej różnicy jest dla nas wystarczająca:\n",
|
||
"\n",
|
||
" * Im mniejsza wartość `eps`, tym dokładniejszy wynik, ale dłuższy czas działania algorytmu.\n",
|
||
" * Im większa wartość `eps`, tym krótszy czas działania algorytmu, ale mniej dokładny wynik."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Na wykresie zobaczymy porównanie regresji dla różnych wartości `eps`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"eps= 0.1, cost=10324864803.159, steps=374575\n",
|
||
"eps= 1.0, cost=10324942127.799, steps=176746\n",
|
||
"eps= 10.0, cost=10325220747.014, steps= 60389\n",
|
||
"eps= 100.0, cost=10325742602.406, steps= 46184\n",
|
||
"eps= 1000.0, cost=10330453738.393, steps= 34059\n",
|
||
"eps=10000.0, cost=10377076139.727, steps= 22123\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"theta_start = np.zeros((n + 1, 1))\n",
|
||
"\n",
|
||
"epss = [10.0**n for n in range(-1, 5)]\n",
|
||
"costs = []\n",
|
||
"lengths = []\n",
|
||
"for eps in epss:\n",
|
||
" theta_best, history = gradient_descent(\n",
|
||
" J, dJ, theta_start, X, y, alpha=0.0001, eps=eps\n",
|
||
" )\n",
|
||
" cost = history[-1][0]\n",
|
||
" steps = len(history)\n",
|
||
" print(f\"{eps=:7}, {cost=:15.3f}, {steps=:6}\")\n",
|
||
" costs.append(cost)\n",
|
||
" lengths.append(steps)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def eps_cost_steps_plot(eps, costs, steps):\n",
|
||
" \"\"\"Wykres kosztu i liczby kroków w zależności od eps\"\"\"\n",
|
||
" fig, ax1 = plt.subplots()\n",
|
||
" ax2 = ax1.twinx()\n",
|
||
" ax1.plot(eps, steps, \"--s\", color=\"green\")\n",
|
||
" ax2.plot(eps, costs, \":o\", color=\"orange\")\n",
|
||
" ax1.set_xscale(\"log\")\n",
|
||
" ax1.set_xlabel(\"eps\")\n",
|
||
" ax1.set_ylabel(\"liczba kroków\", color=\"green\")\n",
|
||
" ax2.set_ylabel(\"koszt\", color=\"orange\")\n",
|
||
" plt.show()\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAApoAAAHECAYAAACZYIrlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEGElEQVR4nO3deVxU5f4H8M+wDIsw7LIIKEqiuKBiIuYuSsZ172Zqaa5pWimlXirT7q3w2mqldu+v0qzMLTVvroQiLrihuKEoigIKuLLvM8/vj4mBERQGGc4An/frNa+Y5zxz5jNHcr4+5zzPkQkhBIiIiIiI6piR1AGIiIiIqHFioUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIDFZ0dDSGDRsGNzc3yGQybNu2TafXFxYW4pVXXkGnTp1gYmKCkSNHVtkvKioK3bp1g5mZGby9vbFmzZonzk4sNImIiMiA5eXlwc/PDytWrKjV65VKJSwsLPDGG28gKCioyj5JSUkICQnBgAEDEBcXh7lz52LatGnYs2fPk0QnADIhhJA6BBEREVF1ZDIZtm7dqjUqWVRUhHfffRe//vorMjMz0bFjR/z73/9G//79K73+lVdeQWZmZqVR0YULF2LHjh04f/68pu3FF19EZmYmdu/eradP0zRwRJOIiIgarDlz5iAmJgbr16/H2bNn8fe//x3PPvssrly5UuN9xMTEVBrtDA4ORkxMTF3HbXJYaBIREVGDlJycjNWrV2PTpk3o06cP2rRpg7fffhu9e/fG6tWra7yf9PR0ODs7a7U5OzsjOzsbBQUFdR27STGROgARERFRbZw7dw5KpRJt27bVai8qKoKDg4NEqagiFppERETUIOXm5sLY2BixsbEwNjbW2mZlZVXj/bi4uCAjI0OrLSMjAwqFAhYWFnWStalioUlEREQNUteuXaFUKnH79m306dOn1vsJDAzEzp07tdoiIiIQGBj4pBGbPBaaREREZLByc3ORmJioeZ6UlIS4uDjY29ujbdu2mDBhAiZOnIjPPvsMXbt2xZ07dxAZGYnOnTsjJCQEABAfH4/i4mLcv38fOTk5iIuLAwB06dIFADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjR31/3EaHyxsRERGRwYqKisKAAQMqtU+aNAlr1qxBSUkJPvzwQ6xduxY3b96Eo6MjevbsiQ8++ACdOnUCALRq1Qo3btyotI+KJVBUVBTmzZuH+Ph4uLu7Y9GiRXjllVf09rmaChaaRERERKQXXN6IiIiIiPSChSYRERER6QUnA9Wj0tJSnD59Gs7OzjAyYo1PRETUEKhUKmRkZKBr164wMWHppAserXp0+vRp9OjRQ+oYREREVAvHjx/H008/LXWMBoWFZj0qu73V8ePH4erqKnEaIiIiqom0tDT06NGj0m0qqXosNOtR2elyV1dXuLu7S5yGiIiIdMHL3nTHI0ZEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIiveCC7Q1UclYy7ubffeR2R0tHeNp41mMiIiIiiaiUwJ2DQEEaYOEKOPUBjIylTkVgodkgJWclw+cbHxSWFj6yj7mJORLmJLDYJCKixi1lCxD7JpCfWt5m6Q74Lwc8RkuXiwDw1HmDdDf/7mOLTAAoLC187IgnERFRg5eyBTj4vHaRCQD5N9XtKVukyUUaLDSJiIio4VEp1SOZEFVs/Kstdq66H0mGhSYRERE1PHcOVh7J1CKA/BR1P5IMC00iIiJqeArS6rYf6QULTSIiImp4LFzrth/pBQtNIiIianic+qhnl0P2iA4ywNJD3Y8kw0KTiIiIGh4jY/USRlX6q/j0/5LraUqMhWYD5GjpCHMT88f2MTcxh6OlYz0lIiIikoDHaKDXL5XbLd2BPpu5jqYB4ILtDZCnjScS5iRUWifzdNppTPvfNJjITHBg0gEu1k5ERI2f27NA+wVA+p9Au7cASzfeGciAsNBsoDxtPCsVkt1cu+HHMz/iYPJB/J7wO3q495AoHRERUT2R2wFd/y11CnoEFpqNzIcDP0T8nXi80uUVqaMQERFRE8dCs5Hp27Iv+rbsK3UMIiIi/cu/CRTdAWz9ANmjZp+TlDgZqBFTqpQoKi2SOgYREZF+XP0e2NUVODZV6iT0CCw0G6ntCdvRYWUHfHH0C6mjEBER6UdpLmBsATg9I3USegQWmo1UVmEWEu4l4POYz5Ffki91HCIiorrXdRkw5h7QcpzUSegRWGg2Ui92fBGtbFvhTv4dfH/qe6njEBER6YeJBWBiKXUKegQWmo2UqbEpFj6zEADwyZFPUKwsljgRERFRHeL3WoPAQrMRe6XLK3C1ckVKdgp+Pvuz1HGIiIjqRmkBsMUZ2BcMFGdKnYYeg4VmI2ZuYo63At8CACw9tBRKlVLiRERERHXgziGgJBPIvgiY2kidhh6DhWYj92r3V2Fnbocr968g4lqE1HGIiIienEsQEHIRCPie62caOC7Y3shZya3wzXPfwNXKFf1b9Zc6DhER0ZOTyQCbduoHGTQWmk3A+E7jpY5ARERETRBPnTcx2UXZEEJIHYOIiKh2rqwCYucBD85InYRqQNJCc9WqVejcuTMUCgUUCgUCAwOxa9cuzfb+/ftDJpNpPWbOnKm1j+TkZISEhMDS0hLNmzfH/PnzUVpaqtUnKioK3bp1g5mZGby9vbFmzZpKWVasWIFWrVrB3NwcAQEBOH78uNb2wsJCzJ49Gw4ODrCyssKYMWOQkZFRdwejHiyJWgL3z91x4MYBqaMQERHVztXvgYQvgfunpE5CNSBpoenu7o6lS5ciNjYWJ0+exMCBAzFixAhcuHBB02f69OlIS0vTPJYtW6bZplQqERISguLiYhw5cgQ//vgj1qxZg/fff1/TJykpCSEhIRgwYADi4uIwd+5cTJs2DXv27NH02bBhA0JDQ7F48WKcOnUKfn5+CA4Oxu3btzV95s2bh//973/YtGkTDhw4gFu3bmH06NF6PkJ1607eHeQU5+Djgx9LHYWIiKh2OrwLtH4FcHtO6iRUE8LA2NnZie+++04IIUS/fv3Em2+++ci+O3fuFEZGRiI9PV3TtmrVKqFQKERRUZEQQogFCxaIDh06aL1u7NixIjg4WPO8R48eYvbs2ZrnSqVSuLm5ifDwcCGEEJmZmcLU1FRs2rRJ0+fixYsCgIiJianxZ0tJSREAREpKSo1fU5eSHiQJ4w+MBZZAHE89LkkGIiKihkbq7++GzGCu0VQqlVi/fj3y8vIQGBioaf/ll1/g6OiIjh07IiwsDPn55fftjomJQadOneDs7KxpCw4ORnZ2tmZUNCYmBkFBQVrvFRwcjJiYGABAcXExYmNjtfoYGRkhKChI0yc2NhYlJSVafdq1awdPT09Nn6oUFRUhOztb88jJyanNoakzrWxb4aXOLwEAPj7EUU0iIiLSL8kLzXPnzsHKygpmZmaYOXMmtm7dCl9fXwDA+PHj8fPPP2P//v0ICwvDTz/9hJdeeknz2vT0dK0iE4DmeXp6+mP7ZGdno6CgAHfv3oVSqayyT8V9yOVy2NraPrJPVcLDw2FjY6N5lH0uKS18ZiFkkGHbpW24cPtC9S8gIiIyBKX5QOL/AQVpUichHUheaPr4+CAuLg7Hjh3DrFmzMGnSJMTHxwMAZsyYgeDgYHTq1AkTJkzA2rVrsXXrVly9elXi1DUTFhaGrKwszaPsc0mpvVN7jG6vvrY0/FC4xGmIiIhqKD0SOD4D2NsL4OopDYbkhaZcLoe3tzf8/f0RHh4OPz8/LF++vMq+AQEBAIDExEQAgIuLS6WZ32XPXVxcHttHoVDAwsICjo6OMDY2rrJPxX0UFxcjMzPzkX2qYmZmpplRr1AoYG1t/bhDUW/e6fMOAGBz/Gbcy78ncRoiIqIakBkDDj2AFsN4N6AGRPJC82EqlQpFRUVVbouLiwMAuLq6AgACAwNx7tw5rdnhERERUCgUmtPUgYGBiIyM1NpPRESE5jpQuVwOf39/rT4qlQqRkZGaPv7+/jA1NdXqk5CQgOTkZK3rSRuKbq7d8M3Qb3BpziU4WDpIHYeIiKh6LZ4Dgo8B/l9KnYR0IOmdgcLCwjB06FB4enoiJycH69atQ1RUFPbs2YOrV69i3bp1eO655+Dg4ICzZ89i3rx56Nu3Lzp37gwAGDJkCHx9ffHyyy9j2bJlSE9Px3vvvYfZs2fDzMwMADBz5kx88803WLBgAaZMmYJ9+/Zh48aN2LFjhyZHaGgoJk2ahO7du6NHjx748ssvkZeXh8mTJwMAbGxsMHXqVISGhsLe3h4KhQKvv/46AgMD0bNnz/o/cHVgdo/ZUkcgIiLSnczgxsjocaSc8j5lyhTRsmVLIZfLhZOTkxg0aJDYu3evEEKI5ORk0bdvX2Fvby/MzMyEt7e3mD9/vsjKytLax/Xr18XQoUOFhYWFcHR0FG+99ZYoKSnR6rN//37RpUsXIZfLRevWrcXq1asrZfn666+Fp6enkMvlokePHuLo0aNa2wsKCsRrr70m7OzshKWlpRg1apRIS0vT6fMa6vIId/LuSB2BiIjo0fJShVCWSvb2hvr93RDIhOAVtfUlNTUVHh4eSElJgbu7u9RxkF2UjVe2vYKIaxFIejMJjpaOUkciIiKqbFc3ID8Z6LMVaN6n3t/e0L6/GxKOPzdh1nJr3Mi6gdziXCw/WvUELCIiIkkVZwF514Gi+4CindRpSEcsNJswmUyGd3qrZ6B/ffxrZBdlS5yIiIjoIXIbYHQG8OwJwNxJ6jSkIxaaTdyo9qPQzrEdsoqysPLESqnjEBERVWZkCtj7S52CaoGFZhNnJDNCWO8wAMDnMZ8jvyS/mlcQERER1QwLTcK4juPQyrYV7uTfwQ+nf5A6DhERkdrNP4C9zwCJ30mdhGqJhSbB1NgUC3otAACsiVsDLkRAREQGIXUbcPcIkHlW6iRUS5Iu2E6GY3JX9eL0k7pMgoy39iIiIkPQcTFg1w1wDJA6CdUSC00CAJibmGPW07OkjkFERFSumQfQ9jWpU9AT4KlzqkQlVEjLSZM6BhERETVwLDRJy9mMs+i8qjOG/jKU12oSEZF0zn0ApG4HlEVSJ6EnwEKTtLgr3HEj6wbOZJzBzis7pY5DRERNUV4ycG4JcHAUUJIjdRp6Aiw0SYu9hT1mdVdfq/nRwY84qklERBIQQNs5gOcLgLmj1GF0Fh0djWHDhsHNzQ0ymQzbtm2r9jVRUVHo1q0bzMzM4O3tjTVr1mhtX7VqFTp37gyFQgGFQoHAwEDs2rVLs/369euQyWRVPjZt2lTHn7DmWGhSJfN6zoOZsRliUmMQfSNa6jhERNTUNGsJdP8aeOZXqZPUSl5eHvz8/LBixYoa9U9KSkJISAgGDBiAuLg4zJ07F9OmTcOePXs0fdzd3bF06VLExsbi5MmTGDhwIEaMGIELFy4AADw8PJCWlqb1+OCDD2BlZYWhQ4fq5XPWhExwyKrepKamwsPDAykpKXB3d5c6zmPN3jEbK0+uxODWg7H35b1SxyEiIpLMk3x/y2QybN26FSNHjnxkn4ULF2LHjh04f/68pu3FF19EZmYmdu/e/cjX2dvb45NPPsHUqVOr3N61a1d069YN33//vU6Z6xJHNKlK85+ZD2OZMSKuReDEzRNSxyEioqYiJ1H9MEA5OTnIzs7WPIqK6maiUkxMDIKCgrTagoODERMTU2V/pVKJ9evXIy8vD4GBgVX2iY2NRVxc3COL0PrCQpOq1Mq2FSZ0ngAA2HBhg8RpiIioybgQDvzvKeDcv6ROUomvry9sbGw0j/Dw8DrZb3p6OpydnbXanJ2dkZ2djYKCAk3buXPnYGVlBTMzM8ycORNbt26Fr69vlfv8/vvv0b59e/Tq1atOMtYWF2ynR1rUdxHGdxyPIW2GSB2FiIiaCmUBIDMBnKQtkKoSHx+PFi1aaJ6bmZnV6/v7+PggLi4OWVlZ2Lx5MyZNmoQDBw5UKjYLCgqwbt06LFq0qF7zVYWFJj2St703vO29pY5BRERNyTPrgKdXAibNpE5SibW1NRQKRZ3v18XFBRkZGVptGRkZUCgUsLCw0LTJ5XJ4e6u/l/39/XHixAksX74c//nPf7Reu3nzZuTn52PixIl1nlVXPHVONZJdlI07eXekjkFERE2B3BYwMpU6Rb0JDAxEZGSkVltERMQjr78so1KpqrxO9Pvvv8fw4cPh5ORUpzlrg4UmVeuXs7+g5ZctsWi/9EPwRETUiKlKpE5QJ3JzcxEXF4e4uDgA6uWL4uLikJycDAAICwvTGm2cOXMmrl27hgULFuDSpUtYuXIlNm7ciHnz5mn6hIWFITo6GtevX8e5c+cQFhaGqKgoTJgwQeu9ExMTER0djWnTpun/g9YAC02qlqeNJzILM7E6bjVuZt+UOg4RETVGeTeAzQ7AobGAUEmd5omcPHkSXbt2RdeuXQEAoaGh6Nq1K95//30AQFpamqboBAAvLy/s2LEDERER8PPzw2effYbvvvsOwcHBmj63b9/GxIkT4ePjg0GDBuHEiRPYs2cPBg8erPXeP/zwA9zd3TFkiGHMr+A6mvWoIa2j+bC+q/viYPJBhPYMxWfBn0kdh4iIGpvE/wOOzwCcegODD0qdRktD/v6WGkc0qUbe6fMOAODb2G9xN/+uxGmIiKjRaTMVCD4B+NXNkkFkGFhoUo0EtwlGN9duyC/Jx1fHvpI6DhERNTYyI8ChO9C8t9RJqA6x0KQakclkeKe3elTz6+NfI7soW+JEREREZOhYaFKNjWo/Cu0c2yG7KBv7k/ZLHYeIiBqL8x8CZxYBuUlSJ6E6xgXbqcaMZEb4fvj3aN6sORdyJyKiuqFSAglfAUV3AOcBgJWX1ImoDrHQJJ308jC8W4IREVFDpgK6fgqk7wWa95E6DNUxnjqnWrt87zKKlcVSxyAioobMyBRoPRHo9XOTuhtQU8FCk2rljV1voN037fDL2V+kjkJEREQGioUm1YqnjScEBJYeXgqlSil1HCIiaojybwHXfwWKM6VOQnrCQpNq5VX/V2FnbofL9y7jt4u/SR2HiIgaopQtwJHxQPQoqZOQnrDQpFqxNrPGmwFvAgA+PvgxeCdTIiLSmUkzwMYXaBEidRLSExaaVGuvB7yOZqbNcCbjDHYl7pI6DhERNTRtJgMhFwCfeVInIT1hoUm1Zm9hj1ndZwEAPjr4EUc1iYiodoyMpU5AesJCk55IaGAozIzNcOnuJdzMuSl1HCIiaijybwIcoGj0uGA7PRFXa1f8Mf4P9HTvCSu5ldRxiIioIVApgV1dAGNLYOCfgOIpqRORnkg6orlq1Sp07twZCoUCCoUCgYGB2LWr/Fq/wsJCzJ49Gw4ODrCyssKYMWOQkZGhtY/k5GSEhITA0tISzZs3x/z581FaWqrVJyoqCt26dYOZmRm8vb2xZs2aSllWrFiBVq1awdzcHAEBATh+/LjW9ppkaaqCWgexyCQioprLuQKU5gElWYBVK6nTkB5JWmi6u7tj6dKliI2NxcmTJzFw4ECMGDECFy5cAADMmzcP//vf/7Bp0yYcOHAAt27dwujRozWvVyqVCAkJQXFxMY4cOYIff/wRa9aswfvvv6/pk5SUhJCQEAwYMABxcXGYO3cupk2bhj179mj6bNiwAaGhoVi8eDFOnToFPz8/BAcH4/bt25o+1WUhQAiBk7dOSh2DiIgMnU07YMw9YNA+3g2osRMGxs7OTnz33XciMzNTmJqaik2bNmm2Xbx4UQAQMTExQgghdu7cKYyMjER6erqmz6pVq4RCoRBFRUVCCCEWLFggOnTooPUeY8eOFcHBwZrnPXr0ELNnz9Y8VyqVws3NTYSHhwshRI2yVKWwsFBkZWVpHvHx8QKASElJqc2hMWgFJQWi67ddBZZAnM84L3UcIiKiOpOSktJov7/1zWAmAymVSqxfvx55eXkIDAxEbGwsSkpKEBQUpOnTrl07eHp6IiYmBgAQExODTp06wdnZWdMnODgY2dnZmlHRmJgYrX2U9SnbR3FxMWJjY7X6GBkZISgoSNOnJlmqEh4eDhsbG83D19e3tofH4JmbmKO1XWsAwNLDSyVOQ0RERIZA8kLz3LlzsLKygpmZGWbOnImtW7fC19cX6enpkMvlsLW11erv7OyM9PR0AEB6erpWkVm2vWzb4/pkZ2ejoKAAd+/ehVKprLJPxX1Ul6UqYWFhyMrK0jzi4+NrdlAaqLDeYQCAX8/9imsPrkmchoiIDNKV/wD7nwVSf5c6CdUDyQtNHx8fxMXF4dixY5g1axYmTZrUaAoyMzMzzUQnhUIBa2trqSPplb+bP4LbBEMplFh2eJnUcYiIyBCl/Aak7QFyEqVOQvVA8kJTLpfD29sb/v7+CA8Ph5+fH5YvXw4XFxcUFxcjMzNTq39GRgZcXFwAAC4uLpVmfpc9r66PQqGAhYUFHB0dYWxsXGWfivuoLgupvdvnXQDA6rjVuJVzS+I0RERkcPy/ArosAzw4obYpkLzQfJhKpUJRURH8/f1hamqKyMhIzbaEhAQkJycjMDAQABAYGIhz585pzQ6PiIiAQqHQXA8ZGBiotY+yPmX7kMvl8Pf31+qjUqkQGRmp6VOTLKTWp2Uf9PbsjWJlMT6P+VzqOEREZGhs2gG+8wErL6mTUD2QdMH2sLAwDB06FJ6ensjJycG6desQFRWFPXv2wMbGBlOnTkVoaCjs7e2hUCjw+uuvIzAwED179gQADBkyBL6+vnj55ZexbNkypKen47333sPs2bNhZmYGAJg5cya++eYbLFiwAFOmTMG+ffuwceNG7NixQ5MjNDQUkyZNQvfu3dGjRw98+eWXyMvLw+TJkwGgRlmo3Du938Fz657DkZQjEEJAJpNJHYmIiIikIOWU9ylTpoiWLVsKuVwunJycxKBBg8TevXs12wsKCsRrr70m7OzshKWlpRg1apRIS0vT2sf169fF0KFDhYWFhXB0dBRvvfWWKCkp0eqzf/9+0aVLFyGXy0Xr1q3F6tWrK2X5+uuvhaenp5DL5aJHjx7i6NGjWttrkqU6TWV5BJVKJf68+qdQqVRSRyEiIkOhLBXi9D+ESN+n/rkBaSrf3/ogE4I3Gq0vqamp8PDwQEpKCtzd3aWOQ0REVH/uHAYiegNyO2D0bcCo4dwFm9/ftddw/pSpQcorzkP8nXg83eJpqaMQEZGUTBVA61cAE+sGVWTSk+GfNOnNuYxzGPDjABgbGeP6m9dhYWohdSQiIpKKbSeg52qpU1A9M7hZ59R4tHNsByu5FW7n3cb3p7+XOg4RERHVMxaapDemxqZY8MwCAMCyw8tQrCyWOBEREUki8wJQ8Og76VHjxUKT9Gpyl8lwbuaMlOwUrDu3Tuo4REQkhdg3ga2uQNJPUiehesZCk/TKwtQCbwW+BQAIPxQOpUopcSIiIqpXKiWgKlT/7MC1p5saFpqkdzO7z4SduR0u37uMLRe3SB2HiIjqk5ExMPgQMDoDUDwldRqqZyw0Se+szazxRsAbkEGG0+mnpY5DRERSMG8udQKSAJc3onrxZsCbGNthLNo7tZc6ChER1RehAoRQj2pSk8QRTaoXdhZ2LDKJiJqaO0eArS5A7Dypk5BEWGhSvbv24Bri78RLHYOIiPQtbRdQdBcouiN1EpIIC02qV2vi1qDt120xbw//dUtE1Oh1WgIM2g+0e0vqJCQRFppUr/q17AcA2Ht1L07eOilxGiIi0isjU8C5P2DfVeokJBEWmlSvvOy8ML7TeADAxwc/ljgNERER6RMLTap3Yb3DIIMMWy9t5bWaRESNVew8IH4ZUHhb6iQkIRaaVO/aO7XHqPajAABLDy2VOA0REdW54kzg8jdA3EKgJEfqNCQhFpokiXd6vwMAWHduHa49uCZxGiIiqlMyY8B/OdBmOmDdRuo0JCEWmiQJfzd/BLcJRjN5M5zLOCd1HCIiqkum1kDb14CA/0qdhCTGOwORZFaFrIK9hT1szG2kjkJERER6wEKTJONl5yV1BCIiqmtZl4DcRMB5IGBiKXUakhhPnZPkhBD489qfuJd/T+ooRET0pK59DxwYBpx4TeokZABYaJLkpm2fhsE/DcZXx76SOgoRET0puT1g6Qm4PSd1EjIALDRJckOfGgoA+Or4V8gp4jIYREQNWocwYMR1wGOM1EnIALDQJMmNajcKPg4+yCzMxKqTq6SOQ0RET0omA4yMpU5BBoCFJknO2MgYYb3DAACfx3yOgpICiRMREVGtFKRJnYAMDAtNMgjjO41HS5uWyMjLwA+nf5A6DhER6ar4AbDNA/jDFyjJljoNGQgWmmQQTI1NseCZBQCAZUeWoURZInEiIiLSyf1YADL1aXNThdRpyECw0CSDMbnLZDg3c4alqSWSs5KljkNERLpwCQLG3AF6/Sp1EslFR0dj2LBhcHNzg0wmw7Zt26p9TVRUFLp16wYzMzN4e3tjzZo1WttXrVqFzp07Q6FQQKFQIDAwELt27aq0n5iYGAwcOBDNmjWDQqFA3759UVAg3SVpLDTJYFiYWuDQlEO48NoFtLHnvXGJiBocuS1g11nqFJLLy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU2fmJgYPPvssxgyZAiOHz+OEydOYM6cOTAykq7ckwkhhGTv3sSkpqbCw8MDKSkpcHd3lzoOERER1cCTfH/LZDJs3boVI0eOfGSfhQsXYseOHTh//rym7cUXX0RmZiZ27979yNfZ29vjk08+wdSpUwEAPXv2xODBg/Gvf/1Lp4z6xBFNMkgFJQX45ewv4L+DiIgagLNLgIPPA7cPSZ1Er3JycpCdna15FBUV1cl+Y2JiEBQUpNUWHByMmJiYKvsrlUqsX78eeXl5CAwMBADcvn0bx44dQ/PmzdGrVy84OzujX79+OHRI2j8TFppkcJQqJTqt6oSXtr6E3YmP/pccEREZiBvrgJTfgMJ0qZPola+vL2xsbDSP8PDwOtlveno6nJ2dtdqcnZ2RnZ2tdX3luXPnYGVlBTMzM8ycORNbt26Fr68vAODatWsAgCVLlmD69OnYvXs3unXrhkGDBuHKlSt1krM2WGiSwTE2MsbIdiMBAB8d/IijmkREhkwIoNc6oOMiwHWI1Gn0Kj4+HllZWZpHWFhYvb6/j48P4uLicOzYMcyaNQuTJk1CfHw8AEClUgEAXn31VUyePBldu3bFF198AR8fH/zwg3TLBrLQJIP0VuBbkBvLcTjlMA4mH5Q6DhERPYpMBjh0Bzr/s9Eva2Rtba2Z9a1QKGBmZlYn+3VxcUFGRoZWW0ZGBhQKBSwsLDRtcrkc3t7e8Pf3R3h4OPz8/LB8+XIAgKurKwBoRjjLtG/fHsnJ0q3kwkKTDJKrtSumdJkCAPj44McSpyEiItKfwMBAREZGarVFRERorr98FJVKpblOtFWrVnBzc0NCQoJWn8uXL6Nly5Z1G1gHLDTJYC14ZgGMZcbYc3UPTt46KXUcIiJ6WNF94Oz7wD3+HV1Rbm4u4uLiEBcXB0C9fFFcXJxmZDEsLAwTJ07U9J85cyauXbuGBQsW4NKlS1i5ciU2btyIefPmafqEhYUhOjoa169fx7lz5xAWFoaoqChMmDABgHp2+/z58/HVV19h8+bNSExMxKJFi3Dp0iXNrHQpSFpohoeH4+mnn4a1tTWaN2+OkSNHVqrE+/fvD5lMpvWYOXOmVp/k5GSEhITA0tISzZs3x/z581FaWqrVp7qFUAFgxYoVaNWqFczNzREQEIDjx49rbS8sLMTs2bPh4OAAKysrjBkzptJQN9UdLzsvjO80HgAQfqhuLrgmIqI6lLYbOP8v4OhkqZMYlJMnT6Jr167o2rUrACA0NBRdu3bF+++/DwBIS0vTOp3t5eWFHTt2ICIiAn5+fvjss8/w3XffITg4WNPn9u3bmDhxInx8fDBo0CCcOHECe/bsweDBgzV95s6di7CwMMybNw9+fn6IjIxEREQE2rSRcG1qIaHg4GCxevVqcf78eREXFyeee+454enpKXJzczV9+vXrJ6ZPny7S0tI0j6ysLM320tJS0bFjRxEUFCROnz4tdu7cKRwdHUVYWJimz7Vr14SlpaUIDQ0V8fHx4uuvvxbGxsZi9+7dmj7r168Xcrlc/PDDD+LChQti+vTpwtbWVmRkZGj6zJw5U3h4eIjIyEhx8uRJ0bNnT9GrV68af96UlBQBQKSkpNT2kDU5F25fEEYfGIkRv44QJcoSqeMQEVFFGQeEiH5eiHMfSp1Er/j9XXuSFpoPu337tgAgDhw4oGnr16+fePPNNx/5mp07dwojIyORnp6uaVu1apVQKBSiqKhICCHEggULRIcOHbReN3bsWBEcHKx53qNHDzF79mzNc6VSKdzc3ER4eLgQQojMzExhamoqNm3apOlz8eJFAUDExMTU6PPxF7V2bmTekDoCERE1Yfz+rj2DukYzKysLgHql+4p++eUXODo6omPHjggLC0N+fr5mW0xMDDp16qS1/lRwcDCys7M1t2WqbiHU4uJixMbGavUxMjJCUFCQpk9sbCxKSkq0+rRr1w6enp6PXFC1qKhIa2HXnJwcnY8JAZ42nlJHICIiolowkTpAGZVKhblz5+KZZ55Bx44dNe3jx49Hy5Yt4ebmhrNnz2LhwoVISEjAli1bADx6kdOybY/rU7YQ6oMHD6BUKqvsc+nSJc0+5HI5bG1tK/Upe5+HhYeH44MPPtDxSNCjJGcl42jqUbzQ4QWpoxAR0YM4oFkr9f3NiR7BYArN2bNn4/z585VulTRjxgzNz506dYKrqysGDRqEq1evSntxaw2EhYUhNDRU8/zmzZuV1reimrly7wp8V/rCSGaEPp594GrtKnUkIqKmSwjg4N+BvOvAwD8B535SJyIDZRCnzufMmYM//vgD+/fvr/Zm9QEBAQCAxMREAI9e5LRs2+P6lC2E6ujoCGNj4yr7VNxHcXExMjMzH9nnYWZmZloLu1pbWz/2s9Gjedt7I6BFAIqVxfgs5jOp4xARNW0lmYCxHJAZAfbdpE5DBkzSQlMIgTlz5mDr1q3Yt28fvLy8qn1N2ZpUZSvgBwYG4ty5c7h9+7amT0REBBQKhWb0sLqFUOVyOfz9/bX6qFQqREZGavr4+/vD1NRUq09CQgKSk5OrXVCVnpxMJsO7fd4FAHx78lvcy78ncSIioiZMbgeEXABG3ABMOYhCj6Hr7KFF+xaJfdf2iYKSgieeiTRr1ixhY2MjoqKitJYvys/PF0IIkZiYKP75z3+KkydPiqSkJPH777+L1q1bi759+2r2Uba80ZAhQ0RcXJzYvXu3cHJyqnJ5o/nz54uLFy+KFStWVLm8kZmZmVizZo2Ij48XM2bMELa2tlqz2WfOnCk8PT3Fvn37xMmTJ0VgYKAIDAys8eflrLUno1KpRJdvuwgsgXh/3/tSxyEioiaC39+1p3OhGbQ2SDT7qJkw+5eZ6P1Db/Fu5Lsi4mqEyC/O1/3NgSofq1evFkIIkZycLPr27Svs7e2FmZmZ8Pb2FvPnz9daR1MIIa5fvy6GDh0qLCwshKOjo3jrrbdESYn2mov79+8XXbp0EXK5XLRu3VrzHhV9/fXXwtPTU8jlctGjRw9x9OhRre0FBQXitddeE3Z2dsLS0lKMGjVKpKWl1fjz8hf1yW08v1FgCYTtUluRXZgtdRwioqZHWSqESiV1inrF7+/akwkhhK6joKWqUhxLPYboG9E4cOMAjqQcQZGyCE+7PY1DUw5Vv4MmKjU1FR4eHkhJSan2WlSqmlKlRIeVHZBwLwH/Dvo3FjyzQOpIRERNS9LPwJl3gbZzAN/5UqepF/z+rr1azTo3MTLBM57PwKmZE+wt7GFtZo1tl7bh0t1LdZ2PSIuxkTH+0fsfeH3X61AJldRxiIianlu7gPxk9YQgomroXGj+N/a/iLoehQM3DqCotAh9WvZB/5b98V6f99DZubM+MhJpmdBpAob7DIe9hX31nYmIqG4F/B/Qahxg7SN1EmoAdC40Z/4xE07NnPBW4Ft47enXYCW30kcuokcyNTZlkUlEJBUTS6DF36ROQQ2EzoXmlrFbEH0jGuvPr8fiqMXo6tIV/Vv1R/9W/dHbszcsTS31kZOoEiEEDiYfRFFpEQa3GSx1HCIiInqIzoXmyHYjMbLdSABAVmEWDiYfxKb4Tfjbur/BSGaEwvcK6zojUZXWnlmLV35/BT4OPrjw2gUYGxlLHYmIqPESAjg2BbDvDnhNAkx5RpOqV6sF2+/l38OWi1uwaP8ivBP5Dn4++zMUZgoMfWpoXecjeqRR7UfB1twWCfcSsPXSVqnjEBE1btkXgWtrgFOh1XYlKqPziGanVZ1w8c5F2FnYoW/LvpjebTr6terHiUBU7xRmCrzR4w38M/qf+PjgxxjTfgxkMpnUsYiIGie5A9Dl30DRXY5mUo3pPhnIfyb6teqHjs076iMPkU7eCHgDn8V8htPpp7E7cTdH1YmI9MXCGfDl2sWkG51Pnc/uMVtTZAr1nYXqPBRRTTlYOmBm95kAgI8PfSxxGiIiIqqoVtdorj2zFp1WdYLFRxaw+MgCnVd1xk9nfqrrbEQ1EhoYCrmxHIeSDyH6RrTUcYiIGp97J4GM/YCqROok1MBUW2huubgFt3JuaZ5/HvM5Zu2Yhee8n8PGv2/Exr9vxLPez2Lmjpn4IuYLvYYlqoqbtRumdJkCb3tvFJQUSB2HiKjxubgMiBwInP9I6iTUwFR7jaYQAr1/6I3/jfsfOjTvgK+Pf41VIasw0W+ips9wn+Ho4NQBSw4swbzAeXoNTFSVfw/+NyxNLWFiVKu7qhIR0eOYuwBmjoDbc1InoQam2m/lMb5j0LxZc7yw+QVceO0C0nLS0MujV6V+vTx6IS0nTS8hiaqjMFNIHYGIqPHq/hXQ7QtAVqsr7qgJq9FvTJ+WfXDglQMAAG97b2y8sLFSnw0XNuAph6fqNh2RjopKi/B/sf+HS3cvSR2FiKhxMTIGuIQc6ajG5xkdLR0BAB/0/wBjN49F9I1oPOPxDADgcMphRCZFYuPzlQtQovo0e+dsfH/6e7zc+WWsHbVW6jhERA2bEEDhbfXSRkS1oPMY+BjfMTg27RgcLR2xLWEbtiVsg6OlI45PO45R7UfpIyNRjZUtdbTu3DokPUiSOA0RUQOXFQ9sdQEi+gJCJXUaaoB0njlx/vZ5+Lv54+fRP1fatu3SNs190Imk0N2tO4a0GYK9V/fikyOfYGXISqkjERE1XPeOq/9ras3rM6lWdP6tCf45uMqRot/if8OELRPqJBTRk3in9zsAgB9O/8AJakRET6LNZGDULaDrp1InoQZK50JzWtdpCPopCOm56Zq2Dec3YOK2iVgzYk1dZiOqlb4t++IZj2dQpCzC5zGfSx2HiKhhs3AFbNpLnYIaKJ0LzQ8GfIDnvJ9D0Nog3C+4j3Xn1mHy75OxduRa/L3D3/WRkUgnMpkM7/RRj2quOrkK9/LvSZyIiIioaarV6tZfP/c1JmyZgJ7f9cTNnJv4dcyvGNFuRF1nI6q1od5D0dWlK5ytnJFVlAUHSwepIxERNSzHZwLKQqD9fMC2g9RpqIGqUaG5PWF7pbbR7Ubj4I2DGNdxHGQymabPcJ/hdZuQqBZkMhmiJ0fDSm4ldRQiooZHWQRc/wUozQXazpY6DTVgNSo0R64f+chtP5z+AT+c/gGA+std+b6yToIRPSkWmUREtSQzAfptB9L/BOz9pU5DDViNCk3VYq6dRQ3XrZxbWHliJd7r+x7MTcyljkNEZPiMjAHnAeoH0ROo1TWaRA2FEAIDfhyAy/cuw83aDa89/ZrUkYiIiJqMWq2+euD6AQz7dRi8v/KG91feGP7rcBy8cbCusxE9MZlMhjd6vAEAWHZ4GUqUJRInIiIycNlXgPhlQNYlqZNQI6Bzofnz2Z8R9FMQLE0t8UbAG3gj4A1YmFpg0NpBWHdunT4yEj2RKV2noHmz5riRdYO/o0RE1UnZDMQtBE6/LXUSagR0LjQ/OvgRlgUtw4bnN2gKzQ3Pb8DSoKX4V/S/9JGR6IlYmFogtGcoACD8UDiUKk5YIyJ6JEU7wDUY8BgjdRJqBHQuNK89uIZhPsMqtQ/3GV7lrSmJDMGsp2fB1twWCfcSsPXSVqnjEBEZLo9RwIDd6ttPUtMTORAozqzcXpKt3qYjnQtND4UHIq9FVmr/89qf8LDx0DkAUX1QmCnweo/XAQAfH/wYQgiJExERERmgjChAVVy5XVkI3NZ9Po7Os87fCnwLb+x+A3Hpcejl0QsAcDjlMNbErcHyZ5frHICovrwZ8Ca+Pfkt+nj2QWFpISxMLaSORERkWO6dBGw6ACb8+7HJeXC2/OeseKAgvfy5UAJpuwHLFjrvVudCc9bTs+Bi5YLPYj7DxviNAID2ju2x4fkNvA0lGTQHSwckz0vmWppERFVRFgGRA9RFxXNnAWtvqRNRfdrVBZDJ1I+qTpEbWwDdv9Z5tzoVmqWqUnx88GNM6ToFh6Yc0vnNiKTGIpOI6BFykwC5HSBKAavWUqeh+jYiCRAC2N4aCD4OmDuVbzOSA2bN1Qv560inazRNjEyw7PAylKpKdX4jIkMSkxKDD6I+kDoGEZHhsGkHjLgBBJ8EZLVaZpsasmYtAatWwHgV4NBd/bzsYeFaqyITqMVkoEGtB+HA9QO1ejMiQ3Ar5xb6rO6DJQeWIPZWrNRxiIgMh0wGWLpJnYKk9Ksx8OcAoOi+dntBhnqbjnS+RnOo91D8I/IfOHf7HPxd/dFM3kxr+3Cf4TqHIKpPbtZuGNdpHH4++zPCD4Vj8wubpY5ERCQtlbLWI1bUyAgBqIqA3d2Bfv8DbDtob9ORzoXmazvU94r+PObzSttkMhmU73MxbDJ8Yb3D8PPZn7Hl4hZcvHMR7Z3aSx2JiEg68UuBG+uA9guB1hOlTkNSksmAPr8BF5YCewOBXj8B7iPKt+lI51PnqsWqRz50LTLDw8Px9NNPw9raGs2bN8fIkSORkJCg1aewsBCzZ8+Gg4MDrKysMGbMGGRkZGj1SU5ORkhICCwtLdG8eXPMnz8fpaXa15FGRUWhW7duMDMzg7e3N9asWVMpz4oVK9CqVSuYm5sjICAAx48f1zkLNQy+Tr4Y1W4UBASWHl4qdRwiImnd2qle0kZVKHUSkpoQgMwY6L4c6PYpcGgscP5DALVbf1rnQjM1O/WR246mHtVpXwcOHMDs2bNx9OhRREREoKSkBEOGDEFeXp6mz7x58/C///0PmzZtwoEDB3Dr1i2MHj1as12pVCIkJATFxcU4cuQIfvzxR6xZswbvv/++pk9SUhJCQkIwYMAAxMXFYe7cuZg2bRr27Nmj6bNhwwaEhoZi8eLFOHXqFPz8/BAcHIzbt2/XOAs1LGG9wwAAv5z9Bdczr0sbhohISv3/AHqtA1pwmUKqwHsGMGAXkPAlEFPLkW6ho/bftBf38u9Vaj9045CwCbfRdXdabt++LQCIAwcOCCGEyMzMFKampmLTpk2aPhcvXhQARExMjBBCiJ07dwojIyORnp6u6bNq1SqhUChEUVGREEKIBQsWiA4dOmi919ixY0VwcLDmeY8ePcTs2bM1z5VKpXBzcxPh4eE1zlKdlJQUAUCkpKTUqD/p3+C1gwWWQMz6Y5bUUYiIyEA1qe/vba2EKLyr3ZZ9RYj/tRNinZHOu9N5RLOne08M+WkIcopyNG3RN6Lx3LrnsLjf4tpVu3/JysoCANjb2wMAYmNjUVJSgqCgIE2fdu3awdPTEzExMQCAmJgYdOrUCc7Ozpo+wcHByM7OxoULFzR9Ku6jrE/ZPoqLixEbG6vVx8jICEFBQZo+NcnysKKiImRnZ2seOTk5VfYj6bzb5120tGmJbq7dpI5CREQkvRFJgJmDdpu1NzD0NDD8ms6707nQ/G74d/C08cSwX4ehqLQI+5P2I2RdCP7Z/5+YFzhP5wBlVCoV5s6di2eeeQYdO3YEAKSnp0Mul8PW1larr7OzM9LT0zV9KhaZZdvLtj2uT3Z2NgoKCnD37l0olcoq+1TcR3VZHhYeHg4bGxvNw9fXt4ZHg+pL35Z9kfhGIqZ1myZ1FCKi+qcsBA6PB66tBbhGNgFAXgqQX+EyybvHgdi5QNJa9ZqaOtK50DSSGWH98+thamyKgWsHYvj64QgfFI43e76p85tXNHv2bJw/fx7r169/ov0YkrCwMGRlZWke8fHxUkeih8hkMpgY6bz4AhFR45ARBdz4FTjzjnoCCNGR8UDGfvXPBenA/sHAvePAmXeBc//UeXc1+oY9m3G2UtuSfksw7rdxeKnTS+jbsq+mT2fnzjqHmDNnDv744w9ER0fD3d1d0+7i4oLi4mJkZmZqjSRmZGTAxcVF0+fh2eFlM8Er9nl4dnhGRgYUCgUsLCxgbGwMY2PjKvtU3Ed1WR5mZmYGMzMzzfPs7OyaHA6SQImyBL+c+wVFpUV4tfurUschIqof1k8BHd4DTJrVaukaaoQyzwMOPdQ/J28EbDoCQw4DaXuB4zOBTu8//vUPqVGh2eXbLpDJZBAVFuose/6f2P/gv6f+CyGEzutoCiHw+uuvY+vWrYiKioKXl5fWdn9/f5iamiIyMhJjxowBACQkJCA5ORmBgYEAgMDAQHz00Ue4ffs2mjdvDgCIiIiAQqHQnKoODAzEzp07tfYdERGh2YdcLoe/vz8iIyMxcuRIAOpT+ZGRkZgzZ06Ns1DD9cflPzD598mwM7fD+E7jYW1mLXUkIiL9s24D+P1L6hRkSEQJYPTXIFn6n4D7XzfiUbQDCtNqsb8auP7geo0fupg1a5awsbERUVFRIi0tTfPIz8/X9Jk5c6bw9PQU+/btEydPnhSBgYEiMDBQs720tFR07NhRDBkyRMTFxYndu3cLJycnERYWpulz7do1YWlpKebPny8uXrwoVqxYIYyNjcXu3bs1fdavXy/MzMzEmjVrRHx8vJgxY4awtbXVms1eXZbqNKlZaw1MqbJUtP26rcASiGWHlkkdh4iIDIiu398HDhwQf/vb34Srq6sAILZu3Vrta/bv3y+6du0q5HK5aNOmjVi9erXW9pUrV4pOnToJa2trYW1tLXr27Cl27typ1adfv34C6gUvNY9XX321ph9TbXcPIU4vFCIjWoj15kLcj1O334kRYksL3fYlhNB5eaO69PDBKHtUPLgFBQXitddeE3Z2dsLS0lKMGjVKpKWlae3n+vXrYujQocLCwkI4OjqKt956S5SUlGj12b9/v+jSpYuQy+WidevWlf4AhRDi66+/Fp6enkIul4sePXqIo0ePam2vSZbHYaFp2H449YPAEgjnT5xFQUmB1HGIiPQrPUqIuyeEUCmlTmLwdP3+3rlzp3j33XfFli1balRolg2IhYaGivj4ePH1119XGhDbvn272LFjh7h8+bJISEgQ77zzjjA1NRXnz5/X9OnXr5+YPn261uBdVlaWbh82fb8QG23VSxnFTC5vPx0mxIFRuu1LCCETohY3rqRaSU1NhYeHB1JSUrSuRSXDUKIsgffX3kjOSsaK51bgtadfkzoSEZH+7AlQT/LouRpo/YrUaQzak3x/y2QybN26VXNpXlUWLlyIHTt24Pz585q2F198EZmZmdi9e/cjX2dvb49PPvkEU6dOBQD0798fXbp0wZdffqlTxkpUSqA0G5DblbflXgdMLAHz5jrtSudZ50SNlamxKeb3mg8AWHZ4GUqUJRInIiLSE1UpYOkJmFgDrsFSp2kwcnJytNbHLioqqpP9Vrfe98OUSiXWr1+PvLy8SvNEfvnlFzg6OqJjx44ICwtDfn6+7oGMjNW/I7cPqR+FdwCrVjoXmUANJwMRNRVTu07Fv6L/hRtZN/Dr+V8x0a+Wt9wiIjJkRiZAn02AqgQwMpU6TYPx8HrYixcvxpIlS554v9Wt921hYQEAOHfuHAIDA1FYWAgrKyts3bpVK9P48ePRsmVLuLm54ezZs1i4cCESEhKwZcuWmocpzQNOvq5eN1Oo1G0yY8BrItD9a/Wopg5YaBJVYGFqgdCeodh7bS+87b2ljkNEpF8sMnUSHx+PFi1aaJ5XXMKwPvj4+CAuLg5ZWVnYvHkzJk2ahAMHDmiKzRkzZmj6durUCa6urhg0aBCuXr2KNm3a1OxNToUCtw8A/f4HOD2jbrt9CIh9Azj1FtBjlU6ZWWgSPWT+M/OxsPdCqWMQEemHshhQ5gNyW6mTNDjW1tZQKBR1vt/q1vsuI5fL4e2tHgTx9/fHiRMnsHz5cvznP/+pcr8BAQEAgMTExJoXmim/Ab03A879y9taPAeYWACHXtB/oalUKfHF0S+w8cJGJGclo1hZrLX9/sL7uu6SyKAYyXjpMhE1Yul/AtEjgJYvAr1+kjoNofr1vh9FpVI99jrRuLg4AICrq2vNw5TmA+bOldvNmqu36Ujnb9QPDnyAz2M+x9gOY5FVlIXQwFCMbj8aRjIjLOm/ROcARIbqdt5tvBP5Dv689qfUUYiI6s69Y4AoBUyspE7SaOXm5iIuLk5T6CUlJSEuLg7JyckA1LeonjixfA7AzJkzce3aNSxYsACXLl3CypUrsXHjRsybN0/TJywsDNHR0bh+/TrOnTuHsLAwREVFYcKECQCAq1ev4l//+hdiY2Nx/fp1bN++HRMnTkTfvn3RubMOd2107AmcWwwoC8vbSguA8x+ot+lK1/WQWi9vLf5I+EMIIYTVx1Yi8V6iEEKI5UeXi3Gbx+m8vlJTwnU0G5a397wtsASizw99pI5CRFS3sq8IkXNV6hQNhq7f3/v3769ynfBJkyYJIYSYNGmS6NevX6XXPG697ylTpoiWLVsKuVwunJycxKBBg8TevXs125OTk0Xfvn2Fvb29MDMzE97e3mL+/Pm6r6P54JwQW9yE2OwgxJ8D1Y/NDuq2B+erf/1DdF5Hs9nHzXBx9kV42njC9TNX7Bi/A91cu+Hag2vo+p+uyPpHlu7VbhPBdTQblls5t+C13AvFymJEvxKNPi37SB2JiIgk0KS+v6//CriPAK7/AmRfUrcp2gOtJgDn3ge6fqLT7nQ+de6ucEdajvpel23s2mDv1b0AgBM3T8DMuH5nXxHpk5u1GyZ3mQwA+PjQxxKnISIiqgcnZqlnnXtPB7p9pn54TwPOvAsk/azz7nQuNEe1G4XIpEgAwOs9Xsei/Yvw1NdPYeK2iZjSdYrOAYgM2YJnFsBYZozdibtxKu2U1HGIiJ7MwTHAiTlAfqrUSchQ9foFODxOvaRRmZNvAMnrgUH7dd7dE9+CMiYlBjGpMXjK/ikM8xn2JLtq9JrU0HsjMnrDaGy9tBUDWw3EJ0MqnzJwtHSEp42nBMmIiHSQfwvY9tcakKPSAAsXafM0IE3u+/v6OuDkHGBgBHD1eyD1d3WRqWir866eeB3NQI9ABHo8fvo9UUOVnJWMHVd2AAD2Xd8H///6V+pjbmKOhDkJLDaJyLCZ2QN9twOZZ1lk0uO1Gg8UZwJ7nwHMnYCgA4B17W5iUqtCM+FuAr4+/jUu3r0IAGjv2B6v93gdPo4+tQpBZKju5t+ttFbswwpLC3E3/y4LTSIybMbmgPsw9YOootjQqtvNnQC7bsDlleVt/p/rtGudC83f4n/Di7+9iO5u3RHorh7JPJp6FB1XdcT6MesxxneMrrskIiIiIqk8OF11u5U3UJJdvl0m03nXOheaC/5cgLDeYfjngH9qtS/evxgL/lzAQpOIiMjQ3D0G3I8FWgwDmnlInYYMTZDuk3xqSudZ52k5aZjoN7FS+0udX9Ise0REREQG5NoPwMnZQHy41EmoidG50Ozfqj8O3jhYqf1Q8iEuaE1ERGSI7P0Bp2eAFiOkTkJNTI1OnW9P2K75ebjPcCz8cyFi02LR0119z8ujqUexKX4TPuj/gX5SEhERUe15z1A/iOpZjQrNketHVmpbeWIlVp5YqdU2e+dszOw+s06CEREREVHDVqNCU7VYpe8cRAbJ0dIR5ibmKCwtfGQfI5kR7C3s6zEVEZEO7p0A7LoARqZSJ6EmSOdZ58lZyXBu5gwzE+37mgshkJKdwrUEqVHxtPFEwpwE3M2/W2nb+dvnMW37NJSoSrDu3Dq80+cdCRISET1G/i1gTw9Abg+MuAGYWkmdiJoYnQvNVl+2Qnun9tj+4na0sW+jab+ddxtey72gfF9ZpwGJpOZp41nlP6C6uXYDAHxx9AtM6DShvmMREVUvJwEwcwCsnmKRSZLQedY5oL4TUI/veiDyWqRW+xPeNp2owZnoNxHHpx1HS9uWUkchIqrMeQAwKgPo85vUSaiJ0rnQlMlkWBmyEu/1eQ8h60Lw1bGvtLYRNTWmxuXXPe26sgt38u5ImIaI6CFGxoClm9QpqInSudAsG7WcFzgPW8duxfv738f07dOrvR80UWP3n5P/Qci6ELyw+QWUKEukjkNETZ3gRF6SXq1OnZcZ+tRQHJl6BPuv78fffv1bXWUiapD6tOyDZvJmiLoehdA9oVLHIaKm7sRrwJ4A4NYeqZNQE6ZzodmvVT/IjeWa575Ovjg27RhszW15jSY1ab5Ovvhl9C8AgG9OfIPvTn0ncSIiarKEAG7+Adw7LnUSauJkgtVhvUlNTYWHhwdSUlLg7u4udRzSkw+jP8Si/YtgamSKqFei0Mujl9SRiKgpyr8F3NoBeE0EjM2q70+PxO/v2tN5RHPnlZ3Yk1h5GH7v1b3YdWVXnYQiasje7fMu/u77d5SoSjB6w2ikZqdKHYmImiJLN8B7OotMkpTOheY//vwHlKLyWpkqocI/Iv9RJ6GIGjKZTIbVI1ajs3NnZORlYNOFTVJHIiIikoTOC7ZfuX8Fvk6+ldrbObZD4v3EOglF1NA1kzfD7y/+jv1J+zG562Sp4xBRU5KfCpxdBLQYAXiMlDoNNXE6j2jamNng2oNrldoT7yeimWmzOglF1Bi0sm2lVWTycmgiqhc3dwDX1gAXl0mdhEj3QnOEzwjM3T0XV+9f1bQl3k/EW3vfwnCf4XUajqixuJt/F0N+HoLdibuljkJEjZ1jAOAzD2g9ReokRLqfOl82eBme/eVZtFvRDu4K9cyr1OxU9PHsg0+HfFrnAYkag89jPsef1/7EiZsncHz6cbR1aCt1JCJqrOy6AP5dpE5BBKAWhaaNuQ2OTDmCiGsROJN+BhamFujs3Bl9W/bVRz6iRmFxv8U4cOMAjqQcwYj1I3B06lHYmNtIHYuIiEivdC40AfWs2iFthmBImyF1nYeoUTIzMcNvL/yG7v/tjkt3L2HClgn4/cXfYWxkLHU0ImpMbu0GmrUCFD6ATCZ1GqKaFZpfHfsKM/xnwNzEHF8d++qxfd8IeKNOghE1Ni5WLtj24jb0Wd0HO67swPv738dHgz6SOhYRNRZCBRx9BSjMAAbtB5z7S52IqGaTgb44+gXyivM0Pz/q8eXRL3V68+joaAwbNgxubm6QyWTYtm2b1vZXXnkFMplM6/Hss89q9bl//z4mTJgAhUIBW1tbTJ06Fbm5uVp9zp49iz59+sDc3BweHh5YtqzyTLxNmzahXbt2MDc3R6dOnbBz506t7UIIvP/++3B1dYWFhQWCgoJw5coVnT4vUXe37vi/Yf8HAPj40MfYeGGjxImIqNEofqC+PtPMAXAMlDoNEYAajmgmvZlU5c9PKi8vD35+fpgyZQpGjx5dZZ9nn30Wq1ev1jw3M9O+w8GECROQlpaGiIgIlJSUYPLkyZgxYwbWrVsHAMjOzsaQIUMQFBSEb7/9FufOncOUKVNga2uLGTNmAACOHDmCcePGITw8HH/729+wbt06jBw5EqdOnULHjh0BAMuWLcNXX32FH3/8EV5eXli0aBGCg4MRHx8Pc3PzOjsm1Pi91PklnEk/gy2XtlS5Ji0RUa2YOQADdgPKYsBYLnUaIjVhIACIrVu3arVNmjRJjBgx4pGviY+PFwDEiRMnNG27du0SMplM3Lx5UwghxMqVK4WdnZ0oKirS9Fm4cKHw8fHRPH/hhRdESEiI1r4DAgLEq6++KoQQQqVSCRcXF/HJJ59otmdmZgozMzPx66+/PjJfYWGhyMrK0jzK8qakpDz6QFCTUKosFffz70sdg4iIaiAlJYXf37VUoxHN0D2hNS5cPw/+vFYF76NERUWhefPmsLOzw8CBA/Hhhx/CwcEBABATEwNbW1t0795d0z8oKAhGRkY4duwYRo0ahZiYGPTt2xdyefm/7oKDg/Hvf/8bDx48gJ2dHWJiYhAaqv0Zg4ODNafyk5KSkJ6ejqCgIM12GxsbBAQEICYmBi+++GKV2cPDw/HBBx/U1aGgRsTYyBh2Fnaa57G3YtHZuTNMjU0lTEVEDVZpHgAjwMRC6iREWmpUaJ5OP12jnclQtzPcnn32WYwePRpeXl64evUq3nnnHQwdOhQxMTEwNjZGeno6mjdvrvUaExMT2NvbIz09HQCQnp4OLy8vrT7Ozs6abXZ2dkhPT9e0VexTcR8VX1dVn6qEhYVpFbA3b96Ery9PlZK21adXY8YfMzC923SsDFkpdRwiaoiS1gKn3gJ85gJdPpY6DZFGjQrN/ZP26ztHlSqOFHbq1AmdO3dGmzZtEBUVhUGDBkmSSRdmZmZa15RmZ2dLmIYMlaOlI5QqJVadXAU/Zz+82v1VqSMRUUNz5wigLADkXJ+XDIvOt6CUUuvWreHo6IjExEQAgIuLC27fvq3Vp7S0FPfv34eLi4umT0ZGhlafsufV9am4veLrqupDVFvDfIbhw4EfAgDm7JqDgzcOSpyIiBqcwLXA0DjAa6LUSYi0NKhCMzU1Fffu3YOrqysAIDAwEJmZmYiNjdX02bdvH1QqFQICAjR9oqOjUVJSoukTEREBHx8f2NnZafpERkZqvVdERAQCA9XLQ3h5ecHFxUWrT3Z2No4dO6bpQ/QkwnqH4e++f0epqhRjNo5Bclay1JGIqCGRyQA7P8DCVeokRFokLTRzc3MRFxeHuLg4AOpJN3FxcUhOTkZubi7mz5+Po0eP4vr164iMjMSIESPg7e2N4OBgAED79u3x7LPPYvr06Th+/DgOHz6MOXPm4MUXX4SbmxsAYPz48ZDL5Zg6dSouXLiADRs2YPny5VrXTr755pvYvXs3PvvsM1y6dAlLlizByZMnMWfOHADqOyHNnTsXH374IbZv345z585h4sSJcHNzw8iRI+v1mFHjJJPJsHrEavg5++FO/h2M2jAK+SX5UsciIiJ6MlJOed+/f78AUOkxadIkkZ+fL4YMGSKcnJyEqampaNmypZg+fbpIT0/X2se9e/fEuHHjhJWVlVAoFGLy5MkiJydHq8+ZM2dE7969hZmZmWjRooVYunRppSwbN24Ubdu2FXK5XHTo0EHs2LFDa7tKpRKLFi0Szs7OwszMTAwaNEgkJCTo9Hm5PAJVJ+lBknBc5iiwBOKbY99IHYeIDJ1KKUREPyFOLxSiKFPqNI0Wv79rTyaEEBLWuU1KamoqPDw8kJKSAnd3d6njkIE6cP0AYlJjsPCZhZDxXsVE9Dh3jwF7ewKmCmD0HS7Urif8/q69Gs06J6L6069VP/Rr1U/qGETUENi0B3qtA4pYZJJhalCTgYiamtziXEz+fTIS7iZIHYWIDJGpAmg1DvB5Q+okRFVioUlkwObtnoc1cWswYv0IZBVmSR2HiIhIJyw0iQzYhwM/hLvCHQn3EjBhywQoVUqpIxGRobi1B7i2Fii8K3USokdioUlkwJytnLFt7DaYm5hjx5UdWLR/kdSRiMhQJHwBHJ0EXPtB6iREj8RCk8jA+bv54/vh3wMAwg+FY/359RInIiKD4NQbsPUDWgyTOgnRI7HQJGoAxncajwW9FgAApvw+BafSTkmciIgk1/E94Lk49cxzIgPFQpOogfh40McY6j0UNuY2KFYWSx2HiIioWlxHk6iBMDYyxrox65BXnIcWihZSxyEiqaiUQGYcYNcVkHG8iAwbf0OJGhBbc1utIjM1O1XCNEQkifsngN3dgR0dAd7cjwwcC02iBmpz/Gb4fOODb09+K3UUIqpPOVcBk2aAbWeAt6klA8dT50QNVOL9ROSX5OP1Xa+jg1MH9GnZR+pIRFQfvCYAns8DxQ+kTkJULY5oEjVQC59ZiLEdxqJUVYoxG8fgRuYNqSMRUX0xNgMsXKROQVQtFppEDZRMJsMPI35AV5euuJN/ByM3jER+Sb7UsYhIn4RK6gRUA9HR0Rg2bBjc3Nwgk8mwbdu2al8TFRWFbt26wczMDN7e3lizZo3W9lWrVqFz585QKBRQKBQIDAzErl27qtyXEAJDhw6t8XvrEwtNogbM0tQS217cBidLJ8Slx2HK71MgODmAqPE6MAKIHATcj5U6CT1GXl4e/Pz8sGLFihr1T0pKQkhICAYMGIC4uDjMnTsX06ZNw549ezR93N3dsXTpUsTGxuLkyZMYOHAgRowYgQsXLlTa35dffgmZgVy/y2s0iRo4TxtP/PbCbxi4diA2XNiA4T7DMb7TeKljEVFdK80D0vcCqmLAuJnUaegxhg4diqFDh9a4/7fffgsvLy989tlnAID27dvj0KFD+OKLLxAcHAwAGDZM+w5QH330EVatWoWjR4+iQ4cOmva4uDh89tlnOHnyJFxdXevg0zwZFppEjUCfln3wzdBvkHg/ES90eEHqOESkDybNgJALQMZ+QOEjdZomKScnB9nZ2ZrnZmZmMDMze+L9xsTEICgoSKstODgYc+fOrbK/UqnEpk2bkJeXh8DAQE17fn4+xo8fjxUrVsDFxTCu4WWhSdRIvNr9VakjEJG+WXurHyQJX19freeLFy/GkiVLnni/6enpcHZ21mpzdnZGdnY2CgoKYGFhAQA4d+4cAgMDUVhYCCsrK2zdulUr07x589CrVy+MGDHiiTPVFRaaRI1QsbIYH0Z/iNDAUNia20odh4ioUYiPj0eLFuU3zaiL0Uxd+Pj4IC4uDllZWdi8eTMmTZqEAwcOwNfXF9u3b8e+fftw+vTpes1UHU4GImqEJm2bhH9F/wvjfxsPpUopdRwielL3Y4GTrwMZB6RO0qRZW1trZn0rFIo6KzRdXFyQkZGh1ZaRkQGFQqEZzQQAuVwOb29v+Pv7Izw8HH5+fli+fDkAYN++fbh69SpsbW1hYmICExP1WOKYMWPQv3//OslZGyw0iRqh+b3mw8LEArsSd+GdyHekjkNETyp5M3D5GyCRdwJrjAIDAxEZGanVFhERoXX9ZVVUKhWKiooAAP/4xz9w9uxZxMXFaR4A8MUXX2D16tV6yV0TPHVO1Ah1c+2GH0b8gHG/jcOyI8vg5+LHmehEDZnrs0DRXaDFsOr7kuRyc3ORmJioeZ6UlIS4uDjY29vD09MTYWFhuHnzJtauXQsAmDlzJr755hssWLAAU6ZMwb59+7Bx40bs2LFDs4+wsDAMHToUnp6eyMnJwbp16xAVFaVZAsnFxaXKCUCenp7w8vLS8yd+NBaaRI3Uix1fxJn0M1h6eCmmbp8KHwcf+Lv5Sx2LiGrDuZ/6QQ3CyZMnMWDAAM3z0NBQAMCkSZOwZs0apKWlITk5WbPdy8sLO3bswLx587B8+XK4u7vju+++0yxtBAC3b9/GxIkTkZaWBhsbG3Tu3Bl79uzB4MGD6++D1YJMcHXnepOamgoPDw+kpKTA3d1d6jjUBChVSgxfPxw7r+yEu8IdJ6efhLOVc/UvJCIiDX5/1x6v0SRqxIyNjLFu9Dr4OPggpygHV+5fkToSEekqdTuQnyp1CqJa4alzokbOxtwG28dthxACPo5c5JmoQSnJBg49D6hKgOFJgFUrqRMR6YSFJlET0Nahrdbz/JJ8WJpaSpSGiGqsIB2wfxoovs8ikxoknjonamIir0Wi9fLWOHCd6/ERGTxFW2DIYWBonNRJiGqFhSZRE7P27Fpk5GXg+U3P40bmDanjEFFNGNfvHWiI6goLTaIm5tuQb9HNtRvu5t/FyA0jkVecJ3UkIqpKSQ6gKpU6BdETYaFJ1MRYmFpg29htaN6sOeLS4zBl+xRwlTMiA3ThI2BLc+DyCqmTENUaC02iJsjDxgO/vfAbTI1MsfHCRoQfCpc6EhE97M5hoPgBILeXOglRrbHQJGqienv2xorn1CMl7+17D/uS9kmciIi0DIoCgg4CLUKkTkJUa1zeiKgJm+4/HXHpccgryUMvj15SxyGiioyMgea9pU5B9ERYaBI1cV8N/QpGMiPIZDKpoxARUSPDU+dETZyxkbGmyFQJFVafXg2lSilxKqImrDgLiOgNnP+Is86pwZO00IyOjsawYcPg5uYGmUyGbdu2aW0XQuD999+Hq6srLCwsEBQUhCtXtO/VfP/+fUyYMAEKhQK2traYOnUqcnNztfqcPXsWffr0gbm5OTw8PLBs2bJKWTZt2oR27drB3NwcnTp1ws6dO3XOQtTQjf9tPKZsn4KwyDCpoxA1XWl71BOBrv8EGPHEIzVskhaaeXl58PPzw4oVVS/dsGzZMnz11Vf49ttvcezYMTRr1gzBwcEoLCzU9JkwYQIuXLiAiIgI/PHHH4iOjsaMGTM027OzszFkyBC0bNkSsbGx+OSTT7BkyRL897//1fQ5cuQIxo0bh6lTp+L06dMYOXIkRo4cifPnz+uUhaihG9N+DADgkyOf4Jezv0ichqiJcu4P9Pgv4Mt/8FEjIAwEALF161bNc5VKJVxcXMQnn3yiacvMzBRmZmbi119/FUIIER8fLwCIEydOaPrs2rVLyGQycfPmTSGEECtXrhR2dnaiqKhI02fhwoXCx8dH8/yFF14QISEhWnkCAgLEq6++WuMsNZGSkiIAiJSUlBq/hqi+vRv5rsASCPMPzcWJmyeqfwERUSPH7+/aM9hrNJOSkpCeno6goCBNm42NDQICAhATEwMAiImJga2tLbp3767pExQUBCMjIxw7dkzTp2/fvpDL5Zo+wcHBSEhIwIMHDzR9Kr5PWZ+y96lJlqoUFRUhOztb88jJyant4SCqN/8c8E8MazsMhaWFGLl+JNJz06WOREREDZTBFprp6eovN2dnZ612Z2dnzbb09HQ0b95ca7uJiQns7e21+lS1j4rv8ag+FbdXl6Uq4eHhsLGx0Tx8fX2r+dRE0jOSGeHn0T+jvWN73My5iTEbx6CotEjqWERNQ/JmIGUrUJJbfV+iBsBgC83GICwsDFlZWZpHfHy81JGIakRhpsDvL/4OW3NbnEo7hVNpp6SORNQ0nH0fODgauLVD6iREdcJgp7O5uLgAADIyMuDq6qppz8jIQJcuXTR9bt++rfW60tJS3L9/X/N6FxcXZGRkaPUpe15dn4rbq8tSFTMzM5iZmWmeZ2dnP/5DExmQpxyewua/b4atuS383fyljkPU+KlKANdgAAJwfVbqNER1wmBHNL28vODi4oLIyEhNW3Z2No4dO4bAwEAAQGBgIDIzMxEbG6vps2/fPqhUKgQEBGj6REdHo6SkRNMnIiICPj4+sLOz0/Sp+D5lfcrepyZZiBqjQa0HaRWZQggJ0xA1ckamgP8XwN8uAnIbqdMQ1QlJC83c3FzExcUhLi4OgHrSTVxcHJKTkyGTyTB37lx8+OGH2L59O86dO4eJEyfCzc0NI0eOBAC0b98ezz77LKZPn47jx4/j8OHDmDNnDl588UW4ubkBAMaPHw+5XI6pU6fiwoUL2LBhA5YvX47Q0FBNjjfffBO7d+/GZ599hkuXLmHJkiU4efIk5syZAwA1ykLU2J28dRLd/tsNSQ+SpI5CREQNhZRT3vfv3y8AVHpMmjRJCKFeVmjRokXC2dlZmJmZiUGDBomEhAStfdy7d0+MGzdOWFlZCYVCISZPnixycnK0+pw5c0b07t1bmJmZiRYtWoilS5dWyrJx40bRtm1bIZfLRYcOHcSOHTu0ttckS3W4PAI1VCqVSvT5oY/AEojOqzqLnKKc6l9ERDVXnCNE1iWpU9Aj8Pu79mRC8FxYfUlNTYWHhwdSUlLg7u4udRwinaRmp6L7f7sjIy8DY9qPwaa/b+L90Ynqyo0NwOEXAbcQoP8fUqehh/D7u/YM9hpNIjIs7gp3bBm7BaZGpvjt4m/46OBHUkciajzyrquv0bThMnjUuLDQJKIa6+XRC6tCVgEAFu1fhN8v/S5xIqJGwnchMOYe0H6B1EmI6hQLTSLSydRuUzHnafVEuZe2voSLdy5KnIiokTC1BswdpU5BVKcMdh1NIjJcnwd/jvN3zsNabo0WihZSxyFq2IQAeL0zNVIsNIlIZ6bGpvj9xd9hJbeCkYwnRoieyO7ugKU74P8lYOUldRqiOsVvCCKqFYWZQlNkCiFw4PoBiRMRNUA5icCDU8CtnYDcXuo0RHWOhSYRPREhBKZsn4L+P/bH2jNrpY5D1LBYtQGGngYCvufdgKhRYqFJRE9EJpPB3Vq9rtyM/83A8ZvHJU5E1IDIZIBdF6D1RKmTEOkFC00iemIfDPgAw32Go0hZhJHrR+JWzi2pIxERkQFgoUlET8xIZoSfRv0EXydfpOWmYfSG0SgsLZQ6FpFhu7UHiAsD7p+WOgmR3rDQJKI6oTBT4PcXf4etuS2O3TyGWTtmgXe4JXqMpB+B+KVA8gapkxDpDQtNIqoz3vbe2PD8BvUI55mfcCbjjNSRiAyX59+Bli8C7qOlTkKkN1xHk4jq1JA2Q/DN0G/Q1qEturh0kToOkeHyGKV+EDViLDSJqM7NenqW1BGIiMgA8NQ5EelVwt0EPL/xeeQW50odhchwJP8GFN2TOgWR3nFEk4j0RqlSYuSGkbh09xJUQoXNL2zmLSuJshOAQ88DxubAmHuAiaXUiYj0hn/jE5HeGBsZ44fhP0BuLMfWS1vxYfSHUkcikl7hHcC2M+DUh0UmNXosNIlIrwI9AvFtyLcAgMVRi7Ht0jZpAxFJrXlv4LkzQL/tUich0jsWmkSkd5O7TsYbPd4AALy89WWcv31e4kREBsDYXOoERHrHQpOI6sWnQz7FQK+ByC3OxYj1I3C/4L7UkYjqX3EWwBsZUBPCQpOI6oWpsSk2Pr8RXrZecLVyRamqVOpIRPXvxExgmzuQslXqJET1grPOiajeOFg6YN+kfXCzdoPcWC51HKL6JVTA7YNAwS3A3FnqNET1giOaRFSvWtm20ioykx4kSZiGqB7JjIDhiUD/3YBDgNRpiOoFC00ikoRSpcTbe99G+xXtcSz1mNRxiOqHsTngFgwYGUudhKhesNAkIknIZDJcfXAVRcoijNowCrdybkkdiYiI6hgLTSKShJHMCGtHrkUHpw5Iy03D6A2jUVhaKHUsIv3ITgAig4Arq6ROQlSvOBmIiCRjbWaN31/8HU//39M4dvMY/r7x71jSfwlkMlmlvo6WjvC08ZQgJdETUCmBOweBxP8CGZEAjICnZkmdiqjesNAkIkm1sW+Db577BhO2TMAfV/7AH1f+qLKfuYk5EuYksNikhiNlCxD7JpCfWt724JS63WO0dLmI6hFPnROR5No5tqu2T2FpIe7m362HNER1IGULcPB57SITAIrvq9tTtkiTi6iesdAkIiKqSyqleiQTVd0B6K+22LnqfkSNHAtNImowdl7ZieM3jyOzMFPqKESPdudg5ZFMLQLIT1H3o0YpOjoaw4YNg5ubG2QyGbZt21bta6KiotCtWzeYmZnB29sba9as0dq+atUqdO7cGQqFAgqFAoGBgdi1a5dWn1dffRVt2rSBhYUFnJycMGLECFy6dKkOP5nuWGgSUYOxaP8iBHwXALt/26HX9720th24fgAX71xEsbJYonREUN/H/LFFZgUFafrNQpLJy8uDn58fVqxYUaP+SUlJCAkJwYABAxAXF4e5c+di2rRp2LNnj6aPu7s7li5ditjYWJw8eRIDBw7EiBEjcOHCBU0ff39/rF69GhcvXsSePXsghMCQIUOgVEo3es7JQETUYHRz6Ya03DSk5abBwdJB0y6EwMgNI5FZmAkjmRG8bL3g4+iDtvZt4ePogy4uXdDTvaeEyalJSPoJuPAx4NSnZv0tXPWbhyQzdOhQDB06tMb9v/32W3h5eeGzzz4DALRv3x6HDh3CF198geDgYADAsGHDtF7z0UcfYdWqVTh69Cg6dOgAAJgxY4Zme6tWrfDhhx/Cz88P169fR5s2bZ70Y9UKC00iajD+b/j/oZtrN2QXZSOnKEfTnl+Sj9Z2rXH53mXkFufi6oOruPrgKnZiJwDgWe9nsWtC+Smmqb9PRQtFC/g4+KCtQ1u0dWgLG3Obev881MBlXQKsWqnv9gMApflA9iXARAFYugP5N1H1dZoy9faaFqRkMHJycpCdna15bmZmBjMzsyfeb0xMDIKCgrTagoODMXfu3Cr7K5VKbNq0CXl5eQgMDKyyT15eHlavXg0vLy94eHg8ccbaYqFJRA2OwkwBhZlC87yZvBliZ8RCCIG03DQk3E3A5XuXcfneZSTcS8AzHs9o+t4vuI8f4n6otE/nZs7wcfTBqHajMLfnXE17ibIEpsamev081ADtfw5I2wX03Qa4j1C3eYwBTJoBLYap18w8+DwAGbSLzb/WiPX/krehbIB8fX21ni9evBhLlix54v2mp6fD2dlZq83Z2RnZ2dkoKCiAhYUFAODcuXMIDAxEYWEhrKyssHXr1kqZVq5ciQULFiAvLw8+Pj6IiIiAXC5/4oy1xUKTiCTnaOkIcxPzx94ZyNzEHI6Wjo/dj0wmg5u1G9ys3TDAa0CVfYxkRvh08KdIuJegKUTTc9ORkZeBjLwMdGreSdM3uygbDssc4GXrhbYObbVGQH0cfeBq5Vrl4vLUyOQkAukR2gutK9oBGX8C2ZfL28wdAa+X1D97jAb6bK68jqalu7rI5DqaDVJ8fDxatGiheV4Xo5m68PHxQVxcHLKysrB582ZMmjQJBw4c0Co2J0yYgMGDByMtLQ2ffvopXnjhBRw+fBjm5ub1mrUMC00ikpynjScS5iQ8dp3MurozkK25Ld7q9ZZWW3ZRtmYEtLVda0375XuXUaoqxZX7V3Dl/hXsuLJD63Wzn56Nb577BgBQUFKALRe3qK8NdWirNeJKDVhJNrDDF1CVAM37Azbt1e2+C4FOiwC53aNf6zEaaDFCPbu8IE19TaZTH45kNmDW1tZQKOr+/20XFxdkZGRotWVkZEChUGhGMwFALpfD29sbgHriz4kTJ7B8+XL85z//0fSxsbGBjY0NnnrqKfTs2RN2dnbYunUrxo0bV+e5a8KgZ50vWaK+FV3FR7t25Qs7FxYWYvbs2XBwcICVlRXGjBlT6Q8qOTkZISEhsLS0RPPmzTF//nyUlpZq9aluSQEAWLFiBVq1agVzc3MEBATg+PHjevnMRE2Vp40nurl2e+RDn3cEUpgp0N2tO8Z3Gq81acjf1R+p81Kxb+I+fBvyLeb1nIeQp0Lgbe8NY5lxpaL0pa0v4en/exo2S23g+pkr+q3ph+nbp+PTI58iLj1Ob/mpjhRkAPHLgLh3yttMFYDbc4DLEEBZUN5u4fz4IrOMkTHg3B9oNU79XxaZVIXAwEBERkZqtUVERDzy+ssyKpUKRUVFj9wuhIAQ4rF99M3gRzQ7dOiAP//8U/PcxKQ88rx587Bjxw5s2rQJNjY2mDNnDkaPHo3Dhw8DUF8sGxISAhcXFxw5cgRpaWmYOHEiTE1N8fHHHwMoX1Jg5syZ+OWXXxAZGYlp06bB1dVVM9Nrw4YNCA0NxbfffouAgAB8+eWXCA4ORkJCApo3b16PR4OI6pNMJkMLRQu0ULSodCq+WFmMUlX5P1pLVCXo49kHl+9dRkZeBtJz05Gem47oG9EAgGVBy9DFpQsAdVEauidUcyq+bBSUp+IlIFSA7K8xl4JbQNxC9eSeDu8Aplbq9j5byvsQ1UBubi4SExM1z5OSkhAXFwd7e3t4enoiLCwMN2/exNq1awEAM2fOxDfffIMFCxZgypQp2LdvHzZu3IgdO8rPooSFhWHo0KHw9PRETk4O1q1bh6ioKM0SSNeuXcOGDRswZMgQODk5ITU1FUuXLoWFhQWee+65+j0AFQkDtnjxYuHn51fltszMTGFqaio2bdqkabt48aIAIGJiYoQQQuzcuVMYGRmJ9PR0TZ9Vq1YJhUIhioqKhBBCLFiwQHTo0EFr32PHjhXBwcGa5z169BCzZ8/WPFcqlcLNzU2Eh4fr9HlSUlIEAJGSkqLT64ioYcksyBTHU4+Ln8/8LBbtWyTGbhor9ift12z/Lf43gSWo9LD62Ep0+083sfXiVk3fgpICkV2YXWfZbmTeELG3Yh/5uJF5o87ey6ClbBdid08h4t4rb1OphDj8khCXvxWiJFe6bGRwdP3+3r9/v4B6FpjWY9KkSUIIISZNmiT69etX6TVdunQRcrlctG7dWqxevVpr+5QpU0TLli2FXC4XTk5OYtCgQWLv3r2a7Tdv3hRDhw4VzZs3F6ampsLd3V2MHz9eXLp06Uk++hMz+BHNK1euwM3NDebm5ggMDER4eDg8PT0RGxuLkpISreUA2rVrB09PT8TExKBnz56IiYlBp06dtGZyBQcHY9asWbhw4QK6du1a7ZICxcXFiI2NRVhYmGa7kZERgoKCEBMT89jsRUVFWsPVOTk5j+lNRI2FjbkNnm7xNJ5u8XSV27u6dMXK51ZqJiNdvncZSZlJyC3Oxam0U1BWuDXhnsQ9GLlhJFytXLUmJJWNgnrZetV4VnxyVjJ8vvGpdtJVwpwEvV6qIIn8m4DcVj0rHABKc4F7R4GSB4Dfv9RtMhnQ6yfJIlLj0b9/fwhR1dJWalVdote/f3+cPn36ka/5/vvvH/uebm5u2LlzZ40z1heDLjQDAgKwZs0a+Pj4IC0tDR988AH69OmD8+fPIz09HXK5HLa2tlqvcXZ2Rnp6OoBHLxdQtu1xfcqWFHjw4AGUSmWVfaq7rVN4eDg++OADnT83ETVuXnZemPX0LK22YmUxrt6/isv3LmtdJ3oj6wYAaBaqP3DjgNbr1o9Zj7EdxwIA4u/E41DyIU0x6mLlonUq/m7+3ccWmQBQWFqIu/l3G1eheXQKcG01ELgW8HpZ3dbib4D/14Dn89JmI2rkDLrQrLiqfufOnREQEICWLVti48aNWrOwDFVYWBhCQ0M1z2/evFlpvSsiIgCQG8vR3qk92ju112p/I+ANTPSbiCv3rmgtyVQ2S76tQ1tN3z2JexC6t/zvHGu5dfnop31b+Lv519vnkUxBBnDrD6D1FPUIJQA0a6n+b+a58n6m1oDPnPrPR9TEGHSh+TBbW1u0bdsWiYmJGDx4MIqLi5GZmak1qpmRkQEXFxcA6uUCHp4dXjYrvWKfxy0pYGxsDGNj4yr7lO3jUR6+Y0DFuwkQEdWUrbltlafihRAQFRYDd1e4Y6j3UM2p+JziHMSmxSI2LRYA8NOomp0WftwpP4OmLAb+aKteksimI+AYoG5/ahbQZqp6DUsiqlcNahpdbm4url69CldXV/j7+8PU1FRrOYCEhAQkJydrlgMIDAzEuXPncPv2bU2fiIgIKBQKzchidUsKyOVy+Pv7a/VRqVSIjIysdtkBIiJ9kslkMKowG/rvHf6OnRN2IvGNROS/k4/41+KxdexW/Dvo35jadWqNT4c/88MzOJdRPvoXeysWv8X/hlNpp/Cg4EGdf45aKc4CEv8LxJVfPw9jOeAWAjgEaC9FZN6cRSaRRAx6RPPtt9/GsGHD0LJlS9y6dQuLFy+GsbExxo0bBxsbG0ydOhWhoaGwt7eHQqHA66+/jsDAQPTsqb6+aciQIfD19cXLL7+MZcuWIT09He+99x5mz56tGWmsyZICoaGhmDRpErp3744ePXrgyy+/RF5eHiZPnizJcSEiqo6ZiVmlU/Gn0k7V6LVFyiK4Wrtqnq89sxZfHf9K89zGzAatbFvBy84LXrZeCOsdBqdmTgAAlVBpFb91Sojy0+GFt4HjrwIyY6BdKGCufn8E/ggY8ZahRIbCoAvN1NRUjBs3Dvfu3YOTkxN69+6No0ePwslJ/RfKF198ASMjI4wZMwZFRUUIDg7GypUrNa83NjbGH3/8gVmzZiEwMBDNmjXDpEmT8M9//lPTx8vLCzt27MC8efOwfPlyuLu747vvvtOsoQkAY8eOxZ07d/D+++8jPT0dXbp0we7duytNECIiagy2jd0GBwsHzXMPGw8EtAjA9czryMjLQFZRFs5knMGZjDMAgHf6lC9w/taet7Du/Dp1IWqrLkTLCtKy/xrrumj57WjgwseAwhfw/1zdpngKaPUyYNsRMKrwVcYik8igyESDvRin4UlNTYWHhwdSUlLg7s7TOERUv06lnYL/f6ufEBQ7IxbdXLtVuS2/JB/XM68j6UESkjKTkJKVgqVBSzWz20euH4nfE35/5L4z3s5A82bqG12sO7cOCXcTtArRFtYtYFyaox6pNLVWv+jmTuBACGDuAoy6ycXTqd7x+7v2DHpEk4iI6o6jpSPMTcyrXUfT0dLxkdstTS3h6+QLX6eqV9BYM3KNpggt++/1zOtIykzCnbw7cLJ00vTdFL8J2y5t03r9MkcZ3rQV+I+qLSaPjYWV3ApwCUKmz0KUtBgGR8jAeycRNRwsNImImghPG08kzEnA3fy7j+zjaOn4RGto2prboqtrV3R17VppmxBCa13PMW0G4znTLGzOk+FaZjJuZN7ArdISyGWAXcFVNDP9a3F1YzkmJyZg2x//hrmJeZWn5Ue2G6n7KXki0jsWmkRETYinjadki7Fr3cddCLyUuhQoTMH0oL2A62AoVUqk3zuPk3fPoBmstfoXlhZCBhkKSwtx6e4lXLpbfsMMCxML5L2Tp3k+f+98JD5IrFSMtrJthWbyZvXyWYlIjYUmERHpV2kBcHM78OA00GWpuk0mA9yGAhlRgDIfAGBsZIwWTn5o4eSH7g/tYteEXShWFiMlK6XSaXkB7ZHSP5P+RFx6XJVRPG08cf3N65r+EVcjICDgZesFTxtPmJmYVfk6XSVnJet15JiooWChSURE+lWSBRweB0CoF08vu1NPty8BY/PyJYuqITeWo419G7Sxb/PYfp8M/gSX7l6qdI1oZmEmLE0ttYrSf0T+Q7PskwwyuFm7aUZA2zm205pR//Cp/0dp0veUJ3oIC00iIqo7908D8f8GzOyBp/9abs7CBfCaCFi4AUby8r4m+rmVcFDrIAS1DqrUnlmYifsF97Xa2ju2R1FpEZIyk5Bfko+bOTdxM+em5p7xFQvNXj/0wu2825pT8hXXEm1t1xrOVuol75rsPeWJqsBCk4iIak9ZCKiKAVOF+nlpHpC8Qf282xeA8V+nogPXSBaxjK25LWzNbbXafh79MwD1aOWd/DtaM+YtTS21+l6+dxn3C+7j2oNrlfbd1qEtEuYk6C07UUPFQpOIiGrn4qfAuQ+ADmFAh79G/px6AR0XAy3+pj16aeBkMhmaN2uO5s2aI8A9oMo+ca/GlZ+Kf+i0vLe9d63f+/K9y3Bu5gwbc5ta74PIULHQJCKi6imLgfQIwHlg+SlvuT1QmgvcPgh0+KufzAjovESqlHrlYeMBDxsP9G3Zt9K2ivc+UQmVTvt95odncDf/LuzM7dDKtpXm4WXrhY7NO2KA14Anzk4kFRaaRERNkUoJ3DkIFKQBFq6AUx/gcetQ7g0AHsQBfX4DPEar2zxGA4r2gGPVI4BNScVJQrrc673itZwPCh/gQfoDnE4/rWkb3HqwVqE5+KfBsDW3RSubVpprRFvZtkJLm5ZcuokMEgtNIqKmJmULEPsmkJ9a3mbpDvgvB1oMB9IjgdtRgN/H5TPCXQYDhRlASU75a+S2gFNgfSZvdMxNzHFn/h3kFufiRuYNzan465nXcT3zutatQHOLc/HntT8fua8x7cdg8wubNc9/OP0D3KzdNIWohal+Jl8RPQ4LTSKipiRlC3DweQBCuz3/pro98Efg2DT1BJ9WEwDbjurtHd9Xr4HJ+4zrhZXcCh2ad0CH5h0e2cfEyAS/v/i75hrR61nXNT9nFWXB3sJe0zevOA9Tt0/Ver2LlYvmlPzg1oMxuetkzbai0qI6W0OUqCIWmkRkWHQ9pUtVU5UCRhX+is9LBgpuASfmoFKRCfzVJgPOvAu0ekm9vqVxhREwUys9B2486uKe8o96zXCf4VVuyyzMRLGyWPM8tzgXw9oO04yQ5hbnIj03Hem56TiaehTNTJtpCs38knxYfWwFV2vX8mtEbcpPy7dzbAd3hbtOWYnKsNAkIsPxuFO6ZdcFNmRClJ+KLi0A8pLUP9v4lvdJ36dud+oLKJ5St+UlAxc/AUyald9ZBwDiwoD0PwHffwCeY9RtWfHATj/1ae0xd7T73lhXXUAgPwXwehlw7v8EH7Rpq497yj/s4WWbnK2csX3cdgDqiUoPCh+oR0H/OiXfsXlHTd+yuyvdyrmFWzm3cCTliNa+pnadiu+GfwdAXZTO/GOm1oSlVrat4K5wh6mxaZ19Hmo8WGg2dBz9qT881vpV3SndPpv1X2zm3wJKsoFmHuqirqztdrR6XcgWz5X3TfgayEkEvKeXn16+dxI4/TZg6Qn0Wlved/9zQMafQK9fAM+/q9vuxwJ/9gGsnwKGXS7ve/FTIG0X0HN1eaFZ/AC4/A1g7qJdaOZeA+6fVI9UljEyA0QpoCzQ/mzmzupZ4sXaC5ZXqSCt+j70WFLeU/5hMpkM9hb2sLewh7+bf6Xt7R3b4/bbtytdH1r2vJ1jO03fG5k38NPZnyrtw0hmBA+FB157+jUseGYBAKBYWYyYlBhNIWqsh78veatPw8dCsyFr7KM/hoTHWr9USvXxfdwp3di5QIsR6uI+bS9QnAm4Dgbkdupu908DyZsAq9aA97Tylx+dqi7Iun8F2HZSt6X+DsS8op4tPWB3ed+oZ4HMc8DACMDlrzvLPDgNHBkH2HfXLjRvrAfuHlGP/JUVmqV5wO0DgKL8i/mvDwioStSjmGVMrdSFn+lDayc6BqivgzR3LW+zcAM6vFv+Wcu0f1t9xx3b8tEpNGsJjEwFTLQXG4f/54D7cCCyBkvlWLhW34caDZlMBqdmTnBq5oSnWzz92L625rZYOmhppYK0SFmEG1k3tE7fX3twDf1/7A9AfX2ph8JDaxR0UOtB6OXRq9a5eavPhoGFZkNlCKM/TUVDPNZCpR4FU5UCFs7l7fm31DOHzZ3UhTKgLvLSdqsLoRZ/K7+u794J9WiZTQeg+V/rBgoBnH0fECVAh/fKr9u7uQNI3qge5a1Y5EUNA0pzgGd+LS9erq0FLnwEuD0H+H+hbrtzULuIr/yB1Kd07xxUF3bHpgP5yUDwccDhry/GrHggPlxdIFbMcO8YkHUBKKxwGhkyoCRTXaxWJLdTP1TK8jYLF6B5/8rFo9dL6izWT5W32fgCz2wAzBy0+wb8AEAFyCu023UBnr9X+aN2Wly5zdwJ8PuwcrtDFUWBkQlg2aJyO6D+87F0V//uVlnUy9TbnfpU/Xpq8lytXbGw90KtNpVQISM3A9czr8PVuvwfKTlFOfC298aNzBsoUZWo77iUmYT92K/pU1ZoXr53GSHrQipdH1r2cLFyqbRsFG/12TCw0GyIdB39aWjKFj4uu5ZNpVQXNpCV384OUC+zIkoBEyvA6K9rg5RF6gLLyFT7y74gTb3NvHn5SE9pvrp4MZIDVl7lfXOuqoujZi0BE0U1xxrA8RnqosGqtfp54R110WVsDrSpMOvz+jrgwRnAfWT5kjAFacDpherPFfB/5X0vLFWfPvWeCbQaV943oq96tGtYhVvdnXwTSPwW6LgI6Pieuq34AfDbXxMNXiwt/z249Blw6XOg/QKg67//+hglwIG/qX/+exZg9NetBG/+Dzj/L+Cp2eWFpkwGxH+sLmR93iwvNLPOA0lr1dkqFnl3otWnoktygbJ5JSXZQM5loMBP+8+nJsr6OQYAhV7qY1zGxledSdFe+zV+4YAyX10wl3EeAPztUvltE8sEHaj8nvb+QND+yu1PzarcZu4EtHyhcrulW9Wfp74ZGatH4Q8+D0AG7d/rv/5/8/+yYf69QZIxkhnB1dpVq8gEgKdbPI0rr1+BSqhwK+eW9in5B0no6d5T0zfpQRIS7yci8X5ile/xz/7/xKJ+iwAAaTlp+PHMj1qL5JPhYqHZENV09CcjEjj/ofr5gD3lBdaV/wBXv1d/IbZ/u/xlO7sAQgkERZUXaYn/BS5+BniMAbp8XN73D1/1HUEGHwKa/fUvxcTvgLPvqgupHv8p77v9KfUo2pAYwPavL/urq4ETMwG3EKDvlvK+v7dWT4QYcrR8EejkDcCRCeo7kgyKLO+7N1A9UjUwEnAZqG5L2w1EjwQcegLBMeV9D4wA7p8A+m4H3Iep2+4eAfYNVp9Ofe5sed9j09RrCD6zXn1d22OPNYCie+pjWla4FdwETs5Rj+BVLDRTt6lP7Vp6lBeaJbnA9Z8AE2vtQjMnQX1doOtQ7ffKTaxieRmVeikaZVF5k1GFi/JFCYC/Cge5nfo0rEmFGcQyU3UxJTMtL/IBdWHmMRqwq1AQAkDbN6Au+isUec0HAF2WlZ+aLhPwnXqfFi7lbR6j1Ps0b17eVtNTtWX9em+svM2+q/rxsLI/74pMrQFTn5q9Z2PjMVo9Cl/lpSBfGt7oPDV4RjIjuCvc4a5wR2/P3lX26eneEwdeOVA+YSnruubnlOwUtLJtpel7NuMswiLD6ik9PSkWmg2RLqM/dw6qfxal5e35qeqi6+G7eWSeBSDUp1DLFN1Tjz4Vpmv3zU9RF5oV+yrzgcLbQHGWdt/SbPUIoahwOrKsOKr4ei1VjLRUGlWsqv0Ra/yZWKiXaqlYpBnJAVPbyqNaZo7qgsbYvObHuuJnk9sDHs9XPn3q9jd1kVmxcDN3Arp+Ahg/dD2d9yz1qWXbzhX26wAEHVQXkRVnL3daoh6hlFe41s/EWnsks0zH98pHPcsYGQPPnqz8mVqOVT8eVna6uyLHHurHw8omvlRk2aLyqV2e0q1fHqPVZzw4uY0MhI25Dfq27Fvl7T1LlCVat/V0sHTAy51fxvnb57XuokSGSSY49lxvUlNT4eHhgZSUFLi7P8GaZBlRNbugf8CfQMkDADL1JICyUa6sS+qRsWattCcRpEWoixenPuWnqPNSgLwb6pE9RYVr0e6fUp8+te1YPrJVeFddkJraqGftlsm5qu7bzLN8vyW56tmvxpaAeYW15IruqfvKbcvzqkrUM2hlJtoTHMqKVJmx/haRrumxHrSfy8E8Kc21sECV/9AwxGthiUgyp9JOwf+/lWfRPyx2RqzWHZZqo86+v5sgjmg2RDUd/XHuX/UIhU079eNhroMrtzXz0C4ay9hX8T+tuaN20VjGuk3lNlOrqheAfngUEFAXnBVPBVds1zeOtNUfntIlImp0WGg2RLygv/7wWNcvntIlImpUeNPahqps9Ofha90s3XmKsa7xWNcvI2P1aHyrcY8elSeiJq/sVp+PU5tbfVLd4ohmQ8bRn/rDY01EZFCkuNUn6Y6FZkNXNvpD+sdjTURkUAzpVp9UNZ46JyIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBcsNImIiIhIL1hoEhEREZFesNAkIiIiIr3gnYHqkUqlAgCkpaVJnISIiIhqqux7u+x7nGqOhWY9ysjIAAD06NFD4iRERESkq4yMDHh68paXupAJIYTUIZqK0tJSnD59Gs7Ozhg4cCCioqIq9enfv3+N2is+z8nJga+vL+Lj42Ftba2f8DXMqY/XVte/tturaq+urb6P9ZMcZ11fX5O+j+vD41yz1/M4R1Xbry5ez+McVW2/unh9fR7nqtrr6zirVCpkZGSga9euMDHhGJ0ueLTqkYmJCZ5++mkAgFwuh7u7e6U+NW2v+Dw7OxsA0KJFCygUCn1Er3FOfby2uv613V5Ve3Vt9X2sn+Q46/r6mvR9XB8eZx7n6vA48zjXdJshfhdyJLN2OBlIIrNnz36i9kf1qy9P8v66vra6/rXdXlV7Tdvqy5O+ty6vr0nfx/Xhca67vjzOT/56Huf6eX19Hueq2qX+LqTq8dR5I5CdnQ0bGxtkZWXV24hmU8VjXT94nOsHj3P94HGuHzzOhokjmo2AmZkZFi9eDDMzM6mjNHo81vWDx7l+8DjXDx7n+sHjbJg4oklEREREesERTSIiIiLSCxaaRERERKQXLDSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKHZBI0aNQp2dnZ4/vnnpY7SqPzxxx/w8fHBU089he+++07qOI0Wf3/1LyUlBf3794evry86d+6MTZs2SR2p0crMzET37t3RpUsXdOzYEf/3f/8ndaRGLT8/Hy1btsTbb78tdZQmg8sbNUFRUVHIycnBjz/+iM2bN0sdp1EoLS2Fr68v9u/fDxsbG/j7++PIkSNwcHCQOlqjw99f/UtLS0NGRga6dOmC9PR0+Pv74/Lly2jWrJnU0RodpVKJoqIiWFpaIi8vDx07dsTJkyf5d4eevPvuu0hMTISHhwc+/fRTqeM0CRzRbIL69+8Pa2trqWM0KsePH0eHDh3QokULWFlZYejQodi7d6/UsRol/v7qn6urK7p06QIAcHFxgaOjI+7fvy9tqEbK2NgYlpaWAICioiIIIcDxH/24cuUKLl26hKFDh0odpUlhoWlgoqOjMWzYMLi5uUEmk2Hbtm2V+qxYsQKtWrWCubk5AgICcPz48foP2sg86XG/desWWrRooXneokUL3Lx5sz6iNyj8/a4fdXmcY2NjoVQq4eHhoefUDVNdHOvMzEz4+fnB3d0d8+fPh6OjYz2lbzjq4ji//fbbCA8Pr6fEVIaFpoHJy8uDn58fVqxYUeX2DRs2IDQ0FIsXL8apU6fg5+eH4OBg3L59W9On7Fqfhx+3bt2qr4/R4NTFcafq8TjXj7o6zvfv38fEiRPx3//+tz5iN0h1caxtbW1x5swZJCUlYd26dcjIyKiv+A3Gkx7n33//HW3btkXbtm3rMzYBgCCDBUBs3bpVq61Hjx5i9uzZmudKpVK4ubmJ8PBwnfa9f/9+MWbMmLqI2ejU5rgfPnxYjBw5UrP9zTffFL/88ku95G2onuT3m7+/NVfb41xYWCj69Okj1q5dW19RG7y6+Dt71qxZYtOmTfqM2eDV5jj/4x//EO7u7qJly5bCwcFBKBQK8cEHH9Rn7CaLI5oNSHFxMWJjYxEUFKRpMzIyQlBQEGJiYiRM1rjV5Lj36NED58+fx82bN5Gbm4tdu3YhODhYqsgNEn+/60dNjrMQAq+88goGDhyIl19+WaqoDV5NjnVGRgZycnIAAFlZWYiOjoaPj48keRuqmhzn8PBwpKSk4Pr16/j0008xffp0vP/++1JFblJMpA5ANXf37l0olUo4OztrtTs7O+PSpUs13k9QUBDOnDmDvLw8uLu7Y9OmTQgMDKzruI1GTY67iYkJPvvsMwwYMAAqlQoLFizgrFEd1fT3m7+/T6Ymx/nw4cPYsGEDOnfurLkW7qeffkKnTp3qO26DVpNjfePGDcyYMUMzCej111/ncdZRXX03kn6w0GyC/vzzT6kjNErDhw/H8OHDpY7R6PH3V/969+4NlUoldYwmoUePHoiLi5M6RpPyyiuvSB2hSeGp8wbE0dERxsbGlS4Uz8jIgIuLi0SpGj8e9/rB41w/eJzrD491/eBxNmwsNBsQuVwOf39/REZGatpUKhUiIyN56lCPeNzrB49z/eBxrj881vWDx9mw8dS5gcnNzUViYqLmeVJSEuLi4mBvbw9PT0+EhoZi0qRJ6N69O3r06IEvv/wSeXl5mDx5soSpGz4e9/rB41w/eJzrD491/eBxbsAknvVOD9m/f78AUOkxadIkTZ+vv/5aeHp6CrlcLnr06CGOHj0qXeBGgse9fvA41w8e5/rDY10/eJwbLt7rnIiIiIj0gtdoEhEREZFesNAkIiIiIr1goUlEREREesFCk4iIiIj0goUmEREREekFC00iIiIi0gsWmkRERESkFyw0iYiIiEgvWGgSERERkV6w0CQiIiIivWChSURERER6wUKTiIiIiPSChSYR0WOoVCqEh4fDy8sLFhYW8PPzw+bNmwEAUVFRkMlk2LFjBzp37gxzc3P07NkT58+f17z+xo0bGDZsGOzs7NCsWTN06NABO3fulOrjEBHVKxOpAxARGbLw8HD8/PPP+Pbbb/HUU08hOjoaL730EpycnDR95s+fj+XLl8PFxQXvvPMOhg0bhsuXL8PU1BSzZ89GcXExoqOj0axZM8THx8PKykrCT0REVH9kQgghdQgiIkNUVFQEe3t7/PnnnwgMDNS0T5s2Dfn5+ZgxYwYGDBiA9evXY+zYsQCA+/fvw93dHWvWrMELL7yAzp07Y8yYMVi8eLFUH4OISDIc0SQieoTExETk5+dj8ODBWu3FxcXo2rWr5nnFItTe3h4+Pj64ePEiAOCNN97ArFmzsHfvXgQFBWHMmDHo3Llz/XwAIiKJ8RpNIqJHyM3NBQDs2LEDcXFxmkd8fLzmOs3qTJs2DdeuXcPLL7+Mc+fOoXv37vj666/1GZuIyGCw0CQiegRfX1+YmZkhOTkZ3t7eWg8PDw9Nv6NHj2p+fvDgAS5fvoz27dtr2jw8PDBz5kxs2bIFb731Fv7v//6vXj8HEZFUeOqciOgRrK2t8fbbb2PevHlQqVTo3bs3srKycPjwYSgUCrRs2RIA8M9//hMODg5wdnbGu+++C0dHR4wcORIAMHfuXAwdOhRt27bFgwcPsH//fq0ilIioMWOhSUT0GP/617/g5OSE8PBwXLt2Dba2tujWrRveeecdqFQqAMDSpUvx5ptv4sqVK+jSpQv+97//QS6XAwCUSiVmz56N1NRUKBQKPPvss/jiiy+k/EhERPWGs86JiGopKioKAwYMwIMHD2Brayt1HCIig8NrNImIiIhIL1hoEhEREZFe8NQ5EREREekFRzSJiIiISC9YaBIRERGRXrDQJCIiIiK9YKFJRERERHrBQpOIiIiI9IKFJhERERHpBQtNIiIiItILFppEREREpBf/D5ufZiGHk5hZAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 2 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"eps_cost_steps_plot(epss, costs, lengths)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Długość kroku ($\\alpha$)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import ipywidgets as widgets\n",
|
||
"\n",
|
||
"# Jak zmienia się koszt w kolejnych krokach w zależności od alfa\n",
|
||
"\n",
|
||
"\n",
|
||
"def costchangeplot(history, return_fig=False):\n",
|
||
" fig = plt.figure(figsize=(16 * 0.6, 9 * 0.6))\n",
|
||
" ax = fig.add_subplot(111)\n",
|
||
" fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)\n",
|
||
" ax.set_xlabel(\"krok\")\n",
|
||
" ax.set_ylabel(r\"$J(\\theta)$\")\n",
|
||
"\n",
|
||
" X = np.arange(0, 500, 1)\n",
|
||
" Y = [history[step][0] for step in X]\n",
|
||
" ax.plot(X, Y, linewidth=\"2\", label=(r\"$J(\\theta)$\"))\n",
|
||
" if return_fig:\n",
|
||
" return fig\n",
|
||
"\n",
|
||
"\n",
|
||
"def slide7(alpha):\n",
|
||
" theta_best, history = gradient_descent(\n",
|
||
" J, dJ, theta_start, X, y, alpha=0.0001, eps=0.1\n",
|
||
" )\n",
|
||
" fig = costchangeplot(history, return_fig=True)\n",
|
||
" legend(fig)\n",
|
||
"\n",
|
||
"\n",
|
||
"sliderAlpha1 = widgets.FloatSlider(\n",
|
||
" min=0.01, max=0.03, step=0.001, value=0.02, description=r\"$\\alpha$\", width=300\n",
|
||
")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"application/vnd.jupyter.widget-view+json": {
|
||
"model_id": "4096489939e5433da06dc419ba945b30",
|
||
"version_major": 2,
|
||
"version_minor": 0
|
||
},
|
||
"text/plain": [
|
||
"interactive(children=(FloatSlider(value=0.02, description='$\\\\alpha$', max=0.03, min=0.01, step=0.001), Button…"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<function __main__.slide7(alpha)>"
|
||
]
|
||
},
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"widgets.interact_manual(slide7, alpha=sliderAlpha1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "slide"
|
||
}
|
||
},
|
||
"source": [
|
||
"## 3.3. Normalizacja danych"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Normalizacja danych to proces, który polega na dostosowaniu danych wejściowych w taki sposób, żeby ułatwić działanie algorytmowi gradientu prostego.\n",
|
||
"\n",
|
||
"Wyjaśnię to na przykładzie."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Użyjemy danych z „Gratka flats challenge 2017”."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Rozważmy model $h(x) = \\theta_0 + \\theta_1 x_1 + \\theta_2 x_2 + \\theta_3 x_3$, w którym cena mieszkania prognozowana jest na podstawie liczby pokoi $x_1$, piętra $x_2$ i metrażu $x_3$:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" price rooms floor sqrMetres\n",
|
||
"0 476118.0 3 1 78\n",
|
||
"1 459531.0 3 2 62\n",
|
||
"2 411557.0 3 0 15\n",
|
||
"3 496416.0 4 0 14\n",
|
||
"4 406032.0 3 0 15\n",
|
||
"... ... ... ... ...\n",
|
||
"1334 349000.0 4 0 29\n",
|
||
"1335 399000.0 5 0 68\n",
|
||
"1336 234000.0 2 7 50\n",
|
||
"1337 210000.0 2 1 65\n",
|
||
"1338 279000.0 2 2 36\n",
|
||
"\n",
|
||
"[1339 rows x 4 columns]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Dane, które wczytaliśmy na początku wykładu\n",
|
||
"print(data)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def show_mins_and_maxs(X):\n",
|
||
" \"\"\"Funkcja, która pokazuje wartości minimalne i maksymalne w macierzy X\"\"\"\n",
|
||
" mins = np.amin(X, axis=0).tolist()[0] # wartości minimalne\n",
|
||
" maxs = np.amax(X, axis=0).tolist()[0] # wartości maksymalne\n",
|
||
" for i, (xmin, xmax) in enumerate(zip(mins, maxs)):\n",
|
||
" display(Math(r\"${:.2F} \\leq x_{} \\leq {:.2F}$\".format(xmin, i, xmax)))\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Cechy w danych uczących przyjmują wartości z zakresu:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 17,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 1.00 \\leq x_0 \\leq 1.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 2.00 \\leq x_1 \\leq 7.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 0.00 \\leq x_2 \\leq 16.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 12.00 \\leq x_3 \\leq 196.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"show_mins_and_maxs(X)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Jak widzimy, $x_2$ przyjmuje wartości dużo większe niż $x_1$."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Z tego powodu wykres funkcji kosztu jest bardzo „spłaszczony” wzdłuż jednej z osi:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"def contour_plot(X, y):\n",
|
||
" theta0_vals = np.linspace(-1e7, 1e7, 100)\n",
|
||
" theta1_vals = np.linspace(-1e7, 1e7, 100)\n",
|
||
"\n",
|
||
" J_vals = np.zeros(shape=(theta0_vals.size, theta1_vals.size))\n",
|
||
" for t1, element in enumerate(theta0_vals):\n",
|
||
" for t2, element2 in enumerate(theta1_vals):\n",
|
||
" thetaT = np.matrix([1.0, element, element2]).reshape(3, 1)\n",
|
||
" J_vals[t1, t2] = J(thetaT, X, y)\n",
|
||
"\n",
|
||
" plt.figure()\n",
|
||
" plt.contour(theta0_vals, theta1_vals, J_vals.T, levels=20)\n",
|
||
" plt.xlabel(r\"$\\theta_0$\")\n",
|
||
" plt.ylabel(r\"$\\theta_1$\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHDCAYAAAD1MRSGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqlUlEQVR4nO29eZxcVZ33/7lrdSchAQwkBCOyKIKyRDARxgUljwmgI8rDEGWGZRRGNCgGROIjYFgMCDK48IijbM7AoPgTXMAIRvM4agY0yoBsA0wUQTosMemk03X33x/3nnO/59xT1d1Jd93q7u/79cqrq84991ZVd7r6XZ/vWawsyzIwDMMwDMMwY45d9xNgGIZhGIaZLLB4MQzDMAzDdAgWL4ZhGIZhmA7B4sUwDMMwDNMhWLwYhmEYhmE6BIsXwzAMwzBMh2DxYhiGYRiG6RAsXgzDMAzDMB2CxYthGIZhGKZDsHgxDMMwDMN0CBavMeQXv/gF3vOe92DOnDmwLAt33XXXiM7/3Oc+B8uyKv+mTp06Nk+YYRiGYZgxhcVrDBkYGMAhhxyC6667brvOP++88/D8888r/w488ECceOKJo/xMGYZhGIbpBCxeY8gxxxyDyy67DO973/uMx4MgwHnnnYc999wTU6dOxYIFC7BmzRp5fNq0aZg9e7b8t2HDBjz66KP40Ic+1KFXwDAMwzDMaMLiVSNLly7F2rVrcfvtt+Ohhx7CiSeeiMWLF+PJJ5809v/mN7+J1772tXjrW9/a4WfKMAzDMMxowOJVE8888wxuuukm3HHHHXjrW9+KfffdF+eddx7e8pa34Kabbqr0bzabuPXWWzntYhiGYZhxjFv3E5isPPzww0iSBK997WuV9iAI8IpXvKLS/84778SWLVtw6qmnduopMgzDMAwzyrB41cTWrVvhOA7WrVsHx3GUY9OmTav0/+Y3v4l3v/vdmDVrVqeeIsMwDMMwowyLV03MmzcPSZLghRdeGHLM1vr16/Hzn/8cP/jBDzr07BiGYRiGGQtYvMaQrVu34qmnnpL3169fjwcffBC77rorXvva1+Lkk0/GKaecgi9+8YuYN28eXnzxRaxevRoHH3wwjjvuOHnejTfeiD322APHHHNMHS+DYRiGYZhRwsqyLKv7SUxU1qxZg3e84x2V9lNPPRU333wzoijCZZddhm9961t47rnnMHPmTLz5zW/GihUrcNBBBwEA0jTFXnvthVNOOQWXX355p18CwzAMwzCjyLgVr1/84he46qqrsG7dOjz//PO48847cfzxx7c9Z82aNVi2bBkeeeQRzJ07F5/97Gdx2mmnKX2uu+46XHXVVejr68MhhxyCr3zlK5g/f/7YvRCGYRiGYSYN43Y5iZGuCr9+/Xocd9xxeMc73oEHH3wQ55xzDj784Q/jJz/5iezz7W9/G8uWLcPFF1+M3/3udzjkkEOwaNEivPDCC2P1MhiGYRiGmUSM28SLYlnWkInXpz/9adx99934wx/+INuWLFmCTZs2YdWqVQCABQsW4E1vehO++tWvAsjLfHPnzsXZZ5+NCy64YExfA8MwDMMwE59JM7h+7dq1WLhwodK2aNEinHPOOQCAMAyxbt06LF++XB63bRsLFy7E2rVrW143CAIEQSDvp2mKjRs34hWveAUsyxrdF8EwDMMwzJiQZRm2bNmCOXPmwLbHriA4acSrr6+vsgbWrFmz0N/fj8HBQfz1r39FkiTGPo8//njL665cuRIrVqwYk+fMMAzDMExn+fOf/4xXvvKVY3b9SSNeY8Xy5cuxbNkyeX/z5s141atehaX3LkJjqgcLFhzLg2O5cGwXruXl/2wXtuXBRd4mjjmWC6c47lgePMuDLc8rj9nI76vnenDt/BryWjbpZ7lwLJeTOGa7SLMYaRYhyUIkWUhuR8iyEEkaIslipFmAJIuQZBHSLJD90ixCgvLctDg3Py76RUjSML8ePU9+DZCh+0ZHWLDhWD4cy4dteeVX24eF/Ksj20UfD7bVKL56cFCeb9Nr2T5s+HBs/XzRx4VjNYrznKGfLDPhyIrfu6z4lyL/HcqyAGnWRFb8LubHQ6RZE8gipCDn0H4Q/QJkiJBlTaRZABTnZllUnJP3yxDW/S1QsNCAZfmwLfq1ARS/P5bVAwvkOPLjA1szHPaGq7DTTjuN6fObNOI1e/ZsbNiwQWnbsGEDpk+fjt7eXjiOA8dxjH1mz57d8rqNRgONRqPaPtVDY5pX3MsAREgQIcEggkpv0k38TUmG86pGjhBBV0qZJ6XMtX0ic54me6ZjQvRyQRTiJ69Z6efCs3wpg/kfnHE7v4OpiaoAhoqYCXlLIWSQ9gkr51GRVNrSECkiJGmgXL8UwFR7ZlHxD0iLf3G7F0J/30cJCw4cKXM+HJvclqKmCmLZ1ijksFGcq/Z3ij520Uc5txBL22rABn+4m2xkWYoMIZExIXKhlDbZ1rJfYOjXbNGPSGUhj+ovk/hdHGj7vMVvsPhzG1h5y1j//5004nXEEUfgnnvuUdruu+8+HHHEEQAA3/dx2GGHYfXq1XKQfpqmWL16NZYuXTrix7vgwBsxdVov4ixCnEVIshhxGiHOQsRZjCSNDMfyT/xxFiFOY8RZWD3W9jz1unFapA7kD0SGrHgOISp/N2pApHAukTaHyForiau25+IopNK1fIPstTqfJXA8YVsubMuFi95an4dZAIn4VSQvImkgTQKrAphkgXIN+jj6uZny+50gzrYhHuMPcO2x2ghbIXi2bxa4VrftFtfRH8f2Wf5qwLJsWOgBrB7UkblmWVYkc7qgNUkKGFTaZWJXHG+kmwCsHPPnO27Fq92q8K961auwfPlyPPfcc/jWt74FAPjIRz6Cr371qzj//PPxj//4j/jZz36G73znO7j77rvlNZYtW4ZTTz0Vhx9+OObPn49rr70WAwMDOP3000f8/Hy7gV63uudiHaRZIqUsIjInJa+lCFYl0XSevGYWIU7zc+KUtGWRcg1KksVIshghmjX9kSgxSaBr+UUamN8WSSFN+BwifsNJAstzzBLpWC5L4DigmwRQCJ+S7KVU9kJN+Ewpnn6uLpShcm6eCubnpqC/11nRJ0DU8lmPPTK5MwpdQ5Zxq5JIE0ByjOWva7EsCxZ8wPLhYPvLhFOsfrB4teG3v/2tsiq8GGclVoV//vnn8cwzz8jje++9N+6++2588pOfxJe+9CW88pWvxDe/+U0sWrRI9jnppJPw4osv4qKLLkJfXx8OPfRQrFq1atxvTG1bDnzLAexGzX8i8k8mQrbiLERERa6S+tGkT0hcaEwDdbmr3G/Rj9KdEujDtYuvhZR5ItkzpH3DLfm6SvnYl2MKy8crpZP/eHQ3QgC9obuOGVmWGsu/iZLwkRJu5VhE+qupn7mcrIqm6EMZX/JXTf5oIqjLn54mmuXPhw2Pf3+7kAmxjlc30d/fjxkzZmDz5s2YPn163U+HaYMugbmcxUiyCJFM7EKt9BtpshhXRFHI3XCSQJEsJlnb0UC14rZJ7Twidu1KuiIxLNNDr5IQlreryaFr8R8Qpj2l/JWiF0vhi6rJXUqSO03+zAmgOfUry8dV+esGqvJHRM3WhbCh9NPLvMZ+tq89BpVID9Y4Su879fd73CZeDLOjWJaV/3GHh7qzQCGBIuEbThLYauyfKAdHbY61O1+XQNEe1DwmsBz/R8q6BgEcltRthziyAHY3lmXnf/TRAFDPMI/WyR8VulLg4jRAdeIHlTqR/Oml5Gq5WJZ+oSf59SZ/NkwlXYMM2r5R3nZEALt1pi+L1xjxrfX/H6bPmA7PduFZHjzbhWu5xX0Xru3KY67twi/KO9XjxW3Lg2PZ/KY/QaESWDdplhZJoFn0zGXcsNKHtidpXOmTZDGiVLSFEBNEYtGmlYKlAAK1loIdMnmjKmnVdpEWepZeItbLvdWEUJSZHcuDR1JDLgF3J6r81UOWZcVs3FBKlz45ozrrl6Z/RAJTPdkzlI9TVRYTbYZhighpGiEaYobhWFHO9PWJ3BnEzvLRHOhMAZDFa4z46Qu/hDfgj+o1LVi5pBXlGq8QObcQNEXuitl6qryVx9RzC+EjIkiP+6JNkUcWwYmKbdmwLR8eRvf/70ihKSAd26cndXTCiJgQIkQuUhLAsBRAoyCq0kfTQYooT9eZANJlYai8VRM7dYygUfrI+MD8djsRFAIpzuu+NGGyY1lWviac46OO5C+fYZggyZoQM3yraR+VQFqqpXKnl3qbLfpFxSSP8prmmb7bhpzJv21LZz7RsXiNEe+ZsxDeVB9xGiPKYkRpjLj4GhUDxSNyLCrGF4m2uOinLwURpREiREAyWOOry7FgEbHzitROFTuvSPL8NpLnt0r+iuv5NpVBT0kRWQInLmoKOKW25zGUANIxfeVtWsJtLXr0PDEOkJ5HS860BKwuC7Ottu+NDZukeL6SynmyrKuXfXWp89Ey/au0lbLoSlFk+esm8hmGLmxrWp7f1/DjyWf6kqROm6RhnMiRhdjs/RXAmWP+/Hhw/Sgz2oPzkiwt5C2S0hYVg7oVScs0oSPn0ONU6uR1slz8qtdT28I06spVw4H2aaDfQupkCbgida0Fz5QCikTRl7sEOCyBzKgjSsCmVC4q5E6O7RuqFNxqfKAUQLVPRAQyrXvKr4ZJ/sR4PE8RtHxNv/byp5eM1X7iek6R/Ilj3TiOiBk5PLieAQA4lg3H8dGouewjSLKEpHZlWtdO/PTbxj5E7sr7kZIIln3EIPTuTAOFBHqV9M+rjO8bSuqGkkalPMxJ4IRGloDtet8LxLqAugCWyV5V8qJiZmGchlIMI9KPlo31WcDVmcWxkv6lSJFmAaKk5Z4gY44NW5M3TeSU1M8seWWpt7wtJpR4ttc29XMtl+VvHMHixYwIx8q3Vupx6hs8Kkiz1Ch4sVH2cqkzpXm62KnHTfIYaclhjCQrU4BulEDfVA5uk/TpJV693CvSPXXMYGsx9GxeFHaiINYF9O363gP0RaFNSV1eqtXH/+lSp6aFreVPKxlryV+KFGHarHUNQBuOMfVzbV8ZvzeS1K9SLibX0iWTJ3wMHxYvZtxiWzYaXZIGCgmkghe2kMBqCdgkgdUk0JQwjqck0LEcKWyqyFWTQb2fT0VOFz15jAVwstANi0InWaKWakkCGInJHWSdvigNDElhdTZwlAaVkjK9XkLa6CDyFAnCNKlN/ixYhjF75rF9VflTUz+93OtVRLGc6EHXCBwv4sfixTCjAJXAqTU/F31cIJVAIWfDKQeHaes00CyCUUUM6ZjAJEswmNQ/PsgkgL4ibK3Erjzm255SOq5cT5tU4hflInqN8fJHgjHjWE7xf6mntudA5S9P7tqJnKkMXKZ5UcvUTy0lR5naJsiQIcpCREl9i8gOR+7aHQu3dma1MxavMeKc396MqTvtBN928rE6tgvPduAXt+n9/Li5n6lPQ97Pj3u2w5/iGUm3jAvMsgxxURKSKWAaqSldCyGk/ajMmcvFuvDRBDHqWgGky72YpK8ib0Ui0CrdK8cDlhJoLCmTc3kiyPimbvkTM37zpVrKsq1S5i2kLqZiSMb7DUfu5DjBNuIHIO+7A+IXsHiNb/7rr3+CE3ZuDIRrOVLMPClx+Sd7k9R5toOG7Sli1zBIoFkE82v6jqtIoWjnN3MGyKeVe5YLDy56nfpSgfyPQ6oImkjs9LJw2DLBiwohpGlgpJaXNcHM76vXo8RZjDiJUffCMFXZo8mdSfbKcrCpnGs6Vy0Zc/l3oqAs+VLD2P5yqZewmvppy7LQLd9K8QvlDOAoC9HvbgbwozF/3rycxCgjpqPe+cSv4E/tleWaME3kG3eo3Y/SxNgvygztSXmsmynlztWkrxRBXfSqfakQFvLn6JJoThKpVLIEMt2ASACjYaZ55QxfNRUMRD+S9oVSAnMpVGVSfby4C/cF1dM/U1pHy7ut5E/tQ9qoPHLpl2kBLycxznnn7DeM6Q8uyzKzmLUTuTRBINvVfkESF2/+RBATgwgmkWwT1wrSWBnQDUAK5gDqm+It8CynInMyrbMcNJxS4tQEz5zotUwHneo19L78yX7yIhNA2wVq3Bs0zVIigKYSLZE3kuTRfuXxUGlTJoYQ2aPJoqn82w3pHx2vV0nqhpHelffVMnG7Nj1pZPmbHLB4jVMsy4Jv5X/ku4E0S4dM9YI0UqUwMQthmKpiaLqvy6PehxJlCaIkqXV/P4Fj2Upa5xtLu0TaKgmfqTTcIvVzitTPMiWFLIGTFduy4Vs2fLu+fUFbjf8zlWxNZWGZ8BGZK1O/UhRNba0mf0RZjCiJMZg0a/u+6DKmpnee3OXDo0Knjd/zyXGaCKoSSWYPE7Hkdf86Q3f81WbGPbZlo8ex0ePUv8lzJQ0skrtQk7uhhI+memGaIEz0tlbiF8nH0yUwyVJsS0Kgxpk/AjouUApZmyRQ+ecQwSvKurS8q/etymZ5vmvzwo+TjW4Y/9eq9Fume9pkD5LWRZrw5QJYpoZhsQYYHQtYaTOM+6t76RcLlpboVcu8tAxcJoGlKOqy166vKo6TZ7IHixcz4eimNFC8uevlWSl+SfukT0pfWi3xhol4s09Iadgkg2UCqZZ3EsRJUrsEOpZdEbaKqGll3IYmffR4y39OVfrkRBHbZQGcZHRD6Td/fyjG76URwqwQtFSdyNG2jYzzM40TNI8dNI/5y5AhSEMEaYiBGr4fcv9fY3I39uLXqSHv9f9lYpgJjPrmXu9q/60ksJS/pHhTVsWt8i/R2wox1MYEtjs/VZZ3SJEkKZpJZ6Zyt2KkAmiczLEdAqgfc7gEPGnI3x/yP/p1yZ9pBxA6do+u80dFLkxDmd6FJCFUyrzyGkQWlSQw7yPIkMnHqEP84gFeTmJc86U//ALTp09HueyCo952xBu8U7xh5zMA87JMeTwv9ziwJ0H8yowt3SSBcZoYS71CCKtyJxJCkQoUyV4SK2MH9aQvSNTrirGG3S6AVSlz4DuecUygSd6EDBrH/ZEyckMe9yqPwWMAJwd17wBCJ3uIMXm6+JVj/SJF2mR/UgYO0xBiHT86ri80jPULDeLXCVi8xogbn7gf9pTRG7vg2bZ8Q2xIeVOFrmEQPFPfSpve13YL8TOd78KzeQAms2O4xdiu3poXeR1KAKm8qWMDI9AET23TUr/EIJaaTOoCOJiEGKy5BCxmA9OEjiZ7pdgVJVunFDkpdUMlgA7L32SHTvaoY9cPWu59adNL+D5uHPPHZPEaI07e7zDYvY2iDJOQAd7kdvE1aHGcEqUpoprq7joWoIhYRdIqbeV9cVvv2yBlmobeV55vuK7twLH5zZnZPrpJAHVpC1qUbwMy3k+M8zMlhMq1DGMJAyKDoo86yy+fDTyQ1LckjEn+VGkzy59IBFvJX8PRzrPVCSYN0pc/ZE5saLk38Wd05jF5AdXRZbQWYMuyzChtQRJXJC0vzbToqx1T+pLblb5pjCAp+8TaOl3dhGvZpDRblnBpuVYv71ZTP62vIUWkEmlKFzkNZMYzYoX/QJZ2xPtJpKR0VPKqqWCkTP6ga/1VzyUCSa7RqXLPcPEsh8gYKd86rips8v2jnSCqSV9VEMvJHo1CJL1JMtOvG+AFVCc5lmWhUfzhh1fveBwASNJUlmR0cQtkcieOqdJWipxI+oZ3jF5PHBPjf+hbc5yliOMU21Dv2BygmgY2HHNy11ASvFL+qkkg/Vqe1xB/CLS0kcqhy2vyMCMg3/4lTwCn1jQGkMqfELYgiSpj9IwJnra4c1j0q5R4tXSQJn8m+YuyBFGc1LoYtHHCh7FMm9+ms36pIObvDZ6S6OliWMqjJ993eMLH6MLixQwLx7bh2DZ60CXrdKUpEbJYLdcmmsxp5V1TaVfvG5jkT0kHzWlgBiAoroeaV+23LasigDT9E2+wjcrEDtcoc6UsmoVSvwa9FgsgMxyo/NU1AUTM/tWTO31mbpkMiveW8jadwEETvki+f+S3m2JAeBIjLHYGEY9FCQ1tnUQs/DwycSOpnTbZwyR34vhkED8WL2bcYVlWnvQ43bHuUpKmldKtFD+tlKsmgUICzalfQNI+pcRM5FEXRCqBaZahmcRoJjHqDgNl6baS/lXFruG0EMWK2BXHW6R+DU0gfcfl2cHMkKizf+uBLgItZu7S5V6ChJR0Sam2MsNXnmuSRrWPLpox2Q9YLPy8LQlreS/ZUfEbbuIXbO3MwrUsXgyzgzi2jV7bRm8XpIFUAqnIUfEL5JtrNe2jY/1kCVn5WlxDfpKv9jNNDhHX31pzCujZNhlP41RETi/3KvKmpXtU6HTJM6WFPCGEGS7KItA1/ZVOstRQli3LvGXpVh0DKN8ntNSPlo3DNEazmDwik8DiWqIv3f+3U+KXDHTm/YnFi2EmEN0igXJyiJLOqaJXrteVkHSwlENd5AJFEstEUJxrKg8H2nhAMTsYcb1LNbiW3TbNMyV77RLBhpYA6reFHDaIDPJEEKYdjmWj1/Vrm/FLl3qh4/VMEijH6iXViSCmxE8VwbI0PBBu6chr41mNo4yYFfHOm/8vpkybhoZLZs2Rf7LU4pDxNrSPbW7zHRcNVxwXb9LlcZffTBlGQscDmpI5U8lWF7lQk8CKQLYUQ/V42mVvtWIiSMNQ5i3FjQhgmxSPnqPIoEEI9dnC/H7FdAs8q3Gc8+RfX4bd7PyqW3JWnSPEzCHip7XLN0hNDIkUNirnFG/QLllKoXK8bOdP1Uyd0PGA02qcHZwP2E5VuWshcLScWy3zmoWvmYjlH8p2pY2ki/I5gUwEqXEMoKk820rifK3Ua5I/XRKrYqn2ZfljOg2L1xjxjUXHw5vSW7zpFQOm5T8yiFq+wWp9xKdt2acYgxPTc/M+CfkkTd9MOxOatmc4IigTPtcsgkryZ5fXapUI6iJIB2BzIsjUQT5gO98ebGqNi7WmWSZn1pmlThVD0S8wpoItUj8yRlDcbpLH0Mf/yferqM7lGqpJnql020r+hkwLW8gfLRfz+9LkgcVrjDhiz1eNaVRJSdKUzJ4rhYzeVo+TdvopmUqeQRBpv0CeG2vCmCBOzcsrdIMI2pZV7FnnVASOily7NiGJcoX9Ic5pVI7nb8YuD7BmOoxN1wesCTH+T5nI0TbNIzPxir5NZUygSAjFzD9VGCtCmIrlXkrEeXUuAWNO/DSRa3FMLes6hr7q5JGGJpg847ezsHhNALplQLVgNESwInlEBIPYlAjqQmhOBNMsI+ts1Uv+R1C8SZYpoBQ1UtKlYwXbi2JV8Oht/XFEO7/pMp3C6hL5i9JUTe9I6Xe4qR+d4VsuFVOIoZYsitIvvS6l7uTP19K5irhp4/0ahtKtKnl6Kbic3KGP/2tMsvcgFi9m1OlqEYxjpfSrJn3q7aDFcXMbHUvT+tq6BA7GMQbj+iXQs+2hUz9aDnbJ0grDELxW6Z/+ODwmkOkEdOzfTjWN/aPbwgVJVKZ5sbr0i576leP/IlUMSRJIE8SKQJJjdLpH3Uu+0KVeKsleZdwfaS+O9Titxa9VMlhX4sfixUx4FBGsefelOE2V1K8UvDKl04WPju0LEnKbjPdrJ4WtHqe6zEKKgaj+bZeopJmkToifb0gE6ddGi3MUQXRV8WuQryyAzFhCk7865E9M+FATvaFTPyXNoyXi4ny1nz52kAhmEiszfete6sW3HThBZz4Es3gxTAdxbRuu7WNKzWGgXGahTYJXkbm0hfTJNrKWFpHIoRLDKFU3YBfH6h4TWMpaa7HTEzua+DUcVxHEVoJnShfFMZ4MwowVdMJHXTN+4zRVSrCtxuY1kxjNOGohfGrCVwofHdtnviYVvzBNkHaozMvixTCTEGWZhRpn2QF5ydUkafqYQDr7V76Jxu3LwaZScBATKSSJYRAbSi9h0vJ5dwILKCRPL9lWS7vK8gpivJ+r9lXPVfvpUuhz+seMMa5tY5pdXxkiIsutBEmMF/+6EYfgsjF/3HEvXtdddx2uuuoq9PX14ZBDDsFXvvIVzJ8/39j3qKOOwv/7f/+v0n7sscfi7rvvBgCcdtppuOWWW5TjixYtwqpVq0b0vK5a80tMnzFdXe7AzT9dNFyn0l7edlse421GmImIbVnocT30uPWvth+lqVHepLiRxC8wyKApMWzGra6n9hXHI21WcDPOx/3USav0r734EXlzVWnUz1Okz9X75ff5/Y8ZbTxbXeJlaod+zca1eH3729/GsmXLcP3112PBggW49tprsWjRIjzxxBPYfffdK/2/973vIQzL+vHLL7+MQw45BCeeeKLSb/Hixbjpppvk/UZj5EZ+6+//C3ZPz4jPa4djWaqkOa52v5Q7U7sczEzlboj2hkEEG8Xj8nIIzESiWzZfpwlgLm3q+LxmMU4m1OUuNbRpUhgYRI+WhalQUroh/XPEmCg6wcOpJnqmkm117F/ZrpZ+c0nsaSGRLH/MaDCuxeuaa67BGWecgdNPPx0AcP311+Puu+/GjTfeiAsuuKDSf9ddd1Xu33777ZgyZUpFvBqNBmbPnr1Dz+20w+fB7unJ3/hibXHUyv18nIvaHiOME6X0kWQZBqMYg1H9s+CAPKkwCZmy+KlrFsQy9XOJ5JmlsmFIBE19J9N0ZGbiQhPAGTVVYUzpnz5uL5e0amon5U5LB/WJI3ItLnpurI4lpGsCJlmGbXGEbXF9E0A82zZKm57mVYWuddm3VcKnSiKP+ZtIjFvxCsMQ69atw/Lly2WbbdtYuHAh1q5dO6xr3HDDDViyZAmmTp2qtK9Zswa77747dtllF7zzne/EZZddhle84hXGawRBgCAoB+T19/cDAM5565E7vIBqlmXFLLhWwqati9VG8CJaKjH0DeLqdQLt+kGs7jeXZllZBqlv3UGJZ9vVpI9KX4t0T952izEzQhZ1SSTtqgyWM+TE9TgNZMYz3ZL+xUT+9DRPbpIe04VWzakfFchmorfpyaJIGyMESWKcebe1JvcTa/+ZpK210LWWPJPc+W3O5RX2R4dxK14vvfQSkiTBrFmzlPZZs2bh8ccfH/L8Bx54AH/4wx9www03KO2LFy/G+9//fuy99954+umn8ZnPfAbHHHMM1q5dC8fwJrRy5UqsWLFix15MCyzLguc48BwHU4fu3hFiJZmLiaCpIhjEVUEMWophbOivyWCLdkqUpojCFAN1bjxXQNNAU+pnSvxMSV4pfSbhIwOs9dKwJqD8ZsmMR8Qs4Kk1Dv8T8lcmd2q6Z5I2Ne2j/UznqokiFUORAAq6Ye2/dtKmt41WuZeOJ5wIlY1xK147yg033ICDDjqoMhB/yZIl8vZBBx2Egw8+GPvuuy/WrFmDo48+unKd5cuXY9myZfJ+f38/5s6dO3ZPvGZc24br25jSBYujyiURxMy2Vilem/agKPUO1W/odDCuLI7aTWlgqzF9DU3Y1CRQl7lS/mhZuWFI/Izn8xgZZhxSyl89s3/TLGspcpUSryj/khm/Ta3kq47vK89rGtpM4/3E+QjrW2FfT+R8U5onBc6rSGGPLnvFsXjbYEdew7gVr5kzZ8JxHGzYsEFp37Bhw5DjswYGBnD77bfjkksuGfJx9tlnH8ycORNPPfWUUbwajcZ2Db5ndpxuWhIBKFfID0wJX5vUT5dGKnay3KscV8cHqm1531ZrY6GetQklrlghn6SAjULqRHLXMEic7NcmBdTl0dQu2lgAmfGCbVno9bzaFoCm4/2kyNFxfS2kTU/u9DKv2Pqtcj3lMfLbpmVetozBm1k62Bz1a5oYt+Ll+z4OO+wwrF69GscffzwAIE1TrF69GkuXLm177h133IEgCPD3f//3Qz7Os88+i5dffhl77LHHaDxtZgIjV8j36k8D0yxDZEjnAqOslf2q0kePlfLYKvXT++trY8VpijhNsa3mFfJVAaTiVwpgW4lrIYBDy586TpAFkOl2lO2VajA/MdZ5++SOpoPq/ppBnM8Qpune1i1b8OcOvCYry7Js6G7dybe//W2ceuqp+PrXv4758+fj2muvxXe+8x08/vjjmDVrFk455RTsueeeWLlypXLeW9/6Vuy55564/fbblfatW7dixYoVOOGEEzB79mw8/fTTOP/887FlyxY8/PDDw0q2+vv7MWPGDGzevHmHB9czzHiHThDRRU7OjItJuZeWOLRSb6Clg+J4U+snU0RNAtMufKszCaBM50gCKBK/lmVcY9lYSwhJ6leKI88IZhhBp/5+j9vECwBOOukkvPjii7jooovQ19eHQw89FKtWrZID7p955hnY2ifKJ554Ar/85S9x7733Vq7nOA4eeugh3HLLLdi0aRPmzJmDd73rXbj00ku5nMgw24EyQaTmanBMxgPq5WAl1Rtm+mdM+GhZOC4/dbeaGdwtCaBHxvXJ2W+GMX162VaXQtN4P30soS6Q4jZPAGEmC+M68epGhDFf8G93Yfr06fDojDayLIFHb4vSRtHmufR+eW7+B4zXcWGY8UycptoEj2r5VgggXdJFyF9TOzeMtcVSK0mhWTS77Y2/ksqZUj9NBk1S52vnV/oYysoN14XHa2RNejjxGufcue5ROI3RXbleoKxLpYibW4ibrQqcJm++67QRQbdyfXpt2Zf04XEqDDN88pnBfq1LxJhmBIvxf3LZBE0KqbTRvjTtU5NAUyrYWv6EOG4N65kBYgHK5A654KlbFcLW6WDrhK/1JJDyGrz+3+SAxWuMOOOo+XAbZOX6uJhtJu+TgcmV9hhRnI+LiWJ19WYAsl83LFMAAI5tDU/0WsminvQZEsCGq6WGnlvpJ9pch9+8GKYd3TAjWM6WG0LUmjEVw0LwoqrwifW0RN+AiKHapiaD8vkAxXOo771VbAsnx+Bp4kZlUJZsW5R89bKu7xbLKBjSQCGMnPp1Bi41jjJjEVWmaVYuHVC8aUQGeSsFLm4vdso1YvUa5NpBG1nsZmzLQoMkc+LNiUpgQ6aDmtQp8qe20+vo53iOg4ZXjm8Rj81bfDBM96LP/pXpnqmtxeze5jATvmaL1E//YF0nFmAo9bpmUdPEr8fT0z0qdVqSqJeFi/PrTvy41MhIbNtCj53/x+wGsixDlKSIhKQZxCzSha6dMCaxsT0ib05UIIOIrFcVVwcsp120p6VlQZG8isB5ZsnztUTQdE7DcyuJIm3T5ZAlkGFU8g9puQjUBV3/TxW5oZLA8n1QSfi0dC/QJ5EUj0GPCTKgXPi5htjPkT+PUtx6SPmWjvXTx/k1HBcNr7Ug0vOVa5IUsVN0x19yZlxhFXG47zq1LOhnIk7ykgUVQZnYaUJH++USR1JCTRKl9CUJQlHeiKqJIW2jn2CzDGhGMZpdKIFUzEpZMyd97Y7rkmgWRU4CGcZE3ev/ZVlmFL0gSdCMyOblsVrSrYzri8l6WaIfHUOopYPNQgIjfSP0KKptlq/docdl8WImBK5jw3X8rhDBRAxaNiR/eltA0j2T5CkyqCx5oMlii3O6VQJtIe+OA1+ImedU0zpyXJc6IXIN15Vyp/QhyaBc60pLC3mWMDPZsWpO/fTEL0jy9yg6c7cZl20m4Qu00q9e6q1OEinlUFneJenMMBoe4zXK8AKqTDeRpCmiIg3UZa2dBIZJXKaBkdpnNJLAbsGyUM4w0wSwQURNTNygiV9Dm+AxHNlTS8BiADXPDGaYuhDLuwRxghc3bsTr5r6Sx3gxDLP9OLYNx7a7YnygKQk0yR0tE6tjB8vZbPRYM4rlBBBdMIPK7XycoCDLyEy2zmzTZsS17SK908fnuWqy5zqatJXpn0jxaCIohZGMJZRSSISwUZSFOf1jJhtyeRcfcOOdOvOYHXkUhmEmPY5to9e30evXu5clnSWsJ3iqqMUtRVAMZI5itfQb0P6RGEcYK8fE7coK9mGKwbDeFez1SRmtbpcDnF0pjA09CVTEzpXj/fRr5mLJ6R8zeWDxYhhmUtEts4TjJJVpHx2vEhWyRiVQCpwUObXsa079qvdNtylyjcAacW27tfh5pfBJcfPIsgQt+5NlEfT+npomcvLHjDUsXmPER7/8/2HatJ3kLC751SvLA3RrIPU4bcv7uq5N2slsNK98s7BtfrNgmPFCPiHExpQaE8CsWMdKiJxI6pSSbVES1hM+2ofOegsKCTSmf3Esy8rNKDYuByPSv201pn9VKXNby5znqCKol3jpavZaaVg/R8w65vfyiQ2L1xjx8Po+OP6mjj6m69hS2IxSJ9o8d4jj+vkG0TOcr1/X5RljDNPV5EvDuPBdF9NqfB6xMgHEJHWq2Oml4SDKZ7OViz/n7c1IvaY43/QYlLrH/XlOVc6UhM8Roua0kMI2iWBLceRyb6dg8RojLj11MbyeXsjFRMmMsShO8/VLSDkgirSFQ8nX/HhcaYsTdZZYnKR5W1DvOBGKImeK0LnDED4t+WtxnF6fiqLnik+cZRt/kmSY7kMsBzO1puVgMrmCfVXMSrkrFyCl6WCTClykLmQaiuslpuvGMvVrxjHo+gJRkpectwb17FvpOrYxpWuX8LVLAZUxfZXScLHqvVvK5EQXPxavMeKoQ/cd8+Uk0jRDnBgkTdyOaLtZ9IznxfEQx8n5ZDX6KGqzr2SX4No2PK9cA0okdaWouYoIUklsEPGj/UQK2HBd9doeGYzsqQLJnyoZpnugyd9OPZ23vyzLEBezfsuUzpTwlUJX6Sdm/WoTQIKofTlYnEPfu/MP8SEGatqzUozzaxChE+lfj1emc/S2SeAaxSxefYyf3t5TXFsPM8bs9XXkUZgxwbYt+LYLvwuWChAkaYooTispX9hS5OKhRTAq+w4lmGVbbJS+OE0RBykGuyAVdGxLkT5fkzUqe4oQEnkrpc7VZLEqlLoEClFkCWSYerEsq1jQ18HURj2blpsme5jSOjo2TxdCOkaQbmQurikmgdDJI02T+NU0zi8JOlNb7p6/2MyEwLFtOL6NHr87/mtlWZa/oRAxCyIyFoTcDqOqCOrtrfuoe0dGZDAyFUM6iDhJMwwGUddIYDXxU2WtKn2tk8CGp44N9OnYwMp1XeXxuBzMMJ2n7skeVPzkdkNF2ldJ/iK1TS8H60lfy37Fdejafp2AV64fZXjleqYdUaKme7Q0IAQtIKVeeluXxUBL+gIifxUZjPKxhgF5jG79zXdtu5S7ocrAisSZSrtlu1xZ3ivTQZoEltKYf3UdTgEZZjIg1vZ74eWN2GuPWbxyPcNMJEQ5YUrNz0OMKcmTOVEObi+Begm3XRIYxNV0UZ6rTCTJ26gEinLwtpqTQFoKrsid5yplYCFuVSEs29Q0UD/PrQilGCvIM4MZZmwRa/vtPKWnI4/H4sUwkxA6pqQrJNBQDqaSJ1K7sEWqp8ifliiWSWGZ+ol+ARmvok8O6ZZSsCJ9mpjp6Z0cuydm9FJBFEsJaMmemGVGBdHX2ngMIMOMHixeDMPUimVZcu25qTU/lzhJK1IXRNVUT5G2iCw6GlXTPbnwKCkRG4+H5gkhsq1Zz9ICACn/UtFzDQmfSOo8k+hVx/PRcq/Sz3O1CSEul36ZCQOLF8MwTIEYYNzbqHk1+bicDaaUZ6NyVpkih6E6nk8sKkonjugCKcf7UYEkIllZTb7m8q9tWVqyVwoaFTullEvaRPqn3Cfj/irHtPs+l32ZUYLFi2EYpouwrGJsmecCvTWtKIpilhldF0pP+JQybyy/UqGT54bkeCGIzTAul51pkRjSdZXSLEMzjNEM49q+J3R8ny5lQvSqY/50GSRrTZF0j8Vv8sDiNUZ84rI7MLXYq1Fus+OR7Xw82u5W2txW98X1PBeeaxf3819w3qKHYZjRQqwmX+cYwCRNyWSMUsyE/IkJIGEk5E4tD9PyrZDCgEgibafj/sS5+uxfca2tg/V8P3ZE/LYn8aOiyBM9Rg8WrzHikaf64HqbOv64Q4meuE/7iD0W89ut+hTyJ6/ravJY7SMW9uR1mRiG2R4c20Zvo77Sr1xRPlLLvGKcXqBLmyKBZUlX9BXpXrOYPELbAlNbl4lfRfj09E45po7zU2RQOc/cV0kEJ5j4sXiNERcvPRZeowdxnP/SRlG5mGYsZmpF5bT9KCbrO0XlfboAZ6Sck0/zT1J1MSbRb1tNr9uEIzbvpmJX/JLSNt93FWGUYueRfRpNfekMLM+QIGrnT5RfXoZhxhZlRfmezq8oL2b8NqNYLsosJE0ZsycWCA2rpdtAT/bEqvGaNOaPUR4TbZQ8MUywpUbxoylcw3e1lE5N8xrF34ke0k+eT273FH8jomZnXhiL1xjx1sPHfq9GII/iYyFnRNDE/dAga2GcKOcosqddK4xiYx8qjbpMRtqsrCRJMZh0xzY9QF5CqYpbK8lz4fsk6SOzsWhaOFxJ1NscLg8zDNMCOuMXvZ1/fCF+dOYuLd+q4/3I7UidrFEZF0ikLx/rRyaTRDGaZOkXihA/YGw2kUxC3jKIGQZii55GTds8mJDrMmlJn0zuDCIYhsVimkQGw1DbckccE2s5yb5xcX55Xfl4BhGMkxTxYNgVqaBlQS3b6jJnSAIbfnFcCmHZXyR+VP58z62UhOl1fd/lNJBhmArdIH5yX8iQzrol4/W0BE8/rogfEceKEEYxBrZ25v2PtwwaZXjLoO5D/PIaha6t5MWaMMZEEtU0kPYXjxUUx3Vp1MvD3URljKBXrqPUqiyspHy0XTtuEkB5rigRsAQyDFMTnfr7zYkXM+Gh0/PrXqATyMvDeqlWlTw1CQyL+7okBiJRNKWGZOyHMpbQIJqUbhojSEu4Dc9VpIyKXINIYSly5WwvcV7DpwIpjuXl5MoxIpksgAzDjCYsXgzTYRzbhtOw0VPjIp2CIdPAyCxyUvpoShjG0CeNqG1qgiivTY5RhASipoG8AiWt0xI8X2krxwNKSfTLMYGV0q5PNv7220sir9rOMBMHFi+GmcR0UxooxwaG5ewrIXFS+AwiF0hZrIocbQvk9aoy2U4AhSzWiW1ZudTRsq0c5+dWjsmvugh6ebpnHuOnHauIJad/DDMasHgxDNMVdMuejSIFDKPEIIGq0IXasSBU07wwKid+KIJISshycG9YlpmDKEGir9oexGgG9a3aDgyv/FtJ+egYPpLiNchxuSYUFUgihix/zESCxYthGIagbNkzpb4te5I0VcbtyfWaQpoEkrbKuL4hJJGkfCIRFLJJ+1O6ofyrpHo+WXTTqyZ/DV9L/+jq7toxeQ39uix+zCjD4sUwDNOFOLaN3h4bvah3w25a/o00iaNj/mSSR4RPlzyR/CmyGJIlAEK1vByEVfmru/S7veKXp4QkFRyh9DV83glkosDixTAMwxjphvKvUvqtpH6lnJUiR1ZoD1X5C0O1n1zlPYwqZd+g2MQ7CLVte2oWP08r4xqlz1e39RHHGvIYJ351Mu7F67rrrsNVV12Fvr4+HHLIIfjKV76C+fPnG/vefPPNOP3005W2RqOBZrNcrTbLMlx88cX4xje+gU2bNuFv/uZv8LWvfQ2vec1rRvS8/vzsRrxi1xSu68CT4xx4pXKGYZiRoJR+ayDLMiRJmi/IGcYk9culTwgaHRNY6ae3hdqejkUKKNtIoqiLnyj3DgyGtXw/Rpr4idSvQSZsNPxc6ERbgxwXx9RrTKy0b1yL17e//W0sW7YM119/PRYsWIBrr70WixYtwhNPPIHdd9/deM706dPxxBNPyPu6BH3hC1/Al7/8Zdxyyy3Ye++9ceGFF2LRokV49NFH0dPTM+zndtbHbobrVvtbFvKNpD0Xnp/LmEs3sS4iafWfC8+14flutY1cR2xSLa7hew5csqaRONclK5x7RAgZhmEYFcuy4Lr5e+vU3vr2aywna5gFrdKm9CsTP32mb6glgQEpGYtzuyXxEzt3lKkeSfOK+8pxKX1eReTKUnDZLwx4r8Yhueaaa3DGGWfIFOv666/H3XffjRtvvBEXXHCB8RzLsjB79mzjsSzLcO211+Kzn/0s3vve9wIAvvWtb2HWrFm46667sGTJkmE/t6lTGwBcRFGClKxUnmWQi2F2xSqVBbZt5TOUPF0GTSLYWhB9vY9fboqt9PHVa0hp5HSQYRhGopR7axI/kfgNVeYNwljKn0j46P2yXyRTQF0QpfAVaWJKrE9O7hgj4oj3amxLGIZYt24dli9fLtts28bChQuxdu3aludt3boVe+21F9I0xRvf+EZ8/vOfx+tf/3oAwPr169HX14eFCxfK/jNmzMCCBQuwdu1ao3gFQYAgKDfs7O/vBwB8+7aPyS0HkiSVsiUWnYxCstdgFCMu2sQnkTguB7JGUX6s3Ng6Jtcj123VRvY1jMJy0CslTTM0mxGaze7YyBoo9jGkW9V4LlzP1to0gfN1IXSJ1Knpnyu2rjFIoCKWLIMMw0xS6k784iQtpY2InBC0QEvn5PGw2IuxOJeKI035ZFoYxRjY2pnKz7gVr5deeglJkmDWrFlK+6xZs/D4448bz9l///1x44034uCDD8bmzZtx9dVX48gjj8QjjzyCV77ylejr65PX0K8pjumsXLkSK1asaPtcHceG49jo6al/pXJBlmWI47TcciZKEBNhkwIYmWVPyFss75d9ynM0+QtVKaz0MaSDYfGJaKDG7xXFtvM3ISprcmNqX/1KZdAnEiflj4igcj2fSmDez28hlyyBDMNMZFzHhtvrd0T6+vv7MeOmZWP+OONWvLaHI444AkcccYS8f+SRR+KAAw7A17/+dVx66aXbdc3ly5dj2bLyB9Xf34+5c+fu8HMdayzLkn+8uwk9HVTkLFSlr13qp/QJW4jedshgmmZSBoGg9QvpELq46dInpY0MepXyp40Z9HXp0/op19FE0XU5CWQYhhkO41a8Zs6cCcdxsGHDBqV9w4YNLcdw6Xieh3nz5uGpp54CAHnehg0bsMceeyjXPPTQQ43XaDQaaDTqW2RxotGN6WBSrGNkFrTiflj9KuUvJJtZh6rchdoxmR626BfHqfLcxHMY6ILxgmq656riR6VOk0DlK034FMmjKSEVTbKHYnGby8EMw3Qz41a8fN/HYYcdhtWrV+P4448HAKRpitWrV2Pp0qXDukaSJHj44Ydx7LHHAgD23ntvzJ49G6tXr5ai1d/fj/vvvx9nnXXWWLwMZhzgODZ6e3309tb9TPLEjZaHRRIYVr5WxU6Xu1BMbzfIn9rHIIdhGwms6XsjsG2rktrppWBdBo1JX4uET1yv0SjPzf9VS8MsgAzD6Ixb8QKAZcuW4dRTT8Xhhx+O+fPn49prr8XAwICc5XjKKadgzz33xMqVKwEAl1xyCd785jdjv/32w6ZNm3DVVVfhT3/6Ez784Q8DyMtv55xzDi677DK85jWvkctJzJkzR8odw9SJbVtoNDw0GvUngmma5RM+yGDVSllYJnfVVFAXOT3hM0lfqJWNRR9lX8M0QxDECIL6y8FKCkgEjQqgELdS4pxqm1fto16DXN9Tz2f5Y5juYlyL10knnYQXX3wRF110Efr6+nDooYdi1apVcnD8M888A9suZyn89a9/xRlnnIG+vj7ssssuOOyww/DrX/8aBx54oOxz/vnnY2BgAGeeeSY2bdqEt7zlLVi1atWI1vBimMmAWILE9+t/G6FjA2WSR0q2SpJHhC7U00JNBitJYRhrpeBSEkUfSjekgMo4wDbyV0nvfLfs00L+queZk0WWP4YpsbKMLo3G7Cj9/f2YMWMGNm/eLJeTYBhmcpBlWTm5Q+xbGFZTvCCIKileEFYFMAjUcnC+tlEkxw7KvRKLfuK8bntXbytsnkHYiMhRcazIoFbmbZUe8rg/Zjh06u93/R9VGYZhJgiWRVLAmjY3FEvFBGGklXyrEkiTuvK+Kn+0XTk30s9tnfzJZWEG6in9inF/peiZ0zpaGvZ9V0kIRZ+GLny+ZxTBBmln8WMoLF4MwzATCGWpmBrljyZ/gSZ3NKUzpXlU6PJ+RAKjGKFoE2XfsFxR3bRItDrur/PQsrwickVK12jQiRxlmz5mz3gNowyqMsnS112weDEMwzCjSjckf2LNvXI8n1ruVUSuTRIYkPtBEJdlZNKW94tapn517wxChUxImtcinVNSwYZnlESlrWGSv7IPS18VFi+GYRhmwmHbFnp6vNrWBBRLvwgZy8fwFdvaBNUSrmijY/2k7GmyGATlFjq6LIp/ysbWNS76bJq0oUua10L+8iSwKoeNhquO6WtxXdvuTulj8WIYhmGYUabOpV/EOD+5H6FI4eTm01FF2ALZJ6m06WP4aFsQRko5OAgiRfrkzN4axve5ri2FTSR8DSKBjYanlHbTpDPPkcWLYRiGYSYQdJzf1Kmd3VklyzIkSarKmBC1oCzthoX86TN8gzAq+mliKFJCURompV8qhnRNvzhOEcfBsHf2iOPmGH1XVFi8xogPHP0F9PZOlRshe54Lt9guxfX0tnwAJL3t+flu8GqbC9fNj3m+S65T9PEduJ4rN3EW59J+jttdezMyDMMwEwfLsvK/XTX9rYnjpDJLlyZ8ucBFcoKHlLcgxqZNm/Afa8b+ObJ4jRFBM0ISDdb9NCrYtlWImFtKoO8qAidETT2m9nep8A1DCls9ju+XQkoXu2UYhmGYkSKkr7fXH/G5/f39+NhHx+BJabB4jRFfu+Oj6GlMkevoRFGMOEoQF9OfRd1b3g/z4yFpi8UWKkX/WJ5TbskShXFu+KF6Dn0cSppmeYxb07TqdjiuLQWPCp3YGLna3rqPT/uQFNF8juExisSRZ+QwDMMwowmL1xgxa84uXbFyfT7IMpHSJ2rjQtZKQSNyF1ZlT/YJE0UgQyKJMRHM1o8jRDNBHKtSmMQpkjhEs0uCQsuyZCo3pAyKxRcb7hDyWM7AaXcdesxvsAgyDMNMFFi8Jjj5IMtcBroNsciiFDG6wTIRPV3Y1PuF/AVa/7B6rdB0Le0xUjIwM8sy+RjdQvsEkApd2d5KHGlfURquiGMroWQRZBiG2S66768xM2lQFlnsEpIkVeRMrJCtippB2gzHwkArF4vFG8W/NgLYKhUsRbCerVcolmVVS7wtJc8zp3um0rDnwJPr95SS6De8qlz6uRSyBDIMM17onr94DNMFOI4Np9dHT2/dzyQnTdOKkIU0+RtC4MIgatGun2u+TimKeVsSq4lgt4wXFBJIpUyUaOkq3V6R3NFjMs0TW7SQPlIklfNoP0e2eX6+Jx/DMEw7WLwYpouxbRuNHhuNmlbf1kmStBjDV03+QlnuVVM/XfxM51ZKxZGaNsq9+YRIahNHukUCxQQRKW1EzhQB9EvRM8mhFDstRdTFzySanP4xTHfD4sUwzLBxHBuO0x0imKa5BAZBKXJS6oJS3kLtmEj7ymMkRay0FV+l+JVt4naalst0lxNEwtq+L0r6pwlfmc7l+/DpUuj5atKXl3er6aAilroINnhjZoZpB4sXwzDjEtu24Tds+DVsyUJJ4qRclTvU0j+D3MkyryZw8mtUCmBYrOqtpH7NqJTAqJRCgZL+banv+2ISNrWcK8q0XqX064utXBqlDDYannK+kLxGw1P6CWnkdQGZboXFi2EYZgdwXAe9roPeKZ3dmoVCxwKWghcpbZWETyvfViQw0ku8pTjSvvT6FHFsW00TQcQkDSpwJknzezyDzInb6jG/h17PK4TQrQgh7xDCtIPFi2EYZpzTDWMB5fIwVNqo0EWqrAWa5EUBaQtjhE2S+hFxDIMYQZH6iWQwaOb7+2Vkd2axSHUd4mc7di5veim2ED99LJ/faCF/RanXJH70WvS249pc5u1yWLwYhmGYHabu5WGyLEMSp0oaFwS5kEVE2vSET8idTASJzOnCFwZRJRmkM4QFaZJicFuIwW2dH+tn21bL8mye+qmJXUXopBR6ZZrXQhI930VDJIY9vKzLcGHxYhiGYcY9YqcJ13MwZWrny75yDcAwRtDMU7ygKQQtIpNAio2ZA5Lm0YSvGanj/JoRAiGLRPzkP22R5zTNEDQjBM0IW9DZbUAsy9LG5ZVyRqXPb3hSCtU2Uvrt8ZTzlT4ND42esnzseuOrtMvixTAMwzA7SLkGoI+dZnT2sekMX33WbtiM1DF+AUkCW6R+MjE0pH6izEuvK8iyUvo6ie3Y8H1XkTG/p0j8ivaq7OXyRku1UdKZsjSLF8MwDMOMY+qc4VturZYoQheQRC9o0vSOSF6RBEqJK/oFQaQIotKXnC9IkxTNwR1fxiVm8WIYhmEYppvJy4se/IaHqTv1dOxxxUxemuoFTTIOj0ieKPnmkzBUgQuCMgXcsqUfq/8w9s/dyug0EGaH6e/vx4wZM7B582ZMnz697qfDMAzDMMww6NTfb15hjmEYhmEYpkOweDEMwzAMw3QIFi+GYRiGYZgOwYPrx4jlJ30VU6dOhee7cL1877B8jZlyE1nXc+H6RVuxvYXruXA9pziv+Cr6+OI6rmz3PPNxXr2YYRiGYboPFq8x4r8f/BNc26/1Obh+IWOek0sakUBxuyp+QvaKNnG7EEH1mq4iiKos0vNLyczPzW/zJrYMwzDMZIPFa4w4/6unoOH1Io4SuQ9ZHCWIo3y9k/xrjFjcjhLExQrEcZTIPnGxya3ok19H9EvLY9oGtQAQhzHiMO7w2sXDx3FtReyo6Lma9LWTR69hkD6THDZy6fOKLTH0BJKey4khwzAMMxaweI0RC/7XQR1dTkLsUxbHpZwJaYsiInjFysVRpIqdEL5c+uJSAuX1EnluHKt9KhJY9EviRC6sF0cxkjhVnnMSp0jiEKhhP7OhsCxLK+FS2SvLwnr5V0id8Ta5Lza/rRzvMfcX/1gGGYZhxjcsXhMEuk9ZT2+9Jc5WJEmKJFJlkCZ2kRC/IColMMj7KulgIXP0XEUMRTpIBVJeS+1Hz6NL2mVZlvcPuisxdImE+Y2qmPnFlhhK2xAy5wkJFMcM4mgSRdfjDXEZhmFGCosX0zEcx4bj2PB7Or+txXBI4qRSzlWkjiZ8eoIYquVisb+ZPBZqfU33i+01aFscJcpz7KbysWVZBvET8qbKnK/086ptDU0EyUa7ok3v72uPwRLIMMx4gMWLYQoc14HjdldimKapUg6OyP5nuqSFxf5mUTv5CzTJG0IG9WvScnGWZflWHR3eELcVrq/LmpYEmiSwx1PEURc6k0j6xTn0cVgCGYYZLixeDNPF2LYNv6d7UsIkycfyRc2quIWGxC4MhieIyvWKzXKV/obrxqE6oUSmgVtr+uYQqAT6Iq3r8eR9keAJYfN7RKpX9JVfXbkPnle5Fr1eLoSizXGdur8FDMO0YNyL13XXXYerrroKfX19OOSQQ/CVr3wF8+fPN/b9xje+gW9961v4wx/yXTAPO+wwfP7zn1f6n3baabjllluU8xYtWoRVq1aN3YtgmHGC49hwev2uSAWzLNPkzSxq1ftV4aOCqCSKbaRQTx4pdUug7diq5PW4Falrfawqiix+DDN6jGvx+va3v41ly5bh+uuvx4IFC3Dttddi0aJFeOKJJ7D77rtX+q9ZswYf+MAHcOSRR6KnpwdXXnkl3vWud+GRRx7BnnvuKfstXrwYN910k7zfaDQ68noYhhk+lmVJKagbKYEGgRNSFzYjREGEMChuF/IWNqttQvgCKoZBJPvn1y/OD2KEzVApA6dJiua2EM2aZgwPJX4yDexR0z9F/npc7RgVvLJfo4fFjxlfWBmdyjXOWLBgAd70pjfhq1/9KoB8PMzcuXNx9tln44ILLhjy/CRJsMsuu+CrX/0qTjnlFAB54rVp0ybcdddd2/WcOrW7OcMwDIWWgcMgRtAMSwlsEmkLS2kTfaUEFoIXFHInRZGe29T6tSj91skOJ34i7esxpH30eHG7UQikkEAe4zc+6dTf73GbeIVhiHXr1mH58uWyzbZtLFy4EGvXrh3WNbZt24YoirDrrrsq7WvWrMHuu++OXXbZBe985ztx2WWX4RWveIXxGkEQIAgCeb+/v387Xg3DMMyOUXcZOE1TKXlU5MIgQjgYjVDuxFhAQ+rXrApk2IyUGcB1J35+D5U3H42eqqBRsRPH/B4ffm9+rNHjy+s0enQhzK/p9ZT9HId3AhkvjFvxeumll5AkCWbNmqW0z5o1C48//viwrvHpT38ac+bMwcKFC2Xb4sWL8f73vx977703nn76aXzmM5/BMcccg7Vr18JxqvH1ypUrsWLFih17MQzDMOMc27bR6PXRqEn89MSvmtIZSrpEAkNdAlvKYoSwGcvb4mualsWjOmb75gs7e1LyhKDlEle09fjwe9xS8nqoBPryvAa57ff6MskT54n7vKjz9jFuxWtHueKKK3D77bdjzZo16Onpke1LliyRtw866CAcfPDB2HfffbFmzRocffTRlessX74cy5Ytk/f7+/sxd+7csX3yDMMwjEKdiV+WZYijpByzV4he0MwFTrSLlC9ohlICw2aY92vq99XzxFg+UeoNmpFS3hWLTg9ubXbsddu2pcmeJxM7mfSJZE+5T6SP/GuV7OnXHu/7/I5b8Zo5cyYcx8GGDRuU9g0bNmD27Nltz7366qtxxRVX4Kc//SkOPvjgtn332WcfzJw5E0899ZRRvBqNBg++ZxiGmcRYliXXcZu6U2/HHlekfOFglMscFbRC7BTJG6RSFyuSRxM8RfKKdI9KnxganqYZgsEQwWBnS7oifatIXyth6/HQ6C3vN3q9PJ0VwlfcjpJg6AcfBcatePm+j8MOOwyrV6/G8ccfDyAfY7B69WosXbq05Xlf+MIXcPnll+MnP/kJDj/88CEf59lnn8XLL7+MPfbYY7SeOsMwDMPsMGrKN7Ujjylm8FaSPSFsg9XErq3kifttkj191q7Yzg2jvIdHnHZGIMeteAHAsmXLcOqpp+Lwww/H/Pnzce2112JgYACnn346AOCUU07BnnvuiZUrVwIArrzySlx00UW47bbb8OpXvxp9fX0AgGnTpmHatGnYunUrVqxYgRNOOAGzZ8/G008/jfPPPx/77bcfFi1aVNvrZBiGYZhuQFnGZUbnHjeJk0LMCpkbjJT7UvaIDFK5C5tqP5HU0ftbBrYCfWP/Wsa1eJ100kl48cUXcdFFF6Gvrw+HHnooVq1aJQfcP/PMM0ot+Gtf+xrCMMT//t//W7nOxRdfjM997nNwHAcPPfQQbrnlFmzatAlz5szBu971Llx66aVcTmQYhmGYmnBcB1OmOZgyrWfozttJf38/vjPjqjG7vmBcr+PVjfA6XgzDMAwz/ujU3+/xPTWAYRiGYRhmHMHixTAMwzAM0yFYvBiGYRiGYToEixfDMAzDMEyHYPFiGIZhGIbpECxeDMMwDMMwHYLFi2EYhmEYpkOweDEMwzAMw3QIFi+GYRiGYZgOweLFMAzDMAzTIVi8GIZhGIZhOgSLF8MwDMMwTIdg8WIYhmEYhukQLF4MwzAMwzAdgsWLYRiGYRimQ7B4MQzDMAzDdAgWL4ZhGIZhmA7B4sUwDMMwDNMhWLwYhmEYhmE6BIsXwzAMwzBMh2DxYhiGYRiG6RAsXgzDMAzDMB2CxYthGIZhGKZDsHgxDMMwDMN0CBYvhmEYhmGYDsHixTAMwzAM0yFYvBiGYRiGYToEixfDMAzDMEyHYPFiGIZhGIbpECxeDMMwDMMwHYLFi2EYhmEYpkOweDEMwzAMw3QIFi+GYRiGYZgOweLFMAzDMAzTIcZMvO6///6xujTDMAzDMMy4ZMzE68QTTxyrSytcd911ePWrX42enh4sWLAADzzwQNv+d9xxB173utehp6cHBx10EO655x7leJZluOiii7DHHnugt7cXCxcuxJNPPjmWL4FhGIZhmEmCuyMn/93f/Z2xPcsybNy4cUcuPSy+/e1vY9myZbj++uuxYMECXHvttVi0aBGeeOIJ7L777pX+v/71r/GBD3wAK1euxLvf/W7cdtttOP744/G73/0Ob3jDGwAAX/jCF/DlL38Zt9xyC/bee29ceOGFWLRoER599FH09PSM+WtiGIZhGGbiYmVZlm3vybvuuiv+9V//FdOmTVPasyzDSSedhA0bNuzwE2zHggUL8KY3vQlf/epXAQBpmmLu3Lk4++yzccEFF1T6n3TSSRgYGMCPfvQj2fbmN78Zhx56KK6//npkWYY5c+bg3HPPxXnnnQcA2Lx5M2bNmoWbb74ZS5YsGfI59ff3Y8aMGdi8eTOmT58+Sq+UYRiGYZixpFN/v3co8TrqqKOw00474W1ve1vl2MEHH7wjlx6SMAyxbt06LF++XLbZto2FCxdi7dq1xnPWrl2LZcuWKW2LFi3CXXfdBQBYv349+vr6sHDhQnl8xowZWLBgAdauXTss8WIYhmEYhmnFDonX9773vZbH7rvvvh259JC89NJLSJIEs2bNUtpnzZqFxx9/3HhOX1+fsX9fX588Ltpa9dEJggBBEMj7/f39I3shDMMwDMNMGoY9uH7Lli0499xzccABB2C33XbDfvvth2OPPRaXX355S9GZDKxcuRIzZsyQ/+bOnVv3U2IYhmEYpksZtnidcsopuOOOO/DBD34Ql19+Oc4++2z87Gc/w7/+67/i9a9/Pd773vfiL3/5y1g+V4WZM2fCcZzKOLINGzZg9uzZxnNmz57dtr/4OpJrLl++HJs3b5b//vznP2/X62EYhmEYZuIzbPG699578f3vfx8XXnghzjzzTHziE5+A53m455578D//8z+YNWsW3vSmN2H9+vVj+Xwlvu/jsMMOw+rVq2VbmqZYvXo1jjjiCOM5RxxxhNIfyEuiov/ee++N2bNnK336+/tx//33t7xmo9HA9OnTlX8MwzAMwzAmhi1es2bNwrZt24zH9tprL/zLv/wLzjrrLHziE58YtSc3FMuWLcM3vvEN3HLLLXjsscdw1llnYWBgAKeffjqAPKWjg+8/8YlPYNWqVfjiF7+Ixx9/HJ/73Ofw29/+FkuXLgUAWJaFc845B5dddhl+8IMf4OGHH8Ypp5yCOXPm4Pjjj+/Y62IYhmEYZmIy7MH1S5cuxT/+4z/iO9/5Dg455BBjn7//+7/HFVdcMWpPbihOOukkvPjii7jooovQ19eHQw89FKtWrZKD45955hnYdumWRx55JG677TZ89rOfxWc+8xm85jWvwV133SXX8AKA888/HwMDAzjzzDOxadMmvOUtb8GqVat4DS+GYRiGYXaYEa3jdd555+Gf//mf8b/+1//C8ccfj3PPPRd/+MMfsPfeewMArrjiClx//fX44x//OFbPt+vhdbwYhmEYZvzRqb/fI15A9f7778fVV1+Ne+65B4ODg5g2bRpmzpyJzZs3o9ls4uabb+7YdkHdCIsXwzAMw4w/ula8BGEY4ne/+x3++7//G/39/Zg5cybe+c53GrfqmUyweDEMwzDM+KPrxYsxw+LFMAzDMOOPTv39HvasRoZhGIZhGGbHYPFiGIZhGIbpECxeDMMwDMMwHYLFi2EYhmEYpkOweDEMwzAMw3QIFi+GYRiGYZgOweLFMAzDMAzTIVi8GIZhGIZhOgSLF8MwDMMwTIdg8WIYhmEYhukQLF4MwzAMwzAdgsWLYRiGYRimQ7B4MQzDMAzDdAgWL4ZhGIZhmA7B4sUwDMMwDNMhWLwYhmEYhmE6BIsXwzAMwzBMh2DxYhiGYRiG6RAsXgzDMAzDMB2CxYthGIZhGKZDsHgxDMMwDMN0CBYvhmEYhmGYDsHixTAMwzAM0yFYvBiGYRiGYToEixfDMAzDMEyHYPFiGIZhGIbpECxeDMMwDMMwHYLFi2EYhmEYpkOweDEMwzAMw3QIFi+GYRiGYZgOweLFMAzDMAzTIVi8xojmtgBpmtb9NBiGYRiG6SLcup/AROXkeZ+Fa/vwGi4avT4aPR78Hm/I217DK9uKr36jvE+Pm/q4ngPLsup++QzDMAzDGBi34rVx40acffbZ+OEPfwjbtnHCCSfgS1/6EqZNm9ay/8UXX4x7770XzzzzDHbbbTccf/zxuPTSSzFjxgzZzyQt//7v/44lS5Zs1/OMghhREGPrdp09cmzbUuWs4cHvrUqbcr/hwu/xi/5u3tZL75e3/R4hiEV7b95u2xyeMgzDMMxQjFvxOvnkk/H888/jvvvuQxRFOP3003HmmWfitttuM/b/y1/+gr/85S+4+uqrceCBB+JPf/oTPvKRj+Avf/kLvvvd7yp9b7rpJixevFje33nnnUf8/P7td5eh4fcgGIwQNkMEgxGCZoRwMETQjBAMhgibUeW2+BoF5vu0PSTHBWmaIRgMEQyGI37OO4Lru0TivFzkColrJYIt07yGIdEzJH6c7jEMwzDjDSvLsqzuJzFSHnvsMRx44IH4zW9+g8MPPxwAsGrVKhx77LF49tlnMWfOnGFd54477sDf//3fY2BgAK6bO6hlWbjzzjtx/PHHb9dz6+/vx4wZM7B582ZMnz59u64xUrIsQxTEqpgFRNo0qQuL463kTpe6MIgRNsPiq+gTIonrHcNmWVZVyPR0bygRbFPWlQKopYaOw+kewzDMRKNTf7/HZeK1du1a7LzzzlK6AGDhwoWwbRv3338/3ve+9w3rOuKbK6RL8LGPfQwf/vCHsc8+++AjH/kITj/99JbJShAECIJA3u/v79+OV7RjCAHxe7yOPm4SJwiDGEEzRNSMpZCVghYWkkfuBzHCQU0MTWleEFVTQC3dy7Ka0j3PMZZt/YZbyJqr3Je3CxHM79PbrhQ8z3fhkeso5zfyEi+nfAzDMOOXcSlefX192H333ZU213Wx6667oq+vb1jXeOmll3DppZfizDPPVNovueQSvPOd78SUKVNw77334qMf/Si2bt2Kj3/848brrFy5EitWrNi+FzLOcVwHva6D3qmNjj1mlmWIwrhM5QJDmteMigQwVOQuDGLSJ0RolEWzCMZRIp9DHCWIowSDW5sde90UVeCqcjak+Pma/PWQcwu5Y/FjGIYZG7pKvC644AJceeWVbfs89thjO/w4/f39OO6443DggQfic5/7nHLswgsvlLfnzZuHgYEBXHXVVS3Fa/ny5Vi2bJly7blz5+7wc2TMWJYlBQEzhu4/WiRJmstbM9aSvLCQtLgUwqBM+aIwzsu6zVL8ojAuRDCSCaDoFwZxKX5EMCll22DnvgEEKWYm+eupHvP8qgzK4xUZFNJHBFD2d7nUyzDMuKerxOvcc8/Faaed1rbPPvvsg9mzZ+OFF15Q2uM4xsaNGzF79uy252/ZsgWLFy/GTjvthDvvvBOe1748t2DBAlx66aUIggCNRjXZaTQaxnZmYuE4NpwpDfRMaQCY2tHHpilfLmhxIXIREblYlmdpPzqWL++jSl8UxlIKlTZxrUIg6VBQMVN3oKPfhRLHtYef8skEb4iUT5R4jeVgt+xT9OPUj2GY7aWrxGu33XbDbrvtNmS/I444Aps2bcK6detw2GGHAQB+9rOfIU1TLFiwoOV5/f39WLRoERqNBn7wgx+gp6dnyMd68MEHscsuu7BcMbWhpHw1kGUZkjgtxCyS4/lkmkcTPilw1TZa7qVyp0tlWCSLYTOUx9K0FL8kTjEYBxgcCNo867FFjPMTMub3uOVtInJlW5nYUYHThc4n53iFNHq+C1+7T6/PCSDDjC+6SryGywEHHIDFixfjjDPOwPXXX48oirB06VIsWbJEzmh87rnncPTRR+Nb3/oW5s+fj/7+frzrXe/Ctm3b8G//9m/o7++XA+F32203OI6DH/7wh9iwYQPe/OY3o6enB/fddx8+//nP47zzzqvz5TJMrViWBddz4HoOpkwb+sPKWKBM5CgSNyF+stQbkOROTwJblH7DgKSIJOVTrhXEiMNYeT5ynF8t3w0Vx7Xbypwicq2E0HeHvIZJKD3D+ZwGMkx7xqV4AcCtt96KpUuX4uijj5YLqH75y1+Wx6MowhNPPIFt27YBAH73u9/h/vvvBwDst99+yrXWr1+PV7/61fA8D9dddx0++clPIssy7LfffrjmmmtwxhlndO6FMQxToY6JHBRR7hUyFxFpk20haRNl3SLZo31K0YsRhZGhjZZ7yX3yWLT0m8QpkjhEc1tnZ/e2wvX15E4TN13eDDLnV46b074hr8UiyHQh43Idr26mjnW8GIaZPNDSb1XoIk3ezFJoum+UP3mNqNpW3KYzfrsRl6Z7wxC1dvfFmEHXc+D5rry257vwPKc45hbHnKLdleeI/lwe7k54HS+GYRimAi39dgNpmiIOk7byZ04HzSJXFb/ILIPDFME4zEvFg53at20Y2LYlxc0ocYW0UVnzSD/lHO18cUzeFtJXCKDpOp52TRbDsYXFi2EYhtlubNuG32N3fAHnVqRp2l7URiBx7cQxjhLEoi1K5LE4Ko4LGS36qc8xy7eL05aK6RZsx4ZHpM+laZ4uc76jpHzidimPRfpH5E8XQdruedXruLKtFNLxvD8wixfDMAwzYbBtG41eH41ev+6nIsmyTE7IoHIWBYWYRULaEiW5i4q0jgpc5ZjWLz9WtJHr5o9Jri/6msQwSREkadeKIZBPKmkpfp4jS720jy6QMvUrbodJZxbFZvFiGIZhmDHEsixZ0qtrgkg7xOSRPMVLFDGM40RN8EIqcqXMJXFVKuM4rQhfEhEpJIIYh4mSHCZxKYtxFFf2BhaTSoJRnFocp52ZoMLixTAMwzCTmLrXChwOSZLm0haVghiFkRQ2KW9hnPcRAqklhbFMD1UBjKMYW7b046fX/cuYvxae1TjK8KxGhmEYhhl/dOrv9/gdncYwDMMwDDPOYPFiGIZhGIbpECxeDMMwDMMwHYIH148RH/nf12HatGlo9HjwGy4axYrHjYYHv9hUt2zLV0Ru9ORbajQaLvyevF+j2Hy30fCMbd2yiCLDMAzDMEPD4jVGvPD8Jmx0xn4LXduxC3Fzi1kprhQ9n7b7qsz5DQ+NYoPbRjGbpdHj5v3kucXXQhTzcz3e8oJhGIZhthMWrzHi89efAt/rRVisehwUm+aGQYSwGSEM47ytmR+LghhBEOXHg/xYFMYImvn9MIzleWFQLnaXJikGt4UY7PAGuY5rq5ImNrcliZwUPt8lyV65bxqVwco1ijRQ9iMC6bg2b3zLMAzDjEtYvMaI1x00d8ymo6ZpiihMpIwFQu6aMaIw/xqGtI3KX9kWBBHCpip8+TXzr0L6xL5qcVzugZbEKQbjzgsfUO5zZpI30d5ouPB8TxM3XfCq0tjumuI+Sx/DMAyzvbB4jUNs20ajx0ajxwOm93bscZMklRImJU2keGTT27BI7yLahyR2SntAJDAUyV9ceZyIbGlR9z5nnu8qUiZKtKq8eQbRa53wUbETwihKwfS44/KYPoZhmPEMixczbBzHhtPro6eGPdDSNEUcJZUybBQlZVonN7NNFCkMRFugJn1RVBVIca6QQ5H60XWGxdYXA1s7/m1QxvTpAqjLm1kI1bTP8xx5Pr2Gfm3Pz/u5rsOJH8MwzA7A4sWMC2zbht+w4Tc8TOvwY2dZhiROzQmfELQ2CZ+aBMZS3Erpy4UvCMrSblCIodhEV1DXmD4KFTjP04XPKSVOtHmqHHq+I8cHesWmtb5nEET5GI7a5juwbZ7cwTDM+ITFi2GGwLIsuJ4D13MwpYYNbmmJNwpFElemd9EQckeFTozhE2mfaKNJH00CdfEDINNFbOn4t0Liuo6axpHEjqZ4Qu4UWRQTPuh5LY75DU/px+kfwzA7CosXw3Q5dZZ4AbXMGxVfxbg7PeWjIheFcaX0G0Wl+JXtUSGKSdmHjP8Tj0nLvXGc5JM9BoJavidALuRSyhqmhK9d+ucQUawe0xNF9RqOIpk87o9hxhcsXgzDtIWWeetClHvFeD1Rhg3DpBQ3KoU04SMyF0WJlEWZFBbjBMX5UeVY2UbTvyzLuiL9sx1bTfn81vImpM3zHSJ8apvnm9ulMHqu1r/sxykgwwwNixfDMF0PLffWibKUCxWyMEEYipJuoqZ/VO609C8KSxGUKSI5T0kPZSoYIU3L9C9NUgRJWtssX4r4OQn5o7LXSvIqAkcnfHhlalg91yGiySLIjB9YvBiGYYaJspRLjSRxoqRxyjg9oxSWiZ0id4XUiXaZCmr92/VNk1Q+ryzL5LndgBBBZZxeC4Fre8wzSN5Q/Q3n88QQBmDxYhiGGXc4bj62q65xfxQx+UMpy0p5K8rCym2TzJHbxn6maybG9iQ2i+A21DcekOK4tiGxayVq7URRSw1dZwgp5FSwW2DxYhiGYbabcvJH3c8kh4qgUdSGkLiQjiNsIXfDEUDarjy/OEUSh2iO/Va+w0KmgkUy6BKBc4vkLi8fl7c935VJoteivy6Esr84Tq5D78vn4U1cKWTxYhiGYSYM3SaCWZbJSR1qkjdMidMTQYPgxVHZLxyGCLYsDw/U+I1qgSJjrkHWFBHM+yq33VLkyjKwA9crZdEvZLAZdsaGWbwYhmEYZoywLCtfCsTvnj+3SZJKWQvDuLidjxuMY5IMhsX9om/ZLyayVz0eR0T2orxPTPsU/yptYaxMHAHQUSmMk86Uo7vnf8IEY+WVP8KMGdPRKOr0jWKdnwZZj0fcbhQrd/t6H/kvHxg6ESNXhmEYprM4jg3HqX+SiAlRKo41OQsLCYyl0BXSFida6kfFMCGip6aDUjBJv4FtW7D6D2P/Gq2MrkrI7DD9/f2YMWMG3nrUxXDdnlG9tldM0xYy1vA9KWXin2dq94oNl4nE+R6RPtHeRv5sm6WPYRiGmbiIv9+bN2/G9OnTx+xxOPEaI8484yi4bm+xr1+CIIzkYo9BKPb3ixEWCzvStihK5P5/VItFPDtQw2rdXlEH98lMnFbypyd1VP5ou6e0Efnz1XbH4enXDMMwzMSAxWuM+Nt3v3GHjTnLMiRJKmVMypvYoqUYSBkW7YFYfTssRS7vV9byAyJ3pQzGCMLyXHEtWmuX0rdtR78zI8e2LVXGPIPYabKnJ3aelvTRcxsmWRQbN3sTc1YNwzAMUw8sXl2MZVlw3XxWRh2IQZViVW0luQtjw7+yPWjRrvcXwhfIhSDztpisxZOmGZrNCM2aVuY2CV3b1M9Txa5a4i22YFFSPpokuvDF6t8sfgzDMBMKFi+mJUL6emtYpDFNM0XSgrAswYr9+AIyfTowtIm+lTSv2NqFJoFUAsMwVkq84jmgpgUYW5V5PY+KmytFTS/n6uP69D5qW/XaLH8MwzCjB4sX05XYtoWeHg89Ncy6ybIMcZxWkjuayOkpXiD7JEZZLMftqWIoSr5UDKMoNo/tq6HMKzAKW7EODi3fenra51X76udUxY/lj2GYiQuLF8NoWJYlF9mbOrXR8ceXCy7q0tZG5GhJWPRT2oJymrWUxmJ6dT5WUJXBPOErEdepY2KHQE/lKmLnmSROK+sahFERSposajLI8scwzGjA4sUwXQZdcLEO8QNK+RMTOBRhE+keSelMIifH7pkSvmIdHip9keGxKHXO6hUIIdfH8slNkTX5y8vEqsjRa5jO8ZXj5BxyDZ7pyzDjFxYvhmEqKKttT63nOVD5E0JHl1tRUz9V3AKyVUrYMh1Ur0NFkKaFprLvtm1hPd+UAjHTV4z/y/fA04RNkzqzFNL0ryqPw7kOSyDDjIxxK14bN27E2WefjR/+8IewbRsnnHACvvSlL2HatGktzznqqKPw//7f/1Pa/umf/gnXX3+9vP/MM8/grLPOws9//nNMmzYNp556KlauXAnXHbffKoYZl3SL/InxfsoMX0M6pyR2cguUUhz14ybpkytyi+sSUaTLu9Q905dCJXB4gteir1cVOyqCehLoGVJCx7G5HMx0PePWJk4++WQ8//zzuO+++xBFEU4//XSceeaZuO2229qed8YZZ+CSSy6R96dMmSJvJ0mC4447DrNnz8avf/1rPP/88zjllFPgeR4+//nPj9lrYRimO6Hj/eomSdJC+tQ98tS0ThU8Ux96X08P9evofbpdAi0L1RKtZ5A2TfJMx2UC6BflYi0V1IVSTwV5TCDTinG5ZdBjjz2GAw88EL/5zW9w+OGHAwBWrVqFY489Fs8++yzmzJljPO+oo47CoYceimuvvdZ4/Mc//jHe/e534y9/+QtmzZoFALj++uvx6U9/Gi+++CJ8f+hlFTq15QDDMExdmCSwKnClvLUSPdrHlP6ZJDBqkwR2G65ra6JGxE2Uh11d5so0T0qiuI5vuI68rT8WOV7Ioes6vP1bG3jLoDasXbsWO++8s5QuAFi4cCFs28b999+P973vfS3PvfXWW/Fv//ZvmD17Nt7znvfgwgsvlKnX2rVrcdBBB0npAoBFixbhrLPOwiOPPIJ58+ZVrhcEAYKgHOzb398PABgYDDFlagqXxz8wDDPBcBwbvb0+envrfibFpsoRLdGSNfoqiZ0QtlLe2pWD9bGDpVCak8UoSpTnFscp4jjE4GBN3xwDjmMr8uYWwuYrEqcKm+flazrq5/lDyJ8igDQtdNVSs21bkyodHJfi1dfXh913311pc10Xu+66K/r6+lqe98EPfhB77bUX5syZg4ceegif/vSn8cQTT+B73/uevC6VLgDyfqvrrly5EitWrKi0v/esr8P1euDYVr5PIZmu3ihmRDXILKWGpx7zfQcNMQ2+aG94Trm9jbjtkePk+p7nwLFZ+hiGmdg4jg3HsWtZ808nTTPEsT5ej0helCDW0kApcSTRy6+hJ31UBotjcXlO2Za2lcEkSZEkaVeUhgWWhXI8nyaEZVshf5oMSmH0q1KnS2BLQSyuOzjYmcUSu0q8LrjgAlx55ZVt+zz22GPbff0zzzxT3j7ooIOwxx574Oijj8bTTz+Nfffdd7uuuXz5cixbtkze7+/vx9y5c+X9JM0wGEQYDDr/n9x17HKbGy8XOSp2ivx55XY4DUXqyFY5RADlApjyXEdKoO+z9DEMM/kQEw3qnBCiI2RQl7w4MouhLm20bBwr9xNlWzn9fJoMxlFaSRHpIKcsI2sF1vetQhw3O/I4XSVe5557Lk477bS2ffbZZx/Mnj0bL7zwgtIexzE2btyI2bNnD/vxFixYAAB46qmnsO+++2L27Nl44IEHlD4bNmwAgJbXbTQaaDSqay3d/S8fQaNnCgIxDT4k09qLWVFBGCOgaxlFSXmM9BVtynF6vahcODMh4x3iJEU8GGLbYOenvjuOTQSNSJmUOlXUfK8QOrHApesQmSvbTdc09eMSL8MwjCaDXYQYJyiFLSbiFhraKjIYywRRH1MYK+KXlCkkTQcN147joZ/3aNBVP4nddtsNu+2225D9jjjiCGzatAnr1q3DYYcdBgD42c9+hjRNpUwNhwcffBAAsMcee8jrXn755XjhhRdkKfO+++7D9OnTceCBB47otTR8D9OndX4ARFyMdwjCSBO1UgCDMI+oxTY3Uu7icjBr2S+XQNo3KmJwKn1hlCBOyo2tkyTFtiTFtpribFHibSt9NLEjs5vaCV078fPItXhaO8MwTGu6aZygYPPmzdh55+rQodFmXM5qBIBjjjkGGzZswPXXXy+Xkzj88MPlchLPPfccjj76aHzrW9/C/Pnz8fTTT+O2227Dsccei1e84hV46KGH8MlPfhKvfOUr5dpeSZLg0EMPxZw5c/CFL3wBfX19+Id/+Ad8+MMfHvZyEpN5VmOSpvKTiEzk5OwlInditpLejyR3Q/Yjcikeg4pf3diWpUqfGLOnSV9DEbt8/IGUO134hiGGvhgP4fJUdoZhmJHAsxqH4NZbb8XSpUtx9NFHywVUv/zlL8vjURThiSeewLZt+WA53/fx05/+FNdeey0GBgYwd+5cnHDCCfjsZz8rz3EcBz/60Y9w1lln4YgjjsDUqVNx6qmnKut+Ma1xbBtOw0ZPo55Brkma5rOM4jLhE6lfFNGyblKmeW36RSLpi8up70ICoyjJ0z5SEqbil2YZmkGMZtCh7NpARc6Usi5N7Qx9XD0VrKZ6nn4eEUeP5Y9hGMbIuE28upXJnHhNdtI0U2ROF7RS5GKS5pXl4LAihuoxuUl2FMtrlm15e7ehSlme8HlaotfwHHguET4t/fNcQ6InruXqSaADmgp6nsPj/RiGGRaceDHMOMO2LTR8Dw2/nsQvyzIpa7nwqeXb/Jhavo2iRCZ6yvg9kuaFpE8pg/ng1FBLBKNYnbouSsF14tgWkT1V3qqJnynZG2nqZxBMz+WFKxmGAcDixTATBsuypFzURZ76lVIWkOnrSnJHBY+M34tiIotkthNNAHNZLBavVESwSBLjBAmd6JFmSGou+wLF8i6avOlCVwqbKm35MXqu+Tqem5eXTSmhOM4CyDD1wuLFMMyokad++XpvmFJdZqVTqBM9zOmcEL/hHBMSGEZawkfTwUg9N9TWKoqTFHGNM30FYn0/RfrIQpR+UfaVbW4pfmIBSqUETFch1/u6ZB9EkQiSx+L1/pjJCIsXwzATjronegB56TdJUi31KwVNbwvIekK0TEzTQTrhg5aJpQTGZiGsCOBgiG1dsI2N49jFuD4iacV9IXG50KlpnyKKXil/vkkIFfkziGYhhC4vAcN0CBavMWLrYIDeqQlcm3+ZGWYyYlkWXDff1gS9fm3PI8syxEmqyJuSzlGRi8j4PbG4ZDE2MF9wslzqhZaAqQTKc2P6eKJNlcAkSTGYpLXs7GHCLG5VSaNpoJgUItJAX/avJnxDSSJNGHlSyMSFxWuMOOYz34Tj9+TrOXkOeugini7ZwqdoE8cbdB0nV6zz5KJHDugtz5G3XQc9vgvfVdeAYuljGMayrHwvOtfB1BoFEChTQF3S1CSwlDSR/gkBVNK8mPY1H9PHA9Lr6os+A+VkkIEadvvQsS1LETQ6BtDT5K4UN5f0LfYlVMrI1bKwnjiq0mhLEXQm2UbWYwmL1xiTZhmaYYxm2PmBvUL6GorEOYqgtT/mVGSOSiMVPrqqe6MoC/AnNoZhKDQFnNJTrwQC5RIwZalWS+1EG91/kKSBdFKIngbKcwxpYqvHSkkcmGaZ3EGkG7AsqGVbQyIoBJ8md55rK0KYl3VVGXRNcug65JwWAjlO1wpk8RojfvqFf0JP7xQ0xUwuuvZS8QsahDGC4pe+Kab4K/3zT2t5v3IcSCDXhlL7NCPDIp41SR9QbtsjRMwkbqqwlcc81xmW+IlE0NSXEz+GYdpR9xIwOnlJWJc8cxJoTvyK0rC43UL85D6GIygLZxnkpJFuQswWFuP5PNdWEz2vEDuj0Kn3k3ASbpI9kWh4Lnaa0oOdOvy4aZrJT2hBTLbfiZOK+ElxE8IXq8ea5BdXHFOuESXyMaI4QRCr6zglaYbBIKpt/EYnEj8WP4ZhRgvXseE6PtBT9zMpy8JRnFZSQVmqjcn9QgijOK2UhuUSM+Q2lcbyumoqqJxX3NfLw2K2MEZhtnAcsXgx24FtW+jxXfTUtBO9EL9c4KoJXymFqtypiV75qU30LQVSSxDJjC9d/OpO/LZP/PTxfaXslQkhue+WU/tpiiiO83R9hmG2B1oW7kV3JIKAtlagkD8ttROyKIVOGfPXWur6+zfjN3eO/WvgLYNGGd4yqF70xE8RPzK9vtlS7ko5VGSxXWKoJYvdhGuXi3aKVE7MuipLukUbkT5TyVcvDZfnUAFUx/p5nPwxDDNO4C2DGGY76IbEL0payJ0mbbRUK9I8vfQrtuvRk8AoVlM/el9ZsylNEQcpttU4XV8kf6rYlWP/aGLnuU45JpBInSKChvOUa1NBJO0sfwzDdAMsXgwziti2hYadlwM7Pb4PKNZsKlZtDwzJnRA0IXOlyJXpHZU9IYfievJ8TQyFNIrjrSd5BDV8V3KMUkdkrZLwKV8NfQzCpx/XZZFn+jIMw+LFMBMIy7LgOQ48x8GUGp+HaawfLc/mkzFEe6yJoSpySuk3Ks8R4qdOAiHXjNSyrxjTgWZ9azTp6V9eji2+thQ7UuqVU/WdivRVznfL0q+pPyeADFMPLF4Mw4w6dZd8gXLFdmWyhpS4sqyrlHQ1STTJop4m0msEsVpeDrVZWN2S/gEoZUyTOyFuHhkPKFI7T5NAIXrlNdSU0DO2lyu1C+FkCWQmEyxeY8RDzzyPV+zazBcZ9YpV5d1ihhq/0TDMmENXbK+TJE2J3JUTNMo0T03/lJm6NPWL1dKvmhCW5WLRX08L9YkfIgEcqOn7QqGpnS6BSuJHyr66BJaC6Eqpo6uzcxLIdAssXmPEh2/8HpxG68VYfNdBjxg07LpSyBRJE8sKuMVWQUVbw63eFmUL2lfMNCvbXPiOA9vmNxaG6RSObaPXt9Fb8yKdWZYpshdWxKxcQykgazPR/uJ8mSLG6lp/ujzq0mha7w9AV80Idh17eEmeJm2ijU74MKWHqmSaSsi8HMxEh8VrjHjlLtORuJ4cr9LUVgGWbzSdWa9NwXOcitiVgudU0jlF5OR5Q/fxHEeKn2jnNxOGqQfLsoo13lygt97nkmWZfA+MtBJtpImbSQJFf10IoziplJZHmgTmC3LWv1cjkC8H4xlkz9O++lQUjcf188nYwDbX16/rOrw0zGjA63iNMq3WAcmyDFGS5mNLik+KAVlIVG9TbhdjUpqk1BBEMcIkkcdlW1xtC2J1D7C6cR27TOpM6Z5blgzKNE9N8XxHTfRai6Pax3d5XSmGYUpoEqgLW6t00CRvuvSVaZ96zCScNCnsordqI3pZuBQzV27fo4qcq4qgl0/+UQRRTwINqWArsRxNGeR1vCYYlmXJ/zTTanj8OEmliDWLX/YmKTE0owRhUs4ck8KXkEHHxTmixCD3mYzL61DpExIYxjGSNFOeS5yEGKhpbLFtWZVSrEz+tNKvkLk8JTSInedoEqn2URJFMXvN4XEkDNMtKElgzYgJIVTYqNzp5dtSGNNSFOV51TTQdN2Wxws5jFN1i55uKgsDxebdTmsZNKZ/jlORQd91EPNejcxoIvYAm9rwa3l8IX6idJCLWUzkT8gcWWcqLr+Wwld+MmwKMdRSQip84nr0zSPNMgxGMQajGBis5duhiJvvVIVOzCIbabnXdxxNBokQkiSR15NimO6DTgiZWveTKUjSdFhiV96OpbTJ7XqS4YigmjSajkdJfpt+kM+y0ZNB3iSbmVDIzV8b9Ty+mFlWCpm6FRBN+OSq8UmRBBIBDKKEnKuKYmtZzPtRguK51DHGD6imfrmwlRMwfCUJLBK/itiRZQU0sZPnaXJI+/MMMobpfhzbhuPbtS4NoyPez+nEjlLoyBjBJB2RDG7Z0o+Hbhz7589jvEYZ3quRMSHG+FExq4zXi7QkULwxJObyrUkCaYpI5TKMqyWDbkBM9JCzxtxyGQCfpn5aMugXEzdKYSTXcEhZVxPB8ro85o9hGBUe48UwEwg6xq8uaOoXSVFTU7qgiPN1QZRJYFKmhHqZV0/9qvJXTf6iJH+8OtcStSxU0ruyRGuQQpoOiuMtZU+f3aunfuV1ebYvw0wOWLwYZpLQDetJ5clfQsRMTevkfpCkVCvSwLIMXCaEUVJOEomIHCrjCaO4kMlSBulq8lkGNItNzevEsS0lzSvH+g2//KvLnu+o4kglUQxI1oWQE0CGGVtYvMaI+//0Z+y6y87yTVOMiWm4DhqOy59wmUlJnvzlSU+dpGkmBU0u8ClEkJR+6Uxf2UaWhNEnfNByMB3fF8VailhIIF3mJUkzDIYRBhHVNukDIAmgo6Z3yj9HkzkifHpZV08SPafaVl6XJZCZ+LB4jRH/9L0fwO5pvXI9AHi2Xc5Mc8jK88V9OWjZIe3K/arMieO+1r/Hc5U+Pi9pwExibNtCj+2ip+YlBGJ93J9WlpXrPLWYGFIp6SZEHMm1qAzSxDAsZonR8X/dkgACuQSKD65eS1lTj+sS2OqckSSB+cbzLIHM6MDiNUbsN/MVSD0vf/NMYvnJl77BRWmKKAwxUNMiyb7jGMXNN4hej762VQsZ9F236NteJj3+JMswZJmXep+H3E8yqcqamCkmRU7rUxE+InRUKiPlXHINco6+5l+WkRnANSMkUO4jqaR7jlIWpgJnEr3KOaSPRySwVZvHW7+Na3hW4ygz1KyIWAxwTsqZa0Fcfm0Wt5tRjCAhC5XGCbmfyH7ieNlG1rSig6SLx+uWH7YFVMRNrjdlkDrfcYYUP99R17qSAkn6+kQGbRY/huk6FAmMqsI3lAS2k7xAuY6aFCr3u3gmsEDsAKKKXTmz1/e0docsKKr0d1pKoqf100WQPt5EEEGe1ThBcW0brm9jCryO75eWZRmiNFVkTEhaKXJU5khbQuSuuB+ScwPteoEihuUx+VwANItz65rSJkq9vti7Uhc6ktCZ0kHfIHT6eD6z/HG5l2FaISeB1PAeqZOkqbIMTETkrhS/aulXjA1UEsHYLIlU/GibPgklSsx7Sta1A4iOa9vDlDoXnmNrx0qB9CoCqLe7w5DG7t4hhMVrEmFZVv4f03FqWcg0y7KKjDWjqtzJ7YlIgkcTPvEmJtpCQxIYFolfqEklHcwsS72d/1ZIxM+jmv6ZxE9IX1XqKikfPZ9LvgyzXTi2Dce2ax8LCKgzgvXxf61KuLQtSszHqODRNFAXS1M/SpymiMM0nxzSJcithArRa5n6FWKXhZ2x2Pr/NzGTBsuyZBpUF3GR+JXJXTlgORBvakpyR8SO9DXKIkkM9RKyuE6e8JUIcdwa1jPQT5R8aepHEzkqbkZBHFZ5l6SAQhLJAGaWP4YZGjojuI79fnXEotCqkGnbCrWSOkMiaJLIYckiOV8vDct1AodJEvCWQQwz6uSlXh9T/Xr2rKyWe82ipophIXiGdFCkguoYQLLQqXY9IXry+YCUfGsqWViAmvA51ZIsTf5ou95PlT9xPTVBVPuX5/HSBQwzfOii0HVPDhGIZWLKlK7YWoiKXqLKGxXEzZs34yP/PPbPk8WLYTpI3eVeIN8kPEqqKV1gaiP39Ykbyli/RE0HxRtcs0XqF2nyJ2eu1bmCPYYngPrYvqEEUC0JqwLoG/pzAsgw28eOLhPT39+Pj4zyczLB4jVG8GRRpluxu6DkS+UvIAKnJ3o0zdPH9YVaUij7tSjz6hIZxgkiun4VukMAAVTG6InkjqZ+7dK76v3qNapSWcqheAwWQIYZfcateG3cuBFnn302fvjDH8K2bZxwwgn40pe+hGnTzNXvP/7xj9h7772Nx77zne/gxBNPBADjG82///u/Y8mSJSN6fgfd9BX0TptWroHlkHEvjqu1F8cct2wTn7j1docMsBa3xaducn2XV8VnuphukD+AzFpTxM+Q8iWG0m9cFUDZ1uI6pn5hHCsCCHSPAJqEziR17ZLBVuVhPV30leuXaaJYwZ5hJgrjVrxOPvlkPP/887jvvvsQRRFOP/10nHnmmbjtttuM/efOnYvnn39eafuXf/kXXHXVVTjmmGOU9ptuugmLFy+W93feeefteo5BEiNIYvR3aKYExbEsg6CZpE1t84nM6aIo293qub5NZt05XC5hxgfdMmstzbJycLJW/g01cWuShE+f+KG3h0lSKQur56hSqQ9E1scE1oUjxhPpqd8QKaDe7isiaLjGEOdzKZgZDcblAqqPPfYYDjzwQPzmN7/B4YcfDgBYtWoVjj32WDz77LOYM2fOsK4zb948vPGNb8QNN9wg2yzLwp133onjjz9+u56bWIDt6ef/An/qlHzcTFKsdUU+PQdJgmYcyeNyYHTldjEwOi1LMM2ELJGQlF/1T811IhdIdTTJ09r8Fsd8o+hR2TMIoq3OtuMFUhlmZIglX0KDlKkl3WoCWE0Cq7KniKHWl8plmKhLv3QbVMj0tK46K7i90JnOH851RRvv+Tt6dGoB1XEpXjfeeCPOPfdc/PWvf5VtcRyjp6cHd9xxB973vvcNeY1169bh8MMPx69+9SsceeSRst2yLMyZMwdBEGCfffbBRz7yEZx++uktP+EEQYAgKBOt/v5+zJ07d8x/cCaSNC3f0IjwtW+joqf2k5+K01IEm0n5KZrKYdAln4wpagqni54huWuR5sllE9omh1zuZZjRhO7yEWolXKVUWzlebdfH+enlYHp+qPXRxwJ2G65tV5O9IVK7odJAtSRsTgnlxJAJNC6QV65vQ19fH3bffXelzXVd7Lrrrujr6xvWNW644QYccMABinQBwCWXXIJ3vvOdmDJlCu6991589KMfxdatW/Hxj3/ceJ2VK1dixYoV2/dCRhnHttFr2+j1vFoePxULpEoRoxKXoJlEFWlrksROllKSuP25hRSKc8X5zVjdEilME4Rhgi2oZ40sU7nXr8ibmtzpYuhXxM5wLTFo2tCHPw0z4xVll4+a0UvBymQOZSFng+C1kD6TVLaSQV0m6ftcnKaI0xTbou5YuNQzSZqjTt7w7DaSaEj/9OvI8/Tjhmt343tgV4nXBRdcgCuvvLJtn8cee2yHH2dwcBC33XYbLrzwwsox2jZv3jwMDAzgqquuailey5cvx7Jly+R9kXhNRmzLQo+bTwSoA7FGlp7myRXwicjREq3ar2yT42lk4qceM0kg/WScZBm2xRG2xfW9Iery52uCJlM6LQ2k7aU4qslf22u45X3fHt+fghnGtiz0eNu/TMFokmVZsRD09qV+tD3QBK91e+t0UE8DxaKlA/V83q1Axwf6TjnD1yR3CCbhyvXnnnsuTjvttLZ99tlnH8yePRsvvPCC0h7HMTZu3IjZs2cP+Tjf/e53sW3bNpxyyilD9l2wYAEuvfRSBEGARqO68FKj0TC2M52HrpE1DfUskKqXe4XwNZXxfaXEhQbhk+NpiPDlSWCZ+tGULyTl4DBVV2/uBvkDoAmakDJd4szj/GiK57c6VhkHWJXDbvzkyzAjxbIseE6+F2E3IJaGaZUCGtsqIlidHFIRPi1BFP8iQzslyTIMRjEGo7jFKyCvpTkJV67fbbfdsNtuuw3Z74gjjsCmTZuwbt06HHbYYQCAn/3sZ0jTFAsWLBjy/BtuuAF/+7d/O6zHevDBB7HLLruwXDHDou5yL1CMjdFTOSl0atqnfjUkgcb+er8y+ROTQMJUffMT19tS0/cEyEtXbeXN2Kalf1IOTalfu1SxKB1z+sdMMJSlYbrgz6SsfMQJorQqaqaSsbi9afNmfPhzY/8cu0q8hssBBxyAxYsX44wzzsD111+PKIqwdOlSLFmyRM5ofO6553D00UfjW9/6FubPny/Pfeqpp/CLX/wC99xzT+W6P/zhD7Fhwwa8+c1vRk9PD+677z58/vOfx3nnnTfi5/iL55/GLoM7o2G76JGfxIt/dvGGbvOncGb0cW0bru1jSo1DY+h4v7bSFicI01jd8FxLBCvpYFomiWViqM78FdegM+PEWJiBmsfC6CJnEkGTvPnFrF3fLtNB2qaXfn1HTRn1x+H3HmYiouwOMkL6+/vx4TF4TjrjUrwA4NZbb8XSpUtx9NFHywVUv/zlL8vjURThiSeewLZt25TzbrzxRrzyla/Eu971rso1Pc/Dddddh09+8pPIsgz77bcfrrnmGpxxxhkjfn5n//p7sKf0DNnPs200bFF2KaVMvjHbxZunkLUWfXSpazgOfJt8YrfN8scz75ixoO7xfoI4TY0JXxBXJVAtEVfTv+psXlM/OqmkPEYRglnXpA+BU/yBqghem7F7pQAW7y9irIxdJnqm5G+ox+GlX5jJxLhcTqKbEdNRj/3eV5H2euTTd/GJPIkRZ90zNVkOvq6InWOQuWKtLKeFKLaQOxY/ZjKTZRkpwarlW33iRqvUT20nbdo4wCCNZamXjhMUX7v1zV4kdu0EUAyMVmf/kiRQTwVJEqiXgls9DpeCJze8jtc4ZTg/uDhN8/KKWDYhTRRBC1J1Fl4ziaS0Bam2DIPsW7TRa5HHoO3jQfxUWasme+Una1cme63lT5VIKo28CjUzWRCz4aiMKZJXiGE5gaMUOtNtkyyGuiym+jFzCthNtE/6hi7rtpM6usuHL96bitv0Wp5jswTWAK/jNYGRY3DcGmfeGUWuKoHyjZj2S9WlFZqyX3m+nIGX0ll8uUDSgddy1h3qGXdjAZWUT74hKjJYvLma+hllURNEw7VY/phOQmfDTfXqee8RiBSwnbTRBZ3lUgcG4aNSaEr8WkphcV9fDqFbSsFAKYG+raZ9PhG7UgRJu60KXavUTz9ePl5ZOhbX5Pep0YPFaxIiZ965dS60ShM5KmhU7soxM9XUr1xeQZdIkQAq/YhQUvHLUM64q8n9AKAiabrEVRM+R036Wo4HdFqIZSmXfnF9flNlOoUlkm6n/j9BKdkmSS8By6+0rNtC6irXMEwmqV5bpILVdQCB7tkrU6CLoKls20oEaT9PuY52PpHCht42QcrC9f+vZyYd+cBrDz3wMKOGxxfiJ2RMlbIinUtjRdQCRebIuaTcq8udnvrlbWVfilxuIer8huoCIXetUr1KEkj6+y2kzjTGT5VI9TweZM10GnUiSL3rIcgPpXT5A0309EkgYZHahYrwkeMtBLF879KWW2ixJiDQhSJoV8XMlA42NCn0NSkUx9PBSbiOF8N0Aip+dZFmWb7GDBmbFxLZy/fIVCWPlnlDbayf3q7LpN5PyCClLAPXJ390lu9QItiuvNu+PFz0oRNFyGNxSYWpC/neVFM1QidJU0RpUhFBVfKq4/p0UQwNIlgdO9haBFsmguI9a5SqFSxe45z+aBB+0gvfdmBbPHOPUbFJqWWnmp6DWGhQKdHKwdVE3kibMQk0tJWJYIsksHjzbSaRMtMuSlNEaQjE9Y2vEeP+SvFTpY+men4l/aueI+TQJ+eUbeRYRRjHbymFmRg4tg3HtrtGBGlZOCTj+XQRNAliOSzF3B4mCbb29+ObHXgdPKtxlBGzIt743WVwpuaxtWeV42x82yveeMX9vE2+Sdsu+cTvFYOv6Sd12scrb8tremWfoj+LH9OtZFmGOEuN0kZLteKNNl9AVe1bGetHZbH4SmWPlobl17R7yicUn0gYTflayWBF/LRxfHof0yxikxRyCZiZDPCsxglElCWI4gQDNZVwXIu++Qpx88oyDBE3IXuqHHrbLX6e7cJh8WNaYFkWPMuBZ9e771yrcX/KJA8qfETgArGSvij3trxO0vp6RAIp3SKFrmUTWaumdK3Erpr6OUQe2yeH+uQQ33HgWlwGZsY/nHiNMsKYX/7rRvRMm5K/0aYxgiRCVNwul16IijdfMrBbtIklGtL8k3+UJgjTSJ5fLs1Q9m+mUVGPj5B20VKJ2yN+nu0ofeg/IXQNpc2DZzuqOBbX9Cwu2TDjg3KZBSJyWnonl3khZROaChpLvkQAlQkf9LraNbrnHaTEAipJn0nmWqZ7ZHyfLot6mZe2K2MCWQInLJx4jXNc28EUt4EpNc2SicVg7TQin6YjIoHFG20hbgERvSCN5Jt5lMaKHAZC7oo+6mNEUjQTskhrnCWIkwQDSX2DtoWMSWHTJI+Wez1bT/H0Nu08TSppuVic57L8McPA6oKxf0C1BKwke4bxf6Zkr7UsGpK+pFwDMNSuSRd8zgA0i0kldS7/AqhrAMoZcwYRpMdoatguCazcNyaN5TU9m7ddGk+weE1QXNvJ5a9G8avKnUjpqNwRCSzETSR3oS56dGwOSf8imSCW/cNUnbEXFEJYFxYsJa1Tkj4l8dNEzxGlXqccH2g7RZlXvCm3lj+PyCPLHzNcuqUEDJQLPpvSOipzpciZy8DKgOtUlUVdHtUEsGxPSIGoW9YAFHi2bZQ0mvCZEj86u1fpS/voKSAVSr2vzTODh4LFixkThPj1op4VsrMsQ5QlpARbCpue5pWDraupH22jyaCpbEzLwbr8ZcgQpBGCtL53aCF/pbi1lr9WyZ2e/Ony59kOGo7H8seMGnLB5xqXfxGYJDAkCZ8ib6IU3KKUqyaJrcf8VSaEtBgPKGYED9T0vaHQmcFU0lqLmyE11Po2lPP0JLF6jCaG3bYnMIsXMyGxLAu+lf/xn4aeWp5DmqVSwITo0dQvTMWK+uVYP5Hu5VuZqIJIx/qV635Fynk0HWwrf3Fn1qvRyeXPKcWtmPFrEjvPMJ5P7+cp6R8VwdbX8O18wgcLIDNSukkC5XhALcWj5WB6rCJ0hsSv0rdFGmiST70kLNPAGtcFFNiW1VrSSNkWzc48VxavMeKxzU9hV2sXeLYH3/byr5YLr7jNn/wnPrZlo+HYaDhebeN1hPyZyrLVNE+VuJD0jSp9tcSwkhqWUhlldIumrCz71iR/AGDDUqRML/F6ROB0eWvZv4UA0uVgdHFkAWS2F2XbJa/eFfeBcrFVk7iZJnAoK+orkqeOE6SLS8vFV9tcT9xOSVk4zbJhjQ1Mt/ECquOalY9fB29q6zKbVbzx50LmlbcLMfMst7xtu/CKPlLiZJs4h5yv9fVst3iM8lzXcvkNfxJA5a8uaPJHpU2mgFQKDSXdcvZuImcH0zYqhGpKWE74CNMEMRHAtAtKv4BZAH3bMSR7ZnmTn9j1tM8geWX/cjwPT/5gRgu52GoXpIEAEKdpG5mrilqQJNi0eRNOxWVj/txYvMaIPXp2h9VwEKURojRCmEaIMrXsExbtddXk9RTOJ5I3lMxtv/i5Uiz5jX5y0A3yBwAJFUBlORZV3uS/RBdC2j8Cneihl4/1a1AppDN+u0UAgerMXzo2T5U3p/jdzsfheJYujvo/h1yrOM8ghCJl5PcFZjRwbRuu7WPKCCynv79/7J4QgdfxGmXarQOST9EWb8JCxvJP8OJ+mEZFn6iQthhhGuZ9skg9V7ZFlbZI/hGIEKcRwiw/r5vwLBeuEDQia3qbWd5MKV4hhCQ1lJJoaOPUj6mDNEuJyAk5i9Q2Uv4VskhLu5XUz5Aiqn3KBFCUnmkC2E14llOKWFG+1cWPSp6pPCxTPatsF/Inri0kUB0T6Ci3edePyQWv4zUByado5wIA9Hb88UvxI7KXaXJHZC6XtqrIiXP1fiLVKyWwOI/IISXKYkRJjMGkvrE+RkFTUkBXE0CaEuqlYnE+TQENySCP9ZvU2JaNHsdHT80rNeQCqKZz+e+rPl5PlbdIG+NnTAqzWC7mLESv0l8kipoARlmCKEmABLUv0yAWf5ZCRpI9IYhU5iqJIZU+g+BRaZSLQFuqJArR5B1AJg4sXpMIVfw6Ty5+iSy/RpoEUsGjyR0t1UapqU0VQSqQahJYTf2iNEKECEgGa/meWLDyhE8r+bqWi5ZJXSF/MhlsI3+u/CNBrq09Hsvf5CQXQBs9NZeA5dIvVP4M5V99SRg5czcjt8k11NRPvUakXde0BAxQLv6MLggHHcseUvB85b6n9DX2aZMomsrAPCt4dGDxYjpGLn75L3MdiR+glntpCTYqPtHHpJzbsi0jcqfcr5Z6TW2xNtavG+WvHOvXpnRrSP6k6GmlYloKdnnMH0OgS7/U/ReJSmA5QaM6+SPSxFC/bxQ9kgSqKWNryczIxk1JlmIwCTHYBRIoloUxSZ6+JmA1xXOqQmfRNNFwXL8OLTc74y8NZPFiJhV1l3uBvMRTJn+iRKvJnN6WRZVysDr+Tz031u7rbfpEj7rlDwDc4k3VtchYPy3ZU2SvkvLR89TxgEq5WBNGHvfHCBQJrJksy5DI8YCq4OmJnnk2b5ns6eXeSEsBW1+r7Jso63SRZWG6AMey1XTPqsqbnv5Vj7tIB3gdr3HNjU9/DjvN2Amu5cGzfLi2B1d+9eDafotj+VeP9KH9ZR/Lg8N/JMYltmXDt2z4NZV8ASp/rZO8oUu31eRPjvWTsli20YklprJvnMWIk/rfyMWkj1aCRtNAIYVCFqtipy4Fo0hlcd98ff7dnuxYlgXXqnfrN0o+K1idFKKPCWyVBJrkbjhCqF+jPLeaBiZJimayY4MCExav8c2zg0+O+fR5C5YmZaWoeXobETfPMh/ziNTRYx6L34RDlb86y77qmD+ayJWTO0h7i34RKQmromc4R5FGNf0DyKSPWr4rJXTWry52oqTrthDAdqlfKwEU91kAGROOZcPpgkkhgJ4GUpGjE0LE73xiFD59bGCUxujv34LfdeD583ISo4yYjnr/M6vRs5OPOA0RZRHiNERMv2YhojTMP+WTY1EWIimSBaVN3M+6Z0kIKn6O5bZM72iy51QET0sCDamg3s+z8sfLH7cL3gWYcY0Y91cmdy3kLY3l/TiNScKnjwPUJ4ZoUpiZr6cLYLegC+BQCaCpBKzfdq2qEOq3Xe2aPKCbGWt4OYlxzutmHD4mP7g0S5FQWZNypkpdXIhalAbbIXdhfow+RhYV1wzlc8mQIcpCREnY5hmPLTZsKWiK1EmR05M91yiGNN1ziOiJ6zmWa0gR8/Nslr9xTTeM+wPMAmgUPsP4P7VETAVQTwrLvrQ03E4Au2HZF4Ds9mEVM3uLMXk0nTNJoZTFYQieWS6rosgSyOwILF7jDNuyYVs+PLv1dkRjSR7xxlLuoizUJLAUt4RKnOynSmOU5hIorpVksSKL4rEiKY4RUtCtX1KEaRMh6tz3zyEpnV6udSvj+YTYiZKvU4zpc9rIn9OyhMzyN1HoVgEUZVpd0KgAmhLASEsDYyKCdGZxtQxc3k+hDugO0whhzZNAAFUCqeAZx+9Zo5ME0vIyS+D4hsWLGRH5gE8PLjygpr/1aZZUBK4UvkLkZFuZ+iVKOpiLYUTSQT1FpNeItX70D0KKYiNXNGtb76e1/FUnczhKv1YJoZoMsvxNHrpFAAExoLtM/fSJHELUYj35I7fLMnApkrGSBopriLLw+JPAcgZwVejcNiVd05g+021zCuga+7EEDg2LFzPusC0HvuXAt+ub6ZNkiZLUSZErhI3eFlKol3wrqV+L46VAqlKpJn/dJX+i7EtlzVFkzyR4arlYlHfLhLBMBfXzhAA6lsfbvEwg8gHdDfQ43TGrbziCR8u3os9oJoH5+4sqgd2wHIzAOCZQCiCRQSFw9LZlFsBSHtX00CSO6vW6UwRZvMaI3774RUwPpsOxGnAsH47lw7Z8OLZf3G+UbaRPfrxRtIvbnCZ0G47lwLEc+HZPbc8hyRJSji1lTZU/WuY1yV1RNiaClwiZHDL5ayN/NeJYbj75wvLh2m41/dMmhIgEsBTF9ufR8rFreapQFsdZACceYlZfA/UM86DoEkhLvVUhHGr8X9wyBWw1CYS2JZUtn7pjTKDA1RM6U2pX3E62dWaCC4vXGPE//XdjSjZ6smTBKQXNNggblTW7FDZH62eTawwlgLZyHv9X6TYcy4Hj1F0KUpM/Ovu2TPoiRdZE+lcVvFheSx0nSM9XJ3yIx1PX9ImRZHGt6R+AQv6qKZ5J3tQUzx2RADoWTQNZACcD3SSBdE1AsRtIq9SvKnnqOEJFJuVxIn5am1I6Lq6pi+BI1geMBjozUYz/mo4Rb9jldPTu5CDJAiRZiCQNkGaRvJ/fbiLJovx4FiAt+iVFv4z81ciQIM62Ic62gQw16Bi5+JHkrqUA6nLXUM8x9LFBRdAkgx5sy+/KyHiy0w3JX5ZlSJFochYbSr9U5KqlXFPCR1PDfOJHqMhhLNPGvK9JAIHBCS+AagnYlCi6nNpPULphTUBKWiz0GmfmxE9P7WipeNPmzfg+bhzz58jreI0yo7kOSJrFSLMIsZCyLESShkizoGgrRa6Uu7C8nwWF0EWyLc1CxFq/NAsRZ82yX3E8RXetK2Qr4mYSNS+/bZtEr8W5tpoM5sc8lj9mxIgZv3TWb1mejVEd5ycmeKgiWE0NVXGkMinH/8m0MX+cbkQfA6iPz5PtRAadYsC4LOsax/qVomcaO6i3cwrItILX8WJgWy5sy4Vb256CCdIs0mSuSOkKAUw0gZPCVyR3qRTA8iuVyEqbkggG2vPJ+9W5hGw7+RMCp5Z8aT9NEFuM/TPLX9mX5a87oTN+GzUvByHG/alJnxDAaronBJDO/B1KAPXlYIYqAXfLGECg/UQQXfTKsXxuRfZoudc04UOkfTwWkKGweDEtsS2nKA/UU0bKS0hxnvClZXLXStJEWpcosijSPb3MW1zPKH9UJLtQ/uAZUj1V2NRUr03iJ8u+XnnbNl2nTP0cy4fFfyy6FmXJlxqplICHJXOlHOrj+5JinJCaJkbagtJi/b+IyGM1BewmCSwng5iSQLcoDVcTQj0dLEu+1UkkFaFscT2WwM7A4sV0LZZlwYH4RDqtludA5S+XNEO6p7elIUn6iORJEdRup/QaQhDVxJCSIkKaRgAGavmeALn82ZYHx6ZCpgmcYUygOuljKCGkX1XZtC0fNrpzqjiTk//+unAct9YEENDLwJGS9FVn7caGhJC26zJYTfsickxdKiZuORawGyRQJIGOkt4ZxvwVJWA9JWxXKtZlr3JMu+ZE3gt4XIrX5ZdfjrvvvhsPPvggfN/Hpk2bhjwnyzJcfPHF+MY3voFNmzbhb/7mb/C1r30Nr3nNa2SfjRs34uyzz8YPf/hD2LaNE044AV/60pcwbdrI/+j/6aWPYHq4E2yrActqyK+W1YANclv52jOsfuA/OB1Dlb96noOQv3IMH5U5Q+pH5S6tjuHTx/clFWE0yyWUslGUjz9MttXzTQEAWC2EjZZpvVL2hhQ/b2gBLNJAKpYWHP597HK6pQwMtBoLqCZ5peBVJVCf8NFKAlslgWJCSLtycLfQTsqGI3TmcnFr2Rsc7Iz8jkvxCsMQJ554Io444gjccMMNwzrnC1/4Ar785S/jlltuwd57740LL7wQixYtwqOPPoqenryUdvLJJ+P555/HfffdhyiKcPrpp+PMM8/EbbfdNuLnuLW5BmP3l9oqZQw9BoHTZa0HFhqwiiRC7dejtsFXRNB4bTT4D00HkfLn1Fc6yrIMGRJS0i3FzFyiDWFK9fLJIroECpHUbqc0BQwNEz4ymQ7WWfq1YKuCVxE2OnnDM4z9G1oAK7cVAcwfmwVwfNBtEjhUObiVIMp2RRCjNvKoHxPSWApkCn0piLx/AHRkZnCwtTPvJON6VuPNN9+Mc845Z8jEK8syzJkzB+eeey7OO+88AMDmzZsxa9Ys3HzzzViyZAkee+wxHHjggfjNb36Dww8/HACwatUqHHvssXj22WcxZ86cYT0nMSti/XM3YKedHKQIkGUB0qyJLBO3aVuY3y76ZVkTadFW9m0iq/VPSxVV0MzpnQWTEPqq1KGdMArR8w0iOC4/MzA7SJalFRmLibQZEztFEtWZwNUE0dyWaGMMu23Gb077BHB4AjgM6dP66CLIJWBme0mzVEpZoqR3dBxgbCwTm0SvHBc4PBHc2j+AFQv+lWc1jgbr169HX18fFi5cKNtmzJiBBQsWYO3atViyZAnWrl2LnXfeWUoXACxcuBC2beP+++/H+973PuO1gyBAEJRjcDZv3gwAcNN3wcvID84q/m0nWZbmMoawEDMhaPR28RVC3ERbgCyLCpELC5ELkSLURC8sRbAQvwyBPE5LTUCz+FcXTjHDT0iaXyRxudxZVgN7zfx6UZplJiYeAA8WpsJBm61Dd/B3z4Q645cu1xIVEzBEG+mT5r9fsh3luSkRvlLw6LG4lMK0vK6eEAAxgDrLvzmqxHllKlfcnuHvg8N2O6fup8l0NTZsNOAjfw+vZIPi93oUC0v90/qxAv+Ksc6jJoV49fX1AQBmzZqltM+aNUse6+vrw+67764cd10Xu+66q+xjYuXKlVixYkWlfe7cuTv6tJkd5s66nwDDMC25uO4nwDBGXn75ZcyYMWPMrt814nXBBRfgyiuvbNvnsccew+te97oOPaPhsXz5cixbtkze37RpE/baay8888wzY/qD6zb6+/sxd+5c/PnPfx7TiLbb4NfNr3sywK+bX/dkYPPmzXjVq16FXXfddUwfp2vE69xzz8Vpp53Wts8+++yzXdeePXs2AGDDhg3YY489ZPuGDRtw6KGHyj4vvPCCcl4cx9i4caM830Sj0UCjUS1nzZgxY1L9hxVMnz6dX/ckgl/35IJf9+Risr5u2x7bKexdI1677bYbdttttzG59t57743Zs2dj9erVUrT6+/tx//3346yzzgIAHHHEEdi0aRPWrVuHww47DADws5/9DGmaYsGCBWPyvBiGYRiGmVyMy2Vqn3nmGTz44IN45plnkCQJHnzwQTz44IPYunWr7PO6170Od96Zj/GxLAvnnHMOLrvsMvzgBz/Aww8/jFNOOQVz5szB8ccfDwA44IADsHjxYpxxxhl44IEH8Ktf/QpLly7FkiVLhj2jkWEYhmEYph1dk3iNhIsuugi33HKLvD9v3jwAwM9//nMcddRRAIAnnnhCzjAEgPPPPx8DAwM488wzsWnTJrzlLW/BqlWr5BpeAHDrrbdi6dKlOProo+UCql/+8pdH9NwajQYuvvhiY/lxIsOvm1/3ZIBfN7/uyQC/7rF93eN6HS+GYRiGYZjxxLgsNTIMwzAMw4xHWLwYhmEYhmE6BIsXwzAMwzBMh2DxYhiGYRiG6RAsXiPk8ssvx5FHHokpU6Zg5513HtY5WZbhoosuwh577IHe3l4sXLgQTz75pNJn48aNOPnkkzF9+nTsvPPO+NCHPqQsj1E3I31+f/zjH2FZlvHfHXfcIfuZjt9+++2deEnDYnt+LkcddVTlNX3kIx9R+jzzzDM47rjjMGXKFOy+++741Kc+hTjuno2XR/q6N27ciLPPPhv7778/ent78apXvQof//jHlZnFQHf+vK+77jq8+tWvRk9PDxYsWIAHHnigbf877rgDr3vd69DT04ODDjoI99xzj3J8OL/v3cBIXvc3vvENvPWtb8Uuu+yCXXbZBQsXLqz0P+200yo/28WLF4/1yxgxI3ndN998c+U10ZnwwMT8eZvewyzLwnHHHSf7dPvP+xe/+AXe8573YM6cObAsC3fdddeQ56xZswZvfOMb0Wg0sN9+++Hmm2+u9Bnp+4WRjBkRF110UXbNNddky5Yty2bMmDGsc6644opsxowZ2V133ZX913/9V/a3f/u32d57750NDg7KPosXL84OOeSQ7D//8z+z//iP/8j222+/7AMf+MAYvYqRM9LnF8dx9vzzzyv/VqxYkU2bNi3bsmWL7Acgu+mmm5R+9PtSN9vzc3n729+enXHGGcpr2rx5szwex3H2hje8IVu4cGH2+9//PrvnnnuymTNnZsuXLx/rlzNsRvq6H3744ez9739/9oMf/CB76qmnstWrV2evec1rshNOOEHp120/79tvvz3zfT+78cYbs0ceeSQ744wzsp133jnbsGGDsf+vfvWrzHGc7Atf+EL26KOPZp/97Gczz/Oyhx9+WPYZzu973Yz0dX/wgx/Mrrvuuuz3v/999thjj2WnnXZaNmPGjOzZZ5+VfU499dRs8eLFys9248aNnXpJw2Kkr/umm27Kpk+frrymvr4+pc9E/Hm//PLLymv+wx/+kDmOk910002yT7f/vO+5557s//yf/5N973vfywBkd955Z9v+//M//5NNmTIlW7ZsWfboo49mX/nKVzLHcbJVq1bJPiP9PraCxWs7uemmm4YlXmmaZrNnz86uuuoq2bZp06as0Whk//7v/55lWZY9+uijGYDsN7/5jezz4x//OLMsK3vuuedG/bmPlNF6foceemj2j//4j0rbcH4h6mJ7X/fb3/727BOf+ETL4/fcc09m27byBv61r30tmz59ehYEwag89x1htH7e3/nOdzLf97MoimRbt/2858+fn33sYx+T95MkyebMmZOtXLnS2P/v/u7vsuOOO05pW7BgQfZP//RPWZYN7/e9Gxjp69aJ4zjbaaedsltuuUW2nXrqqdl73/ve0X6qo8pIX/dQ7/OT5ef9z//8z9lOO+2Ubd26VbaNh5+3YDjvO+eff372+te/Xmk76aSTskWLFsn7O/p9FHCpcYxZv349+vr6sHDhQtk2Y8YMLFiwAGvXrgUArF27FjvvvDMOP/xw2WfhwoWwbRv3339/x5+zzmg8v3Xr1uHBBx/Ehz70ocqxj33sY5g5cybmz5+PG2+8EVmXLC23I6/71ltvxcyZM/GGN7wBy5cvx7Zt25TrHnTQQZg1a5ZsW7RoEfr7+/HII4+M/gsZIaP1/3Hz5s2YPn06XFddp7lbft5hGGLdunXK76Zt21i4cKH83dRZu3at0h/If3ai/3B+3+tme163zrZt2xBFUWUz4TVr1mD33XfH/vvvj7POOgsvv/zyqD73HWF7X/fWrVux1157Ye7cuXjve9+r/I5Olp/3DTfcgCVLlmDq1KlKezf/vEfKUL/bo/F9FIzLlevHE319fQCg/JEV98Wxvr4+7L777spx13Wx6667yj51MhrP74YbbsABBxyAI488Umm/5JJL8M53vhNTpkzBvffei49+9KPYunUrPv7xj4/a899etvd1f/CDH8Ree+2FOXPm4KGHHsKnP/1pPPHEE/je974nr2v6/yCO1c1o/LxfeuklXHrppTjzzDOV9m76eb/00ktIksT4s3j88ceN57T62dHfZdHWqk/dbM/r1vn0pz+NOXPmKH+EFi9ejPe///3Ye++98fTTT+Mzn/kMjjnmGKxduxaO44zqa9getud177///rjxxhtx8MEHY/Pmzbj66qtx5JFH4pFHHsErX/nKSfHzfuCBB/CHP/wBN9xwg9Le7T/vkdLqd7u/vx+Dg4P461//usO/NwIWLwAXXHABrrzyyrZ9HnvsMbzuda/r0DPqDMN93TvK4OAgbrvtNlx44YWVY7Rt3rx5GBgYwFVXXTWmf4jH+nVT2TjooIOwxx574Oijj8bTTz+Nfffdd7uvu6N06ufd39+P4447DgceeCA+97nPKcfq+Hkzo8sVV1yB22+/HWvWrFEGmi9ZskTePuigg3DwwQdj3333xZo1a3D00UfX8VR3mCOOOAJHHHGEvH/kkUfigAMOwNe//nVceumlNT6zznHDDTfgoIMOwvz585X2ifjz7hQsXgDOPfdcnHbaaW377LPPPtt17dmzZwMANmzYgD322EO2b9iwAYceeqjs88ILLyjnxXGMjRs3yvPHguG+7h19ft/97nexbds2nHLKKUP2XbBgAS699FIEQTBm+2V16nULFixYAAB46qmnsO+++2L27NmVmTAbNmwAgHH/896yZQsWL16MnXbaCXfeeSc8z2vbvxM/71bMnDkTjuPI771gw4YNLV/n7Nmz2/Yfzu973WzP6xZcffXVuOKKK/DTn/4UBx98cNu+++yzD2bOnImnnnqqK/4Q78jrFnieh3nz5uGpp54CMPF/3gMDA7j99ttxySWXDPk43fbzHimtfrenT5+O3t5eOI6zw/9/JCMaEcZIRjq4/uqrr5ZtmzdvNg6u/+1vfyv7/OQnP+m6wfXb+/ze/va3V2a3teKyyy7Ldtlll+1+rqPJaP1cfvnLX2YAsv/6r//KsqwcXE9nwnz961/Ppk+fnjWbzdF7AdvJ9r7uzZs3Z29+85uzt7/97dnAwMCwHqvun/f8+fOzpUuXyvtJkmR77rln28H17373u5W2I444ojK4vt3vezcw0tedZVl25ZVXZtOnT8/Wrl07rMf485//nFmWlX3/+9/f4ec7WmzP66bEcZztv//+2Sc/+cksyyb2zzvL8r9zjUYje+mll4Z8jG78eQswzMH1b3jDG5S2D3zgA5XB9Tvy/0c+nxH1ZrI//elP2e9//3u5NMLvf//77Pe//72yRML++++ffe9735P3r7jiimznnXfOvv/972cPPfRQ9t73vte4nMS8efOy+++/P/vlL3+ZveY1r+m65STaPb9nn30223///bP7779fOe/JJ5/MLMvKfvzjH1eu+YMf/CD7xje+kT388MPZk08+mf3f//t/sylTpmQXXXTRmL+e4TLS1/3UU09ll1xySfbb3/42W79+ffb9738/22effbK3ve1t8hyxnMS73vWu7MEHH8xWrVqV7bbbbl23nMRIXvfmzZuzBQsWZAcddFD21FNPKVPM4zjOsqw7f96333571mg0sptvvjl79NFHszPPPDPbeeed5YzTf/iHf8guuOAC2f9Xv/pV5rpudvXVV2ePPfZYdvHFFxuXkxjq971uRvq6r7jiisz3/ey73/2u8rMV73tbtmzJzjvvvGzt2rXZ+vXrs5/+9KfZG9/4xuw1r3lNV3yYEIz0da9YsSL7yU9+kj399NPZunXrsiVLlmQ9PT3ZI488IvtMxJ+34C1veUt20kknVdrHw897y5Yt8u8zgOyaa67Jfv/732d/+tOfsizLsgsuuCD7h3/4B9lfLCfxqU99Knvsscey6667zricRLvv43Bh8Rohp556agag8u/nP/+57INirSJBmqbZhRdemM2aNStrNBrZ0UcfnT3xxBPKdV9++eXsAx/4QDZt2rRs+vTp2emnn67IXN0M9fzWr19f+T5kWZYtX748mzt3bpYkSeWaP/7xj7NDDz00mzZtWjZ16tTskEMOya6//npj37oY6et+5plnsre97W3ZrrvumjUajWy//fbLPvWpTynreGVZlv3xj3/MjjnmmKy3tzebOXNmdu655yrLLtTNSF/3z3/+c+PvBYBs/fr1WZZ178/7K1/5SvaqV70q830/mz9/fvaf//mf8tjb3/727NRTT1X6f+c738le+9rXZr7vZ69//euzu+++Wzk+nN/3bmAkr3uvvfYy/mwvvvjiLMuybNu2bdm73vWubLfddss8z8v22muv7IwzzhjxH6ROMJLXfc4558i+s2bNyo499tjsd7/7nXK9ifjzzrIse/zxxzMA2b333lu51nj4ebd6TxKv89RTT83e/va3V8459NBDM9/3s3322Uf5Oy5o930cLlaWdcncfYZhGIZhmAkOr+PFMAzDMAzTIVi8GIZhGIZhOgSLF8MwDMMwTIdg8WIYhmEYhukQLF4MwzAMwzAdgsWLYRiGYRimQ7B4MQzDMAzDdAgWL4ZhGIZhmA7B4sUwDMMwTNfzi1/8Au95z3swZ84cWJaFu+66a0Tnf+5zn4NlWZV/U6dOHZsn3AIWL4ZhmBZkWYZrrrkGe++9N6ZMmYLjjz8emzdvrvtpMcykZGBgAIcccgiuu+667Tr/vPPOw/PPP6/8O/DAA3HiiSeO8jNtD4sXwzBMCz71qU/ha1/7Gm655Rb8x3/8B9atW4fPfe5zdT8thpmUHHPMMbjsssvwvve9z3g8CAKcd9552HPPPTF16lQsWLAAa9askcenTZuG2bNny38bNmzAo48+ig996EMdegU5LF4MwzAG7r//flxzzTX49re/jbe97W047LDDcMYZZ+Cee+6p+6kxDGNg6dKlWLt2LW6//XY89NBDOPHEE7F48WI8+eSTxv7f/OY38drXvhZvfetbO/o8WbwYhmEMXH311Tj66KPxxje+UbbNmjULL730Uo3PimEYE8888wxuuukm3HHHHXjrW9+KfffdF+eddx7e8pa34Kabbqr0bzabuPXWWzuedgGA2/FHZBiG6XKCIMDdd9+Nq6++WmlvNpuYMWNGTc+KYZhWPPzww0iSBK997WuV9iAI8IpXvKLS/84778SWLVtw6qmnduopSli8GIZhNH73u99hcHAQ5557Ls4//3zZHkUR3vGOdwAAfvSjH+Hcc89Fmqb49Kc/jQ9/+MN1PV2GmfRs3boVjuNg3bp1cBxHOTZt2rRK/29+85t497vfjVmzZnXqKUpYvBiGYTT++7//G1OnTsWDDz6otB933HH4m7/5G8RxjGXLluHnP/85ZsyYgcMOOwzve9/7jJ+sGYYZe+bNm4ckSfDCCy8MOWZr/fr1+PnPf44f/OAHHXp2KixeDMMwGv39/Zg5cyb2228/2fanP/0JTz75JE444QQ88MADeP3rX48999wTQD7b6t5778UHPvCBup4yw0x4tm7diqeeekreX79+PR588EHsuuuueO1rX4uTTz4Zp5xyCr74xS9i3rx5ePHFF7F69WocfPDBOO644+R5N954I/bYYw8cc8wxdbwMHlzPMAyjM3PmTGzevBlZlsm2yy+/HMceeywOPPBA/OUvf5HSBQB77rknnnvuuTqeKsNMGn77299i3rx5mDdvHgBg2bJlmDdvHi666CIAwE033YRTTjkF5557Lvbff38cf/zx+M1vfoNXvepV8hppmuLmm2/GaaedVilJdgpOvBiGYTTe+c53otls4oorrsCSJUtw66234oc//CEeeOCBup8aw0xajjrqKOXDkI7neVixYgVWrFjRso9t2/jzn/88Fk9v2HDixTAMozFr1izcfPPN+NrXvobXv/71+M///E/88pe/xNy5cwEAc+bMURKu5557DnPmzKnr6TIMM46wsnb6yDAMw1SI4xgHHHAA1qxZIwfX//rXv+bB9QzDDAmXGhmGYUaI67r44he/iHe84x1I0xTnn38+SxfDMMOCEy+GYRiGYZgOwWO8GIZhGIZhOgSLF8MwDMMwTIdg8WIYhmEYhukQLF4MwzAMwzAdgsWLYRiGYRimQ7B4MQzDMAzDdAgWL4ZhGIZhmA7B4sUwDMMwDNMhWLwYhmEYhmE6BIsXwzAMwzBMh2DxYhiGYRiG6RAsXgzDMAzDMB3i/wcCNflWS3bISwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"contour_plot(\n",
|
||
" X[:, [0, 2, 3]], y\n",
|
||
") # Wybieramy cechy [0, 2, 3], bo więcej nie da się zobaczyć na płaskim na wykresie"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Jeżeli funkcja kosztu ma kształt taki, jak na powyższym wykresie, to łatwo sobie wyobrazić, że znalezienie minimum lokalnego przy użyciu metody gradientu prostego musi stanowć nie lada wyzwanie: algorytm szybko znajdzie „rynnę”, ale „zjazd” wzdłuż „rynny” w poszukiwaniu minimum będzie odbywał się bardzo powoli."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Liczba kroków: 374575\n",
|
||
"Koszt: 10324864803.159063\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"theta_start = np.zeros((n + 1, 1))\n",
|
||
"theta_best, history = gradient_descent(J, dJ, theta_start, X, y, alpha=0.0001, eps=0.1)\n",
|
||
"print(f\"Liczba kroków: {len(history)}\")\n",
|
||
"print(f\"Koszt: {history[-1][0]}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 21,
|
||
"metadata": {
|
||
"scrolled": true,
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAH+CAYAAABdvNtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzkUlEQVR4nO3dfZRVdb0/8M+ZGRhQmUF5FEEkH1PEwIy45s9SfLrk0nvLay66at6baWha1lVWV83lJbS6rh50UVmBrauS1kVv5kMootcCQxRFKcQyIRG5pTCAOODM/v2BczhnmEEG2GdvDq/XWmc1c84+e3/2mW8s3+f73Z9dSJIkCQAAgCpWk3UBAAAAaRN8AACAqif4AAAAVU/wAQAAqp7gAwAAVD3BBwAAqHqCDwAAUPUEHwAAoOoJPgAAQNUTfAAAgKpXtcHn8ccfj9NPPz0GDRoUhUIh7rnnni69/+23347zzz8/jjzyyKirq4szzzyzw+1mz54do0aNivr6+jjooINi2rRpO1w7AACwc1Vt8Fm3bl0cddRRccstt2zX+1taWqJnz57xhS98IcaOHdvhNi+//HKMGzcuPvaxj8WCBQvi8ssvj3/913+Nhx56aEdKBwAAdrJCkiRJ1kWkrVAoxIwZM8pmbZqbm+OrX/1q3HnnnbFq1aoYPnx43HjjjfHRj350i/eff/75sWrVqi1mja688sr41a9+Fc8//3zxuU996lOxatWqePDBB1M6GwAAoKuqdsbnvVxyySUxZ86cmD59ejz33HNx1llnxamnnhpLlizZ5n3MmTNni9mgU045JebMmbOzywUAAHbAbhl8li5dGlOnTo277747jjvuuDjwwAPjy1/+cnzkIx+JqVOnbvN+VqxYEQMGDCh7bsCAAdHU1BTr16/f2WUDAADbqS7rArKwcOHCaGlpiUMOOaTs+ebm5ujTp09GVQEAAGnZLYPP2rVro7a2NubPnx+1tbVlr+21117bvJ+BAwfG66+/Xvbc66+/Hg0NDdGzZ8+dUisAALDjdsvgM3LkyGhpaYmVK1fGcccdt937GTNmTNx///1lz82cOTPGjBmzoyUCAAA7UdUGn7Vr18ZLL71U/P3ll1+OBQsWxD777BOHHHJIjB8/Ps4999z4z//8zxg5cmT83//9XzzyyCMxYsSIGDduXERELFq0KDZs2BBvvPFGrFmzJhYsWBARER/4wAciIuKiiy6Km2++Of7t3/4tLrjggpg1a1bcdddd8atf/arSpwsAAGxF1baznj17dnzsYx/b4vnzzjsvpk2bFhs3boz/+I//iJ/+9Kfx6quvRt++fePDH/5wXHfddXHkkUdGRMQBBxwQr7zyyhb7KP3IZs+eHV/84hdj0aJFMXjw4Lj66qvj/PPPT+28AACArqva4AMAANBmt2xnDQAA7F4EHwAAoOpVVXOD1tbWWL58efTq1SsKhULW5QAAAClKkiTWrFkTgwYNipqarc/pVFXwWb58eQwZMiTrMgAAgApatmxZDB48eKvbVFXw6dWrV0RsOvGGhoaMqwEAANLU1NQUQ4YMKeaAramq4NO2vK2hoUHwAQCA3cS2XOaiuQEAAFD1BB8AAKDqCT4AAEDVE3wAAICqJ/gAAABVT/ABAACqnuADAABUPcEHAACoeoIPAABQ9QQfAACg6gk+AABA1RN8AACAqif4AAAAVU/wAQAAql5d1gVUo5bWJDa2tEZERG1NIbrVypcAAJAl/0Weggeefy0Ou/rBOOzqB+O23/4563IAAGC3J/ikoBCF4s9JkmEhAABARAg+qajZnHsiCckHAACyJvikoFASfFrlHgAAyJzgk4JCwVI3AADIE8EnBSUTPtEq+QAAQOYEnxTUlK51AwAAMif4pKDsGh8X+QAAQOYEnxQUyrq6AQAAWRN8UqC5AQAA5IvgkwLNDQAAIF8EnxSUNjcQewAAIHuCTwrKrvEx4wMAAJkTfFJQ4xofAADIFcEnBa7xAQCAfBF80qCdNQAA5IrgkwJL3QAAIF8EnxSULnXT3AAAALIn+KSgpkY7awAAyBPBJwVlzQ1aRR8AAMia4JOCghuYAgBArgg+KSi9gal21gAAkD3BJwXlzQ0yKwMAAHiX4JOC8nbWkg8AAGRN8ElBwQ1MAQAgVwSfFLiBKQAA5Euugk9LS0tcffXVMWzYsOjZs2cceOCBcf311+/Sy8U0NwAAgOzVZV1AqRtvvDGmTJkSt912WxxxxBHx1FNPxWc+85lobGyML3zhC1mXt81qtLMGAIBcyVXw+e1vfxtnnHFGjBs3LiIiDjjggLjzzjvjd7/7XcaVdU3ZNT5mfAAAIHO5Wur2d3/3d/HII4/Eiy++GBERzz77bDzxxBNx2mmndbh9c3NzNDU1lT3yoDz4ZFcHAACwSa5mfK666qpoamqKww47LGpra6OlpSUmTZoU48eP73D7yZMnx3XXXVfhKt9b6VI31/gAAED2cjXjc9ddd8Xtt98ed9xxRzz99NNx2223xbe+9a247bbbOtx+4sSJsXr16uJj2bJlFa64Y25gCgAA+ZKrGZ+vfOUrcdVVV8WnPvWpiIg48sgj45VXXonJkyfHeeedt8X29fX1UV9fX+ky31NBcwMAAMiVXM34vPXWW1FTU15SbW1ttLa2ZlTR9im9xsdSNwAAyF6uZnxOP/30mDRpUuy///5xxBFHxDPPPBM33XRTXHDBBVmX1iU1Zd0NsqsDAADYJFfB53vf+15cffXV8fnPfz5WrlwZgwYNis997nNxzTXXZF1al5Re42PGBwAAsper4NOrV6/49re/Hd/+9rezLmWHmPABAIB8ydU1PtWivJ11hoUAAAARIfikLrHUDQAAMif4pKCmRjtrAADIE8EnBeU3MBV9AAAga4JPCkqv8ZF7AAAge4JPCtzAFAAA8kXwSUH5UrfMygAAAN4l+KSgoJ01AADkiuCTgtKlbvq6AQBA9gSfFLiBKQAA5IvgkwLtrAEAIF8EnxSUtbPOsA4AAGATwScNZe2ssysDAADYRPBJQWlzA0vdAAAge4JPCsqWusk9AACQOcEnBWXNDVzlAwAAmRN8UlDWzro1w0IAAICIEHxSUXaNjxkfAADInOCTgvLmBtnVAQAAbCL4pKAQmhsAAECeCD4psNQNAADyRfBJQVlzA7kHAAAyJ/ikoKydtbVuAACQOcEnBaVL3cz4AABA9gSfFBRKko/cAwAA2RN8UlLTln0sdQMAgMwJPilpm/Wx1A0AALIn+KSkOOFjsRsAAGRO8ElJW0vr1taMCwEAAASf1Lw75WO+BwAAsif4pKStuYH7+AAAQPYEn5QU3p3ykXsAACB7gk9KijM+FrsBAEDmBJ+UaGcNAAD5IfikZPP9SyUfAADImuCTkkKxuUG2dQAAAIJPatqWusk9AACQPcEnJW3NDVpN+QAAQOYEn5QUZ3zkHgAAyJzgkxIzPgAAkB+CT2rM+AAAQF4IPilp6+oGAABkT/BJiaVuAACQH4JPSgqWugEAQG7kKvgccMABUSgUtnhMmDAh69K6zIwPAADkR13WBZSaN29etLS0FH9//vnn46STToqzzjorw6q2jxuYAgBAfuQq+PTr16/s9xtuuCEOPPDAOP744zOqaPu1NTdIzPgAAEDmchV8Sm3YsCH+67/+K770pS8VZ0/aa25ujubm5uLvTU1NlSrvPW0OPtnWAQAA5Owan1L33HNPrFq1Ks4///xOt5k8eXI0NjYWH0OGDKlcge+h2Nwg4zoAAIAcB58f//jHcdppp8WgQYM63WbixImxevXq4mPZsmUVrHDrNDcAAID8yOVSt1deeSUefvjh+O///u+tbldfXx/19fUVqqpris0N5B4AAMhcLmd8pk6dGv37949x48ZlXcp2K5jxAQCA3Mhd8GltbY2pU6fGeeedF3V1uZyQ2ibFdgxyDwAAZC53wefhhx+OpUuXxgUXXJB1KTuk5t0pHzM+AACQvdxNqZx88slVce+bYjvrbMsAAAAihzM+1aLYzlryAQCAzAk+KdHcAAAA8kPwSUmxnXXGdQAAAIJPatpuYFoN1ysBAMCuTvBJSbG5gdwDAACZE3xSop01AADkh+CTkrYbmIo9AACQPcEnJcXmBpIPAABkTvBJSds1PhEaHAAAQNYEn5SU5B6zPgAAkDHBJyU1JVM+GhwAAEC2BJ+UlC11y64MAAAgBJ/UFMz4AABAbgg+KXGNDwAA5Ifgk5LSa3wEHwAAyJbgk5Lya3wkHwAAyJLgk5Ly+/hkVwcAACD4pEY7awAAyA/BpwLEHgAAyJbgk5Ky5gatGRYCAAAIPmnR3AAAAPJD8ElJ+TU+GRYCAAAIPmkpv4Gp5AMAAFkSfFJSvtQNAADIkuCTkoJ21gAAkBuCT0pKl7qZ8gEAgGwJPinR3AAAAPJD8EmJdtYAAJAfgk9KzPgAAEB+CD5pKZ3x0dwAAAAyJfikpPw+PpmVAQAAhOCTmtKlboIPAABkS/BJieYGAACQH4JPSjQ3AACA/BB8UlJ+jY/kAwAAWRJ8UlIw4wMAALkh+KSk9BqfcI0PAABkSvBJSWnuMeMDAADZEnxSop01AADkh+CTEu2sAQAgPwSflJQ1N2jNsBAAAEDwSYsZHwAAyA/BJyU1pcFH7gEAgEwJPikphOYGAACQF7kLPq+++mp8+tOfjj59+kTPnj3jyCOPjKeeeirrsrqsdKlbq+QDAACZqsu6gFJvvvlmHHvssfGxj30sHnjggejXr18sWbIk9t5776xL67KydtYZ1gEAAOQs+Nx4440xZMiQmDp1avG5YcOGZVjRzpGY8QEAgEzlaqnb//zP/8QHP/jBOOuss6J///4xcuTIuPXWWzvdvrm5OZqamsoeeVE649Mq9wAAQKZyFXz+9Kc/xZQpU+Lggw+Ohx56KC6++OL4whe+ELfddluH20+ePDkaGxuLjyFDhlS44s6VXuNjsRsAAGQrV8GntbU1Ro0aFV//+tdj5MiRceGFF8ZnP/vZ+P73v9/h9hMnTozVq1cXH8uWLatwxZ2rKWtukF0dAABAzoLPvvvuG4cffnjZc+9///tj6dKlHW5fX18fDQ0NZY+8KBS0swYAgLzIVfA59thjY/HixWXPvfjiizF06NCMKtp+pSvdtLMGAIBs5Sr4fPGLX4y5c+fG17/+9XjppZfijjvuiB/+8IcxYcKErEvrMjM+AACQH7kKPsccc0zMmDEj7rzzzhg+fHhcf/318e1vfzvGjx+fdWldVtrcINHcAAAAMpWr+/hERHz84x+Pj3/841mXscNKmxuY8QEAgGzlasanmhTCUjcAAMgLwScl5e2sJR8AAMiS4JOW0uYGGZYBAAAIPqnRzhoAAPJD8ElJTXlbNwAAIEOCT0q0swYAgPwQfFJS1tygNbs6AAAAwSc1Bc0NAAAgNwSflBS0swYAgNwQfFLiBqYAAJAfgk9KypobSD4AAJApwSclNbpZAwBAbgg+KSld6uYaHwAAyJbgk5LypW7Z1QEAAAg+qdHOGgAA8kPwSUmN5gYAAJAbgk9KSnKPpW4AAJAxwSclpUvdNDcAAIBsCT4pqdHcAAAAckPwSYsZHwAAyA3BJyVuYAoAAPkh+KSk9Aamkg8AAGRL8ElJ6YyPpW4AAJAtwSclBRM+AACQG4JPSkqXupnxAQCAbAk+KSloZw0AALkh+KSk9AamieQDAACZEnxSop01AADkh+CTEkvdAAAgPwSflNQUNDcAAIC8EHwqQO4BAIBsCT4pKZjxAQCA3BB8UlLa3AAAAMiW4JMSNzAFAID8EHxSUqOrGwAA5Ibgk5LSdtatgg8AAGRK8ElJaXODxC1MAQAgU4JPSkp7G1jqBgAA2RJ8UlI24yP5AABApup25M0bN26MFStWxFtvvRX9+vWLffbZZ2fVtcvT3AAAAPKjyzM+a9asiSlTpsTxxx8fDQ0NccABB8T73//+6NevXwwdOjQ++9nPxrx589KodZeiuQEAAORHl4LPTTfdFAcccEBMnTo1xo4dG/fcc08sWLAgXnzxxZgzZ05ce+218c4778TJJ58cp556aixZsiStunNPcwMAAMiPLi11mzdvXjz++ONxxBFHdPj6hz70objgggvi+9//fkydOjX+93//Nw4++OCdUuiuprS5gRkfAADIVpeCz5133rlN29XX18dFF120XQVVi5qCi3wAACAvctXV7Wtf+1oUCoWyx2GHHZZ1WdulLPdkVwYAABBdnPFZs2ZNfO1rX4v7778//vrXv0ZjY2Mccsghceyxx8YnPvGJnRJSjjjiiHj44Yc3F1i3Q43nMlMoWezWasYHAAAy1aVUce6558b8+fPjs5/9bAwYMCDWr18fV155ZfzpT3+Ka665Jj7+8Y/HlClTYtCgQdtfUF1dDBw4cLvfnxfaWQMAQH50Kfj8+te/jieeeCJGjhxZfO7f//3f4/7774/a2tqYNGlSHHPMMfHEE0/EsGHDtqugJUuWxKBBg6JHjx4xZsyYmDx5cuy///4dbtvc3BzNzc3F35uamrbrmKnQzhoAAHKjS9f4DBgwIN56660OXxs6dGj88Ic/jIsvvjguu+yy7Spm9OjRMW3atHjwwQdjypQp8fLLL8dxxx0Xa9as6XD7yZMnR2NjY/ExZMiQ7TpuGmq0swYAgNzoUvC55JJL4oILLohnn322020+/elPx6xZs7armNNOOy3OOuusGDFiRJxyyilx//33x6pVq+Kuu+7qcPuJEyfG6tWri49ly5Zt13HTUNrO2lI3AADIVpeWun3pS1+K5cuXx6hRo+Kkk06KM888M1pbW8tu1jl9+vTo27fvTimud+/eccghh8RLL73U4ev19fVRX1+/U461s9WUXOSTSD4AAJCpLrez/ta3vhW//e1vo1evXnHFFVfE+vXr46ijjor3ve990adPn7j++uvjm9/85k4pbu3atfHHP/4x9t13352yv0oy4wMAAPmxXb2iR48eHXfffXds2LAhnn766XjxxRejqakp+vbtGyeccEL0799/u4r58pe/HKeffnoMHTo0li9fHtdee23U1tbGOeecs137y1JBcwMAAMiNLgWfpUuXlnVY6969e3z4wx+OD3/4wx1u/+qrr8Z+++23zfv/y1/+Euecc0787W9/i379+sVHPvKRmDt3bvTr168rZeZCQXMDAADIjS4tdTvmmGPic5/7XMybN6/TbVavXh233nprDB8+PH7xi190qZjp06fH8uXLo7m5Of7yl7/E9OnT48ADD+zSPvLCUjcAAMiPLs34LFq0KCZNmhQnnXRS9OjRI44++ujiPXfefPPNWLRoUbzwwgsxatSo+MY3vhF///d/n1bduVfWzlryAQCATHVpxqdPnz5x0003xWuvvRY333xzHHzwwfHXv/41lixZEhER48ePj/nz58ecOXN269AT4RofAADIk+1qbtCzZ8/45Cc/GZ/85Cd3dj1Vww1MAQAgP7ocfCZMmBCjRo2KkSNHxpFHHhndunVLo66qYqUbAABkq8vB56mnnopp06bF+vXro1u3bnH44YfHyJEji48PfOADsddee6VR6y7FUjcAAMiPLgefJ598MlpbW+MPf/hDPPPMM8XHvffeG2+++WbU1NTEQQcdFGPHjo1LL700Dj300DTqzr3SpW5hqRsAAGRqu67xqampicMPPzwOP/zwGD9+fPH5V155JZ555pmYP39+PPjgg/GTn/wkfv3rX8dHPvKRnVbwrqJsxqc1uzoAAIAudnV7L0OHDo0zzzwzrr/++pg3b15MnDgxrrzyyp15iF2G5gYAAJAfOzX4tHfuuefGs88+m+Yhcqt0oZtrfAAAIFupBp+hQ4fG3Llz0zxEbhXKbmCaYSEAAEC6wSciYvjw4WkfIpdKr/FJJB8AAMhU6sFnd6WnGwAA5Ifgk5Ky5gZmfAAAIFOCT0rcwBQAAPJD8ElJeTtrAAAgS4JPBbRa6gYAAJkSfFJSU1Pa1i27OgAAAMEnNeU3MJV8AAAgS4JPSmrcwBQAAHJD8ElJ2Q1MrXUDAIBMCT4pKV/qllkZAABACD6pKVjqBgAAuSH4pKRsqZvkAwAAmRJ8UuIGpgAAkB+CT0q0swYAgPwQfFKinTUAAOSH4JOWsnbWAABAlgSflGhuAAAA+SH4pMRSNwAAyA/BJyWaGwAAQH4IPikx4wMAAPkh+KSk9BofMz4AAJAtwSclBV3dAAAgNwSflBT0swYAgNwQfFJiqRsAAOSH4JOSsuYGGdYBAAAIPqnRzhoAAPJD8ElJWXMDuQcAADIl+KSkUHYfH8kHAACyJPikqObd7CP2AABAtgSfFLXN+rjGBwAAsiX4pKhtsZvcAwAA2RJ8UtTW0lrwAQCAbAk+aXp3ysdSNwAAyFZug88NN9wQhUIhLr/88qxL2W41hffeBgAASF8ug8+8efPiBz/4QYwYMSLrUnZIITQ3AACAPMhd8Fm7dm2MHz8+br311th7772zLmeHFNtZyz0AAJCp3AWfCRMmxLhx42Ls2LHvuW1zc3M0NTWVPfJEO2sAAMiHuqwLKDV9+vR4+umnY968edu0/eTJk+O6665LuartV2xnnWkVAABAbmZ8li1bFpdddlncfvvt0aNHj216z8SJE2P16tXFx7Jly1KusmsKlroBAEAu5GbGZ/78+bFy5coYNWpU8bmWlpZ4/PHH4+abb47m5uaora0te099fX3U19dXutRtVvvuRT4trZIPAABkKTfB58QTT4yFCxeWPfeZz3wmDjvssLjyyiu3CD27gtqaTRNqgg8AAGQrN8GnV69eMXz48LLn9txzz+jTp88Wz+8q6t6d8XmntTXjSgAAYPeWm2t8qtHmpW4ZFwIAALu53Mz4dGT27NlZl7BD6mrbgo/kAwAAWTLjk6La4lI31/gAAECWBJ8U1enqBgAAuSD4pKitq5sZHwAAyJbgkyIzPgAAkA+CT4pKb2CaJMIPAABkRfBJUduMT4RZHwAAyJLgk6LakuDjOh8AAMiO4JOitvv4RJjxAQCALAk+KWrr6hZhxgcAALIk+KTINT4AAJAPgk+Kyq/xac2wEgAA2L0JPiky4wMAAPkg+KSobManRfABAICsCD4pMuMDAAD5IPikSFc3AADIB8EnRWZ8AAAgHwSfFNXW6uoGAAB5IPikyIwPAADkg+CTovL7+Ag+AACQFcEnRWZ8AAAgHwSfFJV1dXMfHwAAyIzgkyIzPgAAkA+CT4rKr/HR1Q0AALIi+KTIjA8AAOSD4JOi8vv4CD4AAJAVwSdFZnwAACAfBJ8UlXV1E3wAACAzgk+Kymd8NDcAAICsCD4pKuvq5j4+AACQGcEnRa7xAQCAfBB8UlR+Hx/BBwAAsiL4pKiu1owPAADkgeCTIl3dAAAgHwSfFOnqBgAA+SD4pMg1PgAAkA+CT4rKZny0swYAgMwIPiky4wMAAPkg+KSorqS5ga5uAACQHcEnRWZ8AAAgHwSfFJXfx0dXNwAAyIrgkyIzPgAAkA+CT4rK7+Mj+AAAQFYEnxSZ8QEAgHwQfFJU1tXNfXwAACAzuQo+U6ZMiREjRkRDQ0M0NDTEmDFj4oEHHsi6rO1mxgcAAPIhV8Fn8ODBccMNN8T8+fPjqaeeihNOOCHOOOOMeOGFF7IubbuUX+OjqxsAAGSlLusCSp1++ullv0+aNCmmTJkSc+fOjSOOOCKjqrafGR8AAMiHXAWfUi0tLXH33XfHunXrYsyYMR1u09zcHM3NzcXfm5qaKlXeNim/j4/gAwAAWcnVUreIiIULF8Zee+0V9fX1cdFFF8WMGTPi8MMP73DbyZMnR2NjY/ExZMiQCle7dWZ8AAAgH3IXfA499NBYsGBBPPnkk3HxxRfHeeedF4sWLepw24kTJ8bq1auLj2XLllW42q0r6+om+AAAQGZyt9Ste/fucdBBB0VExNFHHx3z5s2L73znO/GDH/xgi23r6+ujvr6+0iVuMzM+AACQD7mb8WmvtbW17DqeXYmubgAAkA+5mvGZOHFinHbaabH//vvHmjVr4o477ojZs2fHQw89lHVp26VsxscNTAEAIDO5Cj4rV66Mc889N1577bVobGyMESNGxEMPPRQnnXRS1qVtl/IZH8EHAACykqvg8+Mf/zjrEnYq1/gAAEA+5P4an11ZoVAohh8zPgAAkB3BJ2VtwceMDwAAZEfwSVldccZHVzcAAMiK4JMyMz4AAJA9wSdlda7xAQCAzAk+Kaut2fQRu48PAABkR/BJmRkfAADInuCTMtf4AABA9gSflNXV6uoGAABZE3xSZsYHAACyJ/ikzDU+AACQPcEnZcWuboIPAABkRvBJmRkfAADInuCTstqS4JMkwg8AAGRB8ElZ24xPhFkfAADIiuCTstqS4OM6HwAAyIbgk7K2+/hEmPEBAICsCD4pa+vqFmHGBwAAsiL4pMw1PgAAkD3BJ2Xl1/i0ZlgJAADsvgSflJnxAQCA7Ak+KSub8WkRfAAAIAuCT8rM+AAAQPYEn5Tp6gYAANkTfFJmxgcAALIn+KSstlZXNwAAyJrgkzIzPgAAkD3BJ2Xl9/ERfAAAIAuCT8rM+AAAQPYEn5SVdnXb2OIaHwAAyILgk7Ke3WqLP7+9sSXDSgAAYPcl+KRsj+6bg89bGwQfAADIguCTsj3qBR8AAMia4JOy0hmf9YIPAABkQvBJWc9udcWf1214J8NKAABg9yX4pMyMDwAAZE/wSZnmBgAAkD3BJ2U9BR8AAMic4JOyPbpvvsZnvWt8AAAgE4JPyix1AwCA7Ak+KStrbrBR8AEAgCwIPikrXepmxgcAALIh+KSstqYQ3es2fcyCDwAAZEPwqYC25W5vaW4AAACZyFXwmTx5chxzzDHRq1ev6N+/f5x55pmxePHirMvaYXt0aws+ZnwAACALuQo+jz32WEyYMCHmzp0bM2fOjI0bN8bJJ58c69aty7q0HdJ2L5/1gg8AAGSi7r03qZwHH3yw7Pdp06ZF//79Y/78+fH//t//y6iqHdfW4OCtDe9EkiRRKBQyrggAAHYvuQo+7a1evToiIvbZZ58OX29ubo7m5ubi701NTRWpq6vaZnxak4jmd1qjR7fa93gHAACwM+VqqVup1tbWuPzyy+PYY4+N4cOHd7jN5MmTo7GxsfgYMmRIhavcNnuW3svHcjcAAKi43AafCRMmxPPPPx/Tp0/vdJuJEyfG6tWri49ly5ZVsMJtV3YvHzcxBQCAisvlUrdLLrkk7rvvvnj88cdj8ODBnW5XX18f9fX1Faxs+/Qsm/HR0hoAACotV8EnSZK49NJLY8aMGTF79uwYNmxY1iXtFHuUBB8trQEAoPJyFXwmTJgQd9xxR9x7773Rq1evWLFiRURENDY2Rs+ePTOubvuVzvisaxZ8AACg0nJ1jc+UKVNi9erV8dGPfjT23Xff4uNnP/tZ1qXtkD26bc6X6zda6gYAAJWWqxmfJEmyLiEVlroBAEC2cjXjU616Cj4AAJApwacC9qx3Hx8AAMiS4FMBPUuu8THjAwAAlSf4VMAe7uMDAACZEnwqQHMDAADIluBTAWXNDTYKPgAAUGmCTwXs2X3zNT7rmi11AwCAShN8KqBvr/rizytWv51hJQAAsHsSfCpgr/q6aOzZLSIiXl21PuNqAABg9yP4VMh+vXtGxKYZn5bWJONqAABg9yL4VMh+e28KPu+0JvF6k+VuAABQSYJPhbTN+ERY7gYAAJUm+FTI4L1Lgs+bgg8AAFSS4FMhZnwAACA7gk+F7Fcy4/MXMz4AAFBRgk+FmPEBAIDsCD4Vss+e3aNHt00f96tvvpVxNQAAsHsRfCqkUCgUZ31eXbU+ksS9fAAAoFIEnwoa1nfPiIh4e2NrvLC8KeNqAABg9yH4VNAJhw0o/vzL55ZnWAkAAOxeBJ8KOnX4wKitKURExK+ee81yNwAAqBDBp4L22bN7/N2BfSJiU0vreX9+M+OKAABg9yD4VNjHR+xb/PmSO56O519dnWE1AACweygkVbTeqqmpKRobG2P16tXR0NCQdTkdentjS5z9gznx7F82B57999kj9uvdM3p0q4n6utroXlcT3etqohARhUJEIQqb/rcQEW0/t38tNnWOiw6f3/Tau2/f8rWS3+Pd7TrbR6f7f/f3iM3HKq2r+Np7HOPdM3y3znb7anecLY+15b7KP68t9xUldXW2ryipq/05bT5W+Tl2tK+IKDvH9ue03fvaSt2F99hXFGvofF/t/+Yd7qv0jwIAUCFd+e//ugrVxLt6dKuNaZ/5UHzqh3Nj8etrIiJi6RtvxdI33NuHXd/WQtTmMNt5iCoLvJ3sq7PwX7qvYi3tw2Bnx+pgX1ucQwf7Kg/xHZ/z5ro6DrwdHquTc97avkoO1+m+Og7D5fsq/Xyj/evtP9+O9tXJlywd7aujL0Ha76vD93X0ng7OOUp+7+wLl9J9dTgm2l4r/i06HjOl+yofox3va2vjb/P42vKzb/8lSek5bn0sdzz+tntf7/GFy9b2FcWx1rW6O9q+7e8BsC0EnwzsvWf3+O/P/138fP5f4p4Fr8aLK9bEug0tWZcFOyxJIpLSXza/kkE1wO5kq1+8RJSEzc7DWfl2Ww9c5QG3+MwW4bt4nK1sszk0lj/3Xl+SRLttNpdW/kVAlz+TbTluVz+TrQT/rf8ttvIFyvb+LbYI0108bgef85bH3Py5lb6//FzLnyv9nLf4TErq3abjtn3JUFpD8Vy35bhb/1Kn7T37NvaI4fs1xq7CUrccSJIk1m1oiQ3vtG5+tLQU/yNy0/8mm/635Odo/9q7+2p7T5Q9X/5aEpte2GL/JfuILY77Hvtvt4/S+oo/b+0Y0fE5RWndbfuN6PRYne2r7bMurfnds+j4WJ3sK0rPoZN9FY+1lX0VP78tPrvN+yo7Vrtz3hwwOh4fpfsq/1ttua/NY7HzfUVJXZ3tq+2AHY/b8r9VZ/uK9tt2sK/2n++W+9rynMv21cGxOh8TnYztss8XAHY//zhyv7jp7A9kWoOlbruYQqEQe9XXRdRnXQmwPcpDcMchKqKjYNouRHXweudhuJN9beVYnYfhLQPvDu2r/ZcsEVutu8Ng3eGxkpJ6tuEz6GRfUVJXZ/uKdufY2RcG7T+v9vtqPz46+jzbf+HS0b7KQnon+9qyzi33Vfxbta+hs2OVvL90/2VjtZN9lY+Ljve1xefR/m/X0dgofW/pPjv5sqT8MygO2k7qLv9SZKufacln3ulxSz6L9nWUfe5b/P+g/djv+mcCbEnwAdhBpcsQShZBAGSqPFx2ELhKQlr75zoKftsWQpN2Aa6jMNjF43b2hUDbz+9xLmXHLe7z3TMp+2Kg46AbnR233Wca7Y/ZyeceW5xrx+df+lr5uZZ/7lsct5Pzf68vdLZ63A6ei4g4ZECv2JUIPgAAVaj0+pJ3n8msFsgD9/EBAACqnuADAABUPcEHAACoeoIPAABQ9QQfAACg6gk+AABA1RN8AACAqif4AAAAVU/wAQAAqp7gAwAAVD3BBwAAqHqCDwAAUPUEHwAAoOoJPgAAQNUTfAAAgKon+AAAAFWvLusCdqYkSSIioqmpKeNKAACAtLX9d39bDtiaqgo+a9asiYiIIUOGZFwJAABQKWvWrInGxsatblNItiUe7SJaW1tj+fLl0atXrygUCpnW0tTUFEOGDIlly5ZFQ0NDprWQf8YLXWG80BXGC11hvNAVeRgvSZLEmjVrYtCgQVFTs/WreKpqxqempiYGDx6cdRllGhoa/MPBNjNe6Arjha4wXugK44WuyHq8vNdMTxvNDQAAgKon+AAAAFVP8ElJfX19XHvttVFfX591KewCjBe6wnihK4wXusJ4oSt2tfFSVc0NAAAAOmLGBwAAqHqCDwAAUPUEHwAAoOoJPgAAQNUTfFJyyy23xAEHHBA9evSI0aNHx+9+97usS6LCHn/88Tj99NNj0KBBUSgU4p577il7PUmSuOaaa2LfffeNnj17xtixY2PJkiVl27zxxhsxfvz4aGhoiN69e8e//Mu/xNq1ayt4FlTK5MmT45hjjolevXpF//7948wzz4zFixeXbfP222/HhAkTok+fPrHXXnvFJz7xiXj99dfLtlm6dGmMGzcu9thjj+jfv3985StfiXfeeaeSp0IFTJkyJUaMGFG8aeCYMWPigQceKL5urNCZG264IQqFQlx++eXF54wXSn3ta1+LQqFQ9jjssMOKr+/K40XwScHPfvaz+NKXvhTXXnttPP3003HUUUfFKaecEitXrsy6NCpo3bp1cdRRR8Utt9zS4evf+MY34rvf/W58//vfjyeffDL23HPPOOWUU+Ltt98ubjN+/Ph44YUXYubMmXHffffF448/HhdeeGGlToEKeuyxx2LChAkxd+7cmDlzZmzcuDFOPvnkWLduXXGbL37xi/HLX/4y7r777njsscdi+fLl8Y//+I/F11taWmLcuHGxYcOG+O1vfxu33XZbTJs2La655posTokUDR48OG644YaYP39+PPXUU3HCCSfEGWecES+88EJEGCt0bN68efGDH/wgRowYUfa88UJ7RxxxRLz22mvFxxNPPFF8bZceLwk73Yc+9KFkwoQJxd9bWlqSQYMGJZMnT86wKrIUEcmMGTOKv7e2tiYDBw5MvvnNbxafW7VqVVJfX5/ceeedSZIkyaJFi5KISObNm1fc5oEHHkgKhULy6quvVqx2srFy5cokIpLHHnssSZJN46Nbt27J3XffXdzm97//fRIRyZw5c5IkSZL7778/qampSVasWFHcZsqUKUlDQ0PS3Nxc2ROg4vbee+/kRz/6kbFCh9asWZMcfPDBycyZM5Pjjz8+ueyyy5Ik8W8LW7r22muTo446qsPXdvXxYsZnJ9uwYUPMnz8/xo4dW3yupqYmxo4dG3PmzMmwMvLk5ZdfjhUrVpSNk8bGxhg9enRxnMyZMyd69+4dH/zgB4vbjB07NmpqauLJJ5+seM1U1urVqyMiYp999omIiPnz58fGjRvLxsxhhx0W+++/f9mYOfLII2PAgAHFbU455ZRoamoqzgRQfVpaWmL69Omxbt26GDNmjLFChyZMmBDjxo0rGxcR/m2hY0uWLIlBgwbF+973vhg/fnwsXbo0Inb98VKX6dGr0F//+tdoaWkp+2NHRAwYMCD+8Ic/ZFQVebNixYqIiA7HSdtrK1asiP79+5e9XldXF/vss09xG6pTa2trXH755XHsscfG8OHDI2LTeOjevXv07t27bNv2Y6ajMdX2GtVl4cKFMWbMmHj77bdjr732ihkzZsThhx8eCxYsMFYoM3369Hj66adj3rx5W7zm3xbaGz16dEybNi0OPfTQeO211+K6666L4447Lp5//vldfrwIPgA5M2HChHj++efL1lRDe4ceemgsWLAgVq9eHT//+c/jvPPOi8ceeyzrssiZZcuWxWWXXRYzZ86MHj16ZF0Ou4DTTjut+POIESNi9OjRMXTo0LjrrruiZ8+eGVa24yx128n69u0btbW1W3S3eP3112PgwIEZVUXetI2FrY2TgQMHbtEQ45133ok33njDWKpil1xySdx3333x6KOPxuDBg4vPDxw4MDZs2BCrVq0q2779mOloTLW9RnXp3r17HHTQQXH00UfH5MmT46ijjorvfOc7xgpl5s+fHytXroxRo0ZFXV1d1NXVxWOPPRbf/e53o66uLgYMGGC8sFW9e/eOQw45JF566aVd/t8XwWcn6969exx99NHxyCOPFJ9rbW2NRx55JMaMGZNhZeTJsGHDYuDAgWXjpKmpKZ588sniOBkzZkysWrUq5s+fX9xm1qxZ0draGqNHj654zaQrSZK45JJLYsaMGTFr1qwYNmxY2etHH310dOvWrWzMLF68OJYuXVo2ZhYuXFgWmGfOnBkNDQ1x+OGHV+ZEyExra2s0NzcbK5Q58cQTY+HChbFgwYLi44Mf/GCMHz+++LPxwtasXbs2/vjHP8a+++676//7kmlrhSo1ffr0pL6+Ppk2bVqyaNGi5MILL0x69+5d1t2C6rdmzZrkmWeeSZ555pkkIpKbbropeeaZZ5JXXnklSZIkueGGG5LevXsn9957b/Lcc88lZ5xxRjJs2LBk/fr1xX2ceuqpyciRI5Mnn3wyeeKJJ5KDDz44Oeecc7I6JVJ08cUXJ42Njcns2bOT1157rfh46623ittcdNFFyf7775/MmjUreeqpp5IxY8YkY8aMKb7+zjvvJMOHD09OPvnkZMGCBcmDDz6Y9OvXL5k4cWIWp0SKrrrqquSxxx5LXn755eS5555LrrrqqqRQKCS//vWvkyQxVti60q5uSWK8UO6KK65IZs+enbz88svJb37zm2Ts2LFJ3759k5UrVyZJsmuPF8EnJd/73veS/fffP+nevXvyoQ99KJk7d27WJVFhjz76aBIRWzzOO++8JEk2tbS++uqrkwEDBiT19fXJiSeemCxevLhsH3/729+Sc845J9lrr72ShoaG5DOf+UyyZs2aDM6GtHU0ViIimTp1anGb9evXJ5///OeTvffeO9ljjz2Sf/iHf0hee+21sv38+c9/Tk477bSkZ8+eSd++fZMrrrgi2bhxY4XPhrRdcMEFydChQ5Pu3bsn/fr1S0488cRi6EkSY4Wtax98jBdKnX322cm+++6bdO/ePdlvv/2Ss88+O3nppZeKr+/K46WQJEmSzVwTAABAZbjGBwAAqHqCDwAAUPUEHwAAoOoJPgAAQNUTfAAAgKon+AAAAFVP8AEAAKqe4ANArnz0ox+Nyy+/fKfu8/zzz48zzzxzp+4TgF2L4AMAAFQ9wQeAXdaGDRuyLgGAXYTgA0Cu/epXv4rGxsa4/fbbi0vWJk2aFIMGDYpDDz00IiIWLlwYJ5xwQvTs2TP69OkTF154Yaxdu7bTfc6bNy/69esXN954Y6VOA4CMCT4A5NYdd9wR55xzTtx+++0xfvz4iIh45JFHYvHixTFz5sy47777Yt26dXHKKafE3nvvHfPmzYu77747Hn744bjkkks63OesWbPipJNOikmTJsWVV15ZydMBIEN1WRcAAB255ZZb4qtf/Wr88pe/jOOPP774/J577hk/+tGPonv37hERceutt8bbb78dP/3pT2PPPfeMiIibb745Tj/99LjxxhtjwIABxffOmDEjzj333PjRj34UZ599dmVPCIBMCT4A5M7Pf/7zWLlyZfzmN7+JY445puy1I488shh6IiJ+//vfx1FHHVUMPRERxx57bLS2tsbixYuLwefJJ5+M++67L37+85/r8AawG7LUDYDcGTlyZPTr1y9+8pOfRJIkZa+VBpyuOPDAA+Owww6Ln/zkJ7Fx48adUSYAuxDBB4DcOfDAA+PRRx+Ne++9Ny699NKtbvv+978/nn322Vi3bl3xud/85jdRU1NTbH4QEdG3b9+YNWtWvPTSS/FP//RPwg/AbkbwASCXDjnkkHj00UfjF7/4xVZvaDp+/Pjo0aNHnHfeefH888/Ho48+Gpdeemn88z//c9n1PRER/fv3j1mzZsUf/vCHOOecc+Kdd95J+SwAyAvBB4DcOvTQQ2PWrFlx5513xhVXXNHhNnvssUc89NBD8cYbb8QxxxwTn/zkJ+PEE0+Mm2++ucPtBw4cGLNmzYqFCxfG+PHjo6WlJc1TACAnCkn7xdMAAABVxowPAABQ9QQfAACg6gk+AABA1RN8AACAqif4AAAAVU/wAQAAqp7gAwAAVD3BBwAAqHqCDwAAUPUEHwAAoOoJPgAAQNUTfAAAgKr3/wEaUUm40PBtRwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 960x540 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"costchangeplot(history)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"\n",
|
||
"Jak temu zaradzić?\n",
|
||
"\n",
|
||
"Spróbujemy przekształcić dane tak, żeby funkcja kosztu miała „ładny”, regularny kształt."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Skalowanie"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Będziemy dążyć do tego, żeby każda z cech przyjmowała wartości w podobnym zakresie.\n",
|
||
"\n",
|
||
"W tym celu przeskalujemy wartości każdej z cech, dzieląc je przez wartość maksymalną:\n",
|
||
"\n",
|
||
"$$ \\hat{x_i}^{(j)} := \\frac{x_i^{(j)}}{\\max_j x_i^{(j)}} $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 22,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 1.00 \\leq x_0 \\leq 1.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 0.29 \\leq x_1 \\leq 1.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 0.00 \\leq x_2 \\leq 1.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 0.06 \\leq x_3 \\leq 1.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"X_scaled = X / np.amax(X, axis=0)\n",
|
||
"\n",
|
||
"show_mins_and_maxs(X_scaled)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHDCAYAAAD1MRSGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhUd/r2P3F3g4QkhIQkxN0VtyIFShVoqW6Nbrvd7cq72/3tbne3u11a6galBUop7hp3d4MkBEhC3GWSmfP+MSGUKjITac/nunLRnpHznfkmM/d55H5UBEEQEBERERERERERUTqq470AEREREREREZFfCqLwEhEREREREREZI0ThJSIiIiIiIiIyRojCS0RERERERERkjBCFl4iIiIiIiIjIGCEKLxERERERERGRMUIUXiIiIiIiIiIiY4QovERERERERERExghReImIiIiIiIiIjBGi8BIRERERERERGSNE4aVEEhMTueuuu7C2tkZFRYUDBw7c0uP/8pe/oKKi8p0fPT095SxYRERERERERKmIwkuJ9Pb24u3tzTvvvHNbj3/ppZdoaGi44cfNzY01a9YoeKUiIiIiIiIiY4EovJTIokWL+Nvf/sbKlSu/9/bBwUFeeuklbGxs0NPTIzg4mPj4+NHb9fX1mTJlyujP1atXKS0tZePGjWP0CkREREREREQUiSi8xpFnnnmGtLQ0vvzySwoLC1mzZg0LFy6kqqrqe+//8ccf4+zsTGRk5BivVEREREREREQRiMJrnKirq2Pr1q3s2bOHyMhIHB0deemll4iIiGDr1q3fuf/AwAA7duwQo10iIiIiIiKTGPXxXsAvlaKiIqRSKc7OzjccHxwcxMzM7Dv3379/P93d3axfv36sligiIiIiIiKiYEThNU709PSgpqZGTk4OampqN9ymr6//nft//PHHLF26FCsrq7FaooiIiIiIiIiCEYXXOOHr64tUKqWpqekna7ZqamqIi4vj0KFDY7Q6EREREREREWUgCi8l0tPTw/nz50f/v6amhvz8fExNTXF2duaBBx5g3bp1/Pe//8XX15fm5mbOnj2Ll5cXS5YsGX3cp59+ytSpU1m0aNF4vAwRERERERERBaEiCIIw3ov4uRIfH09sbOx3jq9fv55t27YxNDTE3/72N7Zv386VK1cwNzcnJCSEV199FU9PTwBkMhn29vasW7eOv//972P9EkREREREREQUyKQVXomJibz++uvk5OTQ0NDA/v37WbFixY8+Jj4+nl//+teUlJRga2vLH//4RzZs2HDDfd555x1ef/11Ghsb8fb2ZsuWLQQFBSnvhYiIiIiIiIj8Ypi0dhK36gpfU1PDkiVLiI2NJT8/n02bNvHoo49y8uTJ0fvs3r2bX//61/z5z38mNzcXb29vFixYQFNTk7JehoiIiIiIiMgviEkb8fomKioqPxnx+u1vf8vRo0cpLi4ePXbvvffS0dHBiRMnAAgODiYwMJC3334bkKf5bG1tefbZZ/nd736n1NcgIiIiIiIi8vPnF1Ncn5aWxty5c284tmDBAjZt2gSARCIhJyeHV155ZfR2VVVV5s6dS1pa2g8+7+DgIIODg6P/L5PJaGtrw8zMDBUVFcW+CBERERERERGlIAgC3d3dWFtbo6qqvITgL0Z4NTY2fscDy8rKiq6uLvr7+2lvb0cqlX7vfcrLy3/weV977TVeffVVpaxZREREREREZGy5dOkS06ZNU9rz/2KEl7J45ZVX+PWvfz36/52dndjZ2XHp0iUMDQ0Vdh7psIyG+nYu1bZQd7GF+sttNFxpp7G+g66Ovpt6DgMjHYxN9DAy1kXfUAcDAx0MDLTQN9RBT18LHR0tdHQ10dbWQEdPEy0tTbS01NDQVEdTUx0NTXXU1dVQVb35SJ5MJjA8LEU6LGNoSMqQZIjBwWEkg8NIJMMMDEgY6B+iv09Cf7+Egb4h+voG6O0dpLdnkL6eAXp6B+npHqC7s5/urn6Gh6S39N7p6GlhbmGAuYUBZuaGmFnoY25piIWlIZZWRphbGqKpJf4p3CmCIHCxrpWsnFqycqopK69HJrteyaCrq4Wftx0BAQ4E+jlgbKw7jqu9ebp6BkjMOs+5tAoKK+pHj2tqqBPmO525YS4EeNqjrq72I8+iXHr6BjmdXcHhlBIuXGkdPT7D2oxlEe7MC3BBX1drTNZyvqGFr1ILOZVfyeCw/G/V1ECHFYEe3B3sjpmhnlLOOzA0zNHCcr7IyOdSeycAmmpqLPF05oEQH6abmSr0fNVtbWzLyeVoeSVSmQwAjymWPBLgT8yMGagqIOPROyRhd2kh24pyaRsYAGCqvj6PegewwtkNLbU7+9w639HCeyVpnLpcCYAKsMjOlSfcQplhdPvvV1N/F5+eT+VgXT7DI9VM0VZOPOEcxUyj2zMBbxroYOfFOE415CJDQAUVZlt58eD0OUzVufW1Ng+0svfKMdJbcwBQU1EjVMeXF8OfxsDA4LbWeLP8Ymq8oqKi8PPzY/PmzaPHtm7dyqZNm+js7EQikaCrq8vXX399w/OsX7+ejo4ODh48eFNr6erqwsjIiM7OztsWXv19Es5XNlBRWk9VeQO1F5q4XNfK0I8IDhNTPaZYG2M5xRgLK7mgsJxihLmFASZm+hib6KGhMX5fDIpCEAT6+yR0dfbT2dFLR3sv7W3yn472Xtpbe2hr6aG1pZvWlm4G+odu6nlNzfSxmmrEFGsTplgbYz3NlKk2JljbmGBmYSCmjW+Dnp4BsnJqSM+sJiPrAp2d/aO3qaiAm6s1oSFOhIU4Md3efFK8xw3NXZxKKuNEUikXr7SNHjc20GFuuAsLo9yZ5Wg1bq9FEASKqxvYl1DEqewKBiXDAGhrqrMw2JVV0d7Mmj420y/ae/rZm17ElykFNHX2AKChpsZCX2cejPJj1jRLpZxXKpNxtvwCnybnUHC5AZD/vs12cWRjRAC+dtYKPV99VxcfZ2Wzu7BoVGjONDfjqeAgFru6oK6AlFXfkISdpYV8kJ9Fc18vAFP09PmVXzD3uHqirX5nAqysvYk3C5M4eUkuwFRVVFg+3Z3nvSKwNzC57ee93NvOuxUJHKorGBFLsMjGg2dmxTJd/7uj8W6Gi71NfFJ9kvimQgDUVdRYZhPCeoe5mGh+d+rLT1HTW8euiwco6CxlqFfC/nlb7+j7+2b4xQiv3/72txw7doyioqLRY/fffz9tbW03FNcHBQWxZcsWQF6vZWdnxzPPPHPTxfW3KrwEQaD+cjslBXUUFdRRXnKFS7UtN0QKrqGlrYG9gwX2DhbYTjfDZpoZ1tNMmGpjgq7e2FzNTjb6egdpae6mpamL5pGflqYumho7aWrs5GpjJ4MDPy7OtLQ1sJlmio2dKTa2ptjYmmFrb4atvTkGhjpj9EomN1KpjIrKBtIzL5CWcYHzF27sFJ46xYjw0JmEh87E02MaamoTu+FaEAQqapo4mVjKqZRy2juvR52n25iyKNqdhVGzsDBV7pXzj9HdN8DRtDL2JRRSXX89CuY23YrVMd7MD3RBW0tD6esYkko5W3ieHUl5FNQ2jB73n2HDQ9F+RLvPQE0J9TSCIJBbV8+nKdmcK6++fl47azZGBhI90+GWovc/RUtvL9ty8vgiL58eiQQAe2NjnggOZIW7G5pqd37hOzA8xJdlRbyXl8nVXrmYVaQAK2lrZHNhMmcuVwGgpqLCakcvnvEIZ5q+0W0/b3V3M2+Xx3PiSsno895t58tTrtFM0bm95y3vusSHF46T3SZfq46aJmvtornXLgpdde1bfr6iznKSL6bxK+9HROH1Q3zTFd7X15c33niD2NhYTE1NsbOz45VXXuHKlSts374dkNtJeHh48PTTT/PII49w7tw5nnvuOY4ePcqCBQsAuZ3E+vXr+eCDDwgKCmLz5s189dVXlJeX3/SMxJ8SXoIgUH+pjZzMagrzLlKcX0dba8937mduaYjzrKk4u1ozY6YV9jMssJpirNAPChH5fnR19nO1sYPG+g4aR9K39VfaabjSztXGDmTSH/4TMTLRxdbeHFt7c+wdzLGbbo6dgwUWloaTIoIzXjQ3d5GWcYHUjPPk5l28IZpraKBNcJAj4aEzCQpwQEdHcxxX+tMMS2VkFV7kRGIpiVnnR6NMqioqBHjZsTjanahApzEROd+HIAjkV11hX0IhZ3KqGBqJyhjqarE03J1V0d7YT7n9qMatUHSxkS8SczldUMXwSHrO1syI+yN9WRHkjp62cvb6QnMrn6bkcLigjCGp/LxOlmZsjAhgiacLGgoQRdfoGhjgi7wCtubk0N4/kh40MODxoEDWeLqjrXHnvwcDw8PsKS/i3dxMGnq7AcUKsIKWejYXJhFfLxesGqqqrHXy4RmPMKx0b/9ioqyjgbfKzpFwVS6WNFXVuM8hiMecIzDVur0UdE5bFR+cP0Z592UAjDX0WOcwl2U2IWiq3tr7oIiM1c0waYXXT7nCb9iwgdraWuLj4294zAsvvEBpaSnTpk3jT3/603cMVN9+++1RA1UfHx/eeustgoODb3pd37dx3V395GXXkJNRTW7GBa42dt7wGA0NNZxnWePhbYubly3Os6wxMx+/K2WR6wwPS2ms7+DKpVauXGrjyqU2Ll9s5VJdKy1NXT/4OF1dTWynmzPd0ZLpMyyZPsOC6Y6WmJrpi4LsW/QPSMjOqSU1rYrUjAt0dV1PSWpoqOHvO52IsJmEhjhhaqKc+iBF0ds3yLn0So4llFBQdmX0uJ6OJnPCXFgS446Hs/W4/Q60d/dxMLmYfQmF1Ldc//0NmmXHmlhvIr0dUR+DaGNjRze7kwvYk1ZIV7+8K9xAW4uVIR48EOnDVBPlfOk1dfXwWVouu7OL6B2UR6WmGhmwPtSP1f4e6GkpTvj1SYbYVVDIx1nZNPfK04MWenpsDPTnfm9vdDXvXIANSof5qqyYd3MzlCLAcpsv80ZBEimNtQBoqanz4ExfnvQIxVz79v8Wc1ovsrn0LDmtdQDoqWuywSmMDY6h6GncevZGEATimwr56MIJLve3ADBV25RHHRcyx8obVZWb+50Whdck5drG1dRcoSinnqS4UgrzLt4QNVFXV8Xd2w7fAAc8fOxwmWWNlvb4XA2L3D79fRIu17Vyua6VizXN1NW2UFfTzJVLbUhHrqq/jYGhDjNmWjFjphWOM6fgONMKOweLn0X9nSKQSmWUlF4hJa2K5NQq6hs6Rm9TUQF3Nxsiw52JCndhypTbT32MBZcbOziRWMLxhFIamq+LHNupJiyOdmdRtBuWZuNzgSWVyUgrrmVvfCHJRdVc+xawMtFnZbQXKyM9MTNSvsjtGxzicHYpXyTmcbG5HQA1VRXmec1kXYw/HnZTlHLerv4BdmcVsj09j5YeeZrYSEebB4K9eTDEFxNdxZUQDA4Ps6eomA8zs6jvkosjEx0dHgnw50Ffbwy07rxM5IcE2NN+wdwzy/OOi/DTGi/yRkEi2c3yqJKOmgYPuwbwuFswRlq3914JgkBy03k2l56lrLMRABNNXR53juRehwC01G79O3FYJuVofSbbas7QKpH/zc3Ut+YJp8UEmjr/5AWPKLwmKdc2bnbAK6ipXc8z2ztY4Bc8A/+gGXj62k/49InI7TM8LKX+Uhu11c3UVjeN/lt/qe17a/fU1VWxn2GJk8sUnJzlPzNmTkFH95f9OyIIArUXW0hJrSI5rYqKysYbbp/pZEVUhAtR4c7Y2d1eoe5YIJMJ5Jdd5lh8CXHplfQPymsKVVVUCPaZzpJYDyL8Z6CpMT6dtfUtnexLKORAUjEdPfJoo7qaKnMDnLlntg+eM6YqPUInkwkkl9ewPSGXzKpLo8f9ZtiwPsafaLcZSimzGBwa5mBBKZ8k51DX1gGAjoY6awI8eTjMnylGihPGEqmUg6VlvJeeQV2HPOthpK3FBn8/1vv5Yqh963VJ30YuwIp4JzeDxpEaMGt9A572C2GNq8cd1ZkJgkBiQw1vFCRS2Cqv1TPQ0OIxt2Aedg1A/zYiVQAyQcap+jLeKjtHbY+8FnGKjiHPuMayzNYLddVbX3O/VMLXl5LYWRtPr1Se7vU3ceJJpyW4GP6wTYQovCYp1zYu1v8V3L1mEDXHjYiYWUy1GZsaCpGJi2RwmIs1zVSfv8qFykaqq65Sff4qPd0D37mvigrY2pvjPMuama5TmekyFUeXKb9owd7U1EVKWhWJyZUUFl+6QcTa25kRHelCVIQLMxwsJmw6t29AQnx6FUfiiskvuzx63FBfmwWRs1ga68HM6crp9vspJEPDnMmuZE9cAUXV14vgXe0suWe2D/ODXNBWQHrspyi/0sT2hFxO5FaM1oHZW5jwULQvdwW4oaOENUhlMk6VVvFRUjZlDfLGDw01Ve7ynsWjEYE4mCvu83tYJuNIWTnvpWdyoU3eGauvqcl6f182+PthonPn0baB4WF2lxXy7jeK8G0MDHnOP5S7nd3uqKZNEAROX67ijYJEKjqaATDV0uEp9zAedPZFW/329mdYJuVgXQFvl8dxdUAetZthYM6mWXOYM9X1tv6mO4d6+bz2HPsvpTAkyGsb51j58JjjQqx1vnuxJgqvScq1jauquIiTs914L0dkgiMIAlcbOjlf2cj5igYuVDZSVdFAW8t3Gy5UVVWwc7DAZZY1Lm7WOLtZ4+Bo9YtMU7Z39JKadp7E5Apy8y8yPHw9tWtjbSIXYZEuODuNn7XDT3G5sZ2j8SUciy+hue36frvOsGJJrAfzI1wx0LvzKMjtUFZ7la/i8jmZUY5kpBjfSE+b5ZEerIn1YaqZ8r6UrnG1o4ddyXnsSSuie6QOzFhPm7Xh3twb7oOZgeJ94ARBIOX8RT5MyiKrVi6MVVRggdtMHo0MxN1acVYcUpmME5VVvJOWTmWLPNKjp6HBA74+bAz0x0z3zl/fwPAwO0sLeC8vc9SGws7QiGf9Q1np7HZHVhcyQeBIbSn/K0yitlueJp6ia8CznuGscfRC4zYiVQAD0iF2VmfyUWUynUPyCKyXiQ2/dptLkIXDbT1nQ38bn1Sf5HRjHgIC6ipqLB+xoDD+hgWFKLwmKWO1cSI/b9pae6gqr6eyrIGq8gYqy+u/V4xpaqkz02UqszynMct9Gm6e0zCz+GU1ZvT0DJCafp7E5Eoys6tv6JC0nmpMTJQr0ZEuzJygIkwqk3dFHj5XTFLWeYZH6gM1NdSJDZnJsjle+MyyGZe1d3T3czC5mK/jC2holdfMqKqoEO3ryL1zfPFznqb0dfUNStifUcLnibnUt8nXoKmuxrIAN9bF+DPdUjnZhLy6ej5KyiKu4roVRaTTdJ6IDsLf3kZh55EJAmeqzrMlLZ2yJnkESUdDnQd8vHksMBAzvTsXYP1DQ+woLeD9vExa+uU1bQ5GJmwKCGOpk8sd2XkMy2TsrS7ircJk6vvk+2Ovb8wL3lHcNd3tto1ku4cG2FqVymcX0uiXytPzEZaOvOA2l1nGU2/rOau6r/DB+WNktsn9ynTVtHhgeixrbCPRVtMUhddkRRReIsqitbmbirJ6KkqvUFlWT2VZPd1d301TWlgZ4uZpi7uXLW5e05jhZDWurupjSV/fIOmZ1SQmV5CRWc3A4HWPtmuRsNjoWTjOmJjpyPauPk4llXH4XDHVl1pGj9tNNeGuOZ4sinbH1GjsHf+lMhlJBdV8dS6fzLK60eNONubcO8eXhSGuSk9DDktlnCs6z7b4HIrr5PV+Kiow28OJDbH+eE9XrDHqNSqvtvBRUhbHiiqQjXxd+tvb8GRUEOFO9gr7PRIEgbjqGrakplHUeBWQC7D7vb15LCgAc707b3boG5LweXE+H+Rn0TYgjybNNDHj14HhLJgx847c9gelw+ysyuOd4lRaB+TiztXYkhd9ophj43Tb71PzQDcfVCTyVW0Ow4L8omTpNE+emzWbaXq3J7pz2qp47/xRKrvlnccWWkZsnLGAUL2ZmBqbiMJrsiEKL5GxQhAErlxqo6z4MmVFlyktvkzthabvFPBraWvg6maNu7cdHt62zPK0Re8XYLjbPyAhI7Oa+MRy0jMvMDg4PHqb7TRTYqNdiY2exXR783Fc5fcjCAKl5xs5dLaIMynlowX56mqqRAY6sWyOJ4Ge9uPi61dd38rus3kcTStlYMSzzEhPm5VRnqyO9WGKkk1jBUEgt+YK2+JySCi5Ho3ydbBmQ2yA0grx69o6+DgpiwP5paNeYB7WVjweFcQcV0eFnVMQBBJqangrJY3CEQGmrT4SAVOQAOuRSNhWlMuH+Vl0SeRpXDdzS14MDGe2/Yw7EpO9QxK2VWTzQUk63UPy5/a3sOElnxhCrG6//Kaut40tZec4erkYAHUVVe5zCOQJl6jb8gCTCTLOXi3gowvHaRyQp0qnqRiza84fReE12RCFl8h40t8nobz0CqWFlygtukxZ8eXvFO+rqqrg4GSFh5ctnr72ePrYYWJ266M2JhP9/RLSMs4Tn1hBeuaFG9KRMxwsiI2exeyYWVhPNR6/Rf4Avf0SzqaWc+hsEaXnr3d2WlsasXS2B0tjPTA3Gfv96+od4GByMXvi8kc9wdRUVYj1m8m9c3zxdlK+X1n11VY+i8vhSE45Q1L5njpYmrIh1p8l/q5o3qGP1ffR2NnNpyk57MkpYmBILjydLM14MiqIhR7OCnPhFwSBxJpa3kpNo6BBvu+KFmCdgwN8UpDNJ4U59A7Jxb2P5VReCo4g3MbujvavY7CfD0rT2VaezYBU/j5FTXXgJZ9oPM1uL1UIUNpRzxslZ0htlotuPXVNHnEKZ71TKLrqt958NCgdYv/lVLbXnqW7q4vkZW+KwmuyIQovkYmETCZQV9tMSeEl+U/BJRqutH/nfrb25nj52ePla4+Xn/3P2sC3t3eQ1PTzxCWUkZVTc0NhvqvLVObEzCI2ehZmE1CMnr/YzKGzhZxILKOnTx5NUFNVISLAkeVzvQnyGvso2LU05Jdn88guv24F4Tbdivvn+THX31npqe7mrh52JObxVWohPQNyY1RLQz0ejPZjdagn+tqKj/C29vTxeXoeOzLy6RkxY7U3M+aJqCCWerkqzA3/+wTYaA1YUKBCivDb+vv4ID+Lz4rzGBiWi6QQa1t+ExyB/5Q7q2e72tfN28UpfFlVMJoqXGI/ixe9o3AwvP1B3KlNF3ij5AylnfIOXHMtfZ6ZFcPddr63ZUHRNdRHUl0+S53CReE12RCFl8hEp7W5m5LCSxTl11GUd5GaC1f59qfANHszfPym4+U3HW8/+59tRKy7e4Ck1ErOxZWSV1A3mqZVVVXB19uOObFuREa4oD/BUrMDg0PEpVdy8EwhhRX1o8etrYxYPseLJbEe41ILdv5yM7vO5HE8vWy0G9LSRJ81sT7cHeWJkb5yZ5v2DAyyJ7WIHYm5NHXJu/gMtLVYG+HNA5E+mBko3hS2q3+AHRkFfJaWS+fIiCAbY0Meiwxkpa+bwqJugiCQWFvLWynXBZiuhgYP+vrwaGAApgowfW3q6+Xd3Ax2lhQgkcn3L9bOgReDIvCwuLOOzovd7fyvIIlDtSUIyFOFa528ec4zAkvd2/t8kQkyTlwp4c3Sc1zqk19QztA35wX3ucye4nLLETuxuH6SIgovkclGV2c/xQV1FObWUph7kQtVjd8RYvYzLPDxd8A30AEvX3v0DcbH5kCZtLX1EJ9Uwdm4UkrLrosZDQ01QoMdmTvbneDAGWhqjo/R6Q9xoa6Fg2cKboiCqaupEh08k5XzvPF1U37n4bdp7+5jb3whe+Lyae2SF1praaqzNNSN++b5MX3K7Uc6bgbJ8DBHc8rZGpdNbZP8C1lTXY0VQe5siPVnmpmxws/ZOyjhy6xCtqbk0Norf81TDPV5NDKQVX4eaCvIIFcQBOKra3gzJY3iq/IaMD0NDR7y82VjoL9CfMCudHexJSeNPeXFSEc+DBbPcObXQeE4mdyZWXFp+1X+k5dAXP0FALTV1HnENZAn3EMw1Ly9zxWJbJjdNdm8V5FAh0TeNOBnZsdv3OfhbWp7088jCq9Jiii8RCY73V39FOXXUZBTS0FuLdVVV2+4XVVVBSeXqfgGTMcv2BF3L9sJJ0bulPqGDs7FlXImrpSLda2jx/X1tYiOcGHuHHe8PGwn1ND6gcEhzqRWcOB0wQ21YPY2pqyc582iaLcx9wWTDA1zKquSnadzqLzUPHo83NOBB+b7E+hqq1RRKJMJxBVf4JNzWaOdkKoqKsz3cWbj7EBcbCwUfs5+yRB7cor4JDmbpm551M1cX5eN4QHcE+ilkBmNIBdg5y5U82ZKGqVNctNXPU1NHvb35ZEAf4U44dd0tLM5O5VDVWUIyN+7lc5ubAoIw9bwzkZ2ZVyt49958eS2yDsLjTW1ecojjPUu/rc94qh7aICPq5LZfj6dQZk8ZTrfehab3OYyXf+nBaMovCYpovAS+bnR2dFHYe5F8nNqyMuu4fLF1htu19JSx9PXHr+gGfgHOzJ9glo13A6CIHChupkzcSWcjSul5RtealaWhsyJdWP+XHfs7SZWZ2RFzVUOnC7kVFLZaEektpY688JncfcCb1wcFGcEejMIgkBOxWV2nsklqeDCaETV2daC++f5syDIBQ0l1oEJgkD2hct8ei6blPLa0eNRbg48OicIHwfFW1EMDg2zL6+Ej5KyaOiUO7Gb6enycLg/9wUpZkg2yF/bmfMXeCsljbJmubg11NLi0cAA1vn7oq9559Muylub+W9mCqdrzwOgoarKA+7ePO0XgoXu7advr7ng/zc/gcpOuX2Kta4hv/aOZIWDx203Klzt7+Lt8jj2X8xHhoC6iir3TPfnV64xP9oBKQqvSYoovER+7rQ0dZGfU0tuZjW5mdW0td5o7GpuYYB/sOPobFLDcag1UgYymUBBYR1n4kpJSCynt08yepuL8xTmz/VgdvQsjI0nzuvt7RvkRFIZ+08V3OAL5j5zKncv8GF2iDNaYxytrLvazpdn8ziUXDxqR2FhrMfaOb7cHeWFoZKjcuVXmvj0bBanCqpGfbkCHKexcU4gYS6K8+W6hmRYysGCUj5MzORyu7z700RXh4fD/bk/yBs9LcWMAZMJAqcqq3gzNY2qESd8Ex1tHg8K5EFfH3Q07lzo5V9t4D+ZySRfvgiArroGG739ecw7EMM7GPYtlcnYX1PMGwWJNPTJRaqLsQW/8Ylm9h14gFV1NfFGyWkSrlYB8g7IR2dGsM4xBJ3v6YAUhdckRRReIr8kBEGg9kITOSMirDDvIpJv+GWpqIDzLGsCQ50ICHHExc0GNTXFtNuPJ4ODQ6Smn+f02RIysqpHi/LV1FQJDpzB/LkehAY7TpgUrCAIFJRfYd/JfOIzqkbd8Y0NdFg624OV87yZanlnqaNbpbOnn32JRew+m0dLpzwlp6OlwfIID+6f54e1uXLXc7G5na3nsjmUXTr6fsyaZsmjc4KY4+mk8DTykFTK4YJyPkjMoK5NPiTbWFebR8L8uT/YR2ECTCqTcbS8grdS06ht7wDAXFeXp0KCuNfbCy0FFPunXq7jXxmJFDTJ07fGWto85RvEes/bn9UIMDA8xPbKXN4tTqVTIm9UCLK05Xd+sfia3353ZXpzNa8Xn6KsU77eKTqGPDdrNnfZeqGmcv3zSBRekxRReIn8kpEMDlOUf5GczGpy0i9Qc6HphtsNDLXxC5xBUPhMAkOdMDZRfJfZWNPe0cu5+DJOnSmhsup6bZWBvjazY2excJ4nLs5TJkz6tbWjl8Pnijh4upCrrfLogooKhPs7smahLwGed+bfdKtIhoY5lVnBF6dyOH9FHpVTVVFhToAz6xYEMGu6ctOijR3dbI/P4ev0otEInIOlKRvnBLLIz0VhthDXGJbKOFJYxnsJmdS1dQDKEWDDMhkHS8vYkprG5U55pG2KgT7PhIawysP9jl+XIAicrDnPfzOTqWqXR9is9PR5PiCUe1w972gOZOdgP++VpLO1PGu0u3KhnQu/8YlmhuHtFffLBBlHLhfxZuk5GvrlwtfF0IrfeMwnzNIREIXXpEUUXiIi12lt7iY74wLZaefJyay+wcxVRQVc3GwICp9JSPhMHCeQOLldai+2cOpMMafPldxQD2ZvZ8ai+Z7Mm+OOqenEsOYYlspIza1m74k8soqujwGytzFl9QIfFka7o6ejGBFwMwiCQEbpRb44lUN6ycXR4wGutjy0IIAwj+lK/f1o7+lnR1Ieu5Ly6R6Qd4famBqycU4gywIVZwtxjWGpjCNF5byfkMHF1g5gRICFByg0BSmRStlbVMLbaelc7ZH/TtoZG/F8eBhLXe9sTiOMpAkrS/lfdipXuuUCb4aRCS8FR7BohvMd7Vl9bxebC5PYW12ETJDXat0304fnvCIw1769i7ZB6RBfVGfwYUUS3cPyfY6ymslL7vOwRFsUXpMRUXiJiHw/0mEZ5aVXyEytIjP1PBcqG2+43czCgODwmQSHz8Q3cAba2sqd/adMpFIZufkXOXm6mKSUSiQjkRRVVRVCghxZON+TkCBHNDQmxgzN2iut7DuZz7H4EvoG5MX4ujqaLI52Z/VCH+yslWv/8G2qLjXz+alsTmZWIB1JAzramPHQgkClF+L3DAyyO6WA7Qm5tPfIrQksjfTZEOvPqhBPdBQ8k3JYKuNoUTnvxmeMRsBM9XTYGB7AvQoswh8cHmZXQSHvpWfS2ie3u5hpbsYL4WHMm3n7dVSjzy8dZkdJAW/npI/OgfS2nMJvg6MIm3b7o4IAKjqa+XdeHOeuyC0o9NQ1ecI9hI2zAm/LrR6gQ9LHu+UJfFmTxbAgQ01FhaVms/hn5FpReE02ROElInJztDR1kZl6noyUSnKzahgcuD7QWlNLHR//6YREuhAa4YyZxeR10u/pHSQuoYwTp4pu8AczMtJh3hx3Fs33YoaD4m0NbofevkGOJ5by9Yk86uqvTzgI9p7O6kW+hPo4jKmFRmNbN7tO57I/sZC+ke5MSxN97pvrx8ooT/R1lGds2y8ZYl96MVvjsmnqlEeKTPR1WB/tz9pwb/S0FRsNvBYBey8+fbQGzExPl40RAdwb6KUwwdcrkfBZbh4fZ2bTNSiP+HhNseKFiHAipt95c0G3ZJCP8rP5uCCbvmH5nkXaTue3wZF3bMKa1niRf+aeo7BNftFmqaPPJq9I1jh63XZqs7anhf+WnOFsQznSvkEqH/inKLwmG6LwEhG5dSSDwxTk1pKRUkV6ciVNjZ033O7iZk1opAth0S7YO0xeu4qLdS2cPF3MqTMltLZdT0W6Ok9l0UIv5sTMmhADzGUygayii3x9PI/UvOpR+wfbqSasXujD4hiPMU1DdvcNsDehkF1n8mgdKcTX19FiTaw3987xxcxIebWCkuFhDmWV8vHZLOrb5Kk0I11tHor2474IHwwULP6GpTIOF5bxbnz6aBekub4uj0cFcY+/J1oKMmLtGhjg46wctuXk0jcypzHIdhovRUbgZ3Pn9hotfb28nZvOjpIChmTyqOUyJ1deCo7AztD4tp9XJggcvVjG6/kJXOrpAGCmkTmv+MUSY+14258NWS21HK3K4dWw1aLwmmyIwktE5M4QBIHa6mbSkypIS6qkvOTKDbdbTzMlLNqF8GhXZnlMm1AmpjeLVCojM7uG4ycLSU0/P5pO09bSICbKhcWLvPFws5kQAvNyYwf7TuVz5FzxqDO+no4mS2d7smaRL9Zj2A0pGRrmeEY5n5/IpraxDZA70t8V7s5DCwKYZmmstHMPSaUcz63gozOZXGyWRwMNtLW4P8qHByP9MFKwDcaQVMrB/DLeT8jgSodcgFkZ6vNkdBB3+3qgqaB0a2tvH+9nZLIjvwDJyKDx2Y4zeDEyHBeLO4/E1nV18N/MFA5WlQHXPcCe9Q/FTOf2rVcGpcN8UZnLlqKU0Q7I8CnT+b3fbNxMby+yJhbXT1JE4SUioljaWntIT6okLamC3KxqhiTS0dtMTPUIiXQhIsYVnwCHCVMzdSu0d/Ry+kwJx04W3uCSb2drypKF3syf6zEhvMH6BiQcTyhlz/Hc0TSkqooKkYGO3LPYH59ZYycUZTKBxIILbDueSXH1dUf6OQHObFgUiIudpdLOLZXJOJlfyYenM6i+Khd/elqa3B/pw0PRfhjrKXYepWRYyv68Et5PyKCxSx4ltTY25KnoYJb7zFJY12V9VzdbUtPYW1yCTBBQAe6a5cqmiDDsjI3v+PmLm6/yr4wkki7VAqCvockTvoFs9PJHV+P2o6edg/28U5zGZxXZSGRSVIC7Z3jyoncUU/Vu7TtYFF6TFFF4iYgoj77eQbIzLpCaUEFGSiW9PYOjt+nqaREcPpOImFkEhDqiM4apMEUgCAIlpVc4eqKQ+IRyBkZqmtTVVQkPncldi33w9bEf9wifTCaQUVDL7mM5ZBZc7z50drBk7WI/5oa7KrX4/ZsIgkBu5WU+O55FanHt6PEwj+lsWByE70zliUGZTOBMYRUfnM6gqkFug6GjqcF9Ed6si/HHVF+xYnlwaJg9OUV8kJhJS4+8ON7O1IinY0NZ4nnn3YnXqG5r43/JqRyvqARAXVWVtV6ePBMagoX+nad0Uy5f5LW0RIpb5KPILHT12BQQxtpZd2ZBcamng//kJ3CothQALTV1Hp0VxJPuIehr3Fw6WBRekxRReN06giDQ09lPe0s3HW29dLX30tvVT0/XAL09A/R29dPXM8jggITBgWEG+yUMDgwhGRxGJpUhHZYilcqQSmUIMgFUVFBRARUVFVRUVFBVU0FDQx0NTTXUNdTQ0FRHU1MdLR1NtHU00dLVRFtHAx1dLfQMtNEz1EZPXwc9Q230DXUwMNbFyEQPLR2NCZH6EZEzNCSlMLeWlIQKUhPLafuGfYOWljqBYTOJnD2LkHBndHQnlwjr7R3kXEIZR48XUPGN7k/rqcYsWeTNwvmemE4AD7Say63sOZbL8cRSBkc6N82M9Vi10IeV87wxMlBs9OfHqLzUzGfHMzmdVTnqSO/laM3Di4OI8HJQqgCLK77AB6fTKb8iH9mjranOfeE+rI9VvADrlwyxO6uQj5KzaOuVdw86WZrx7OxQ5s268+7EaxQ3XuU/Sckk18rFtY6GOg/7+/NYUAAGd+BSD/I6rSPnK/hPZhJ1XfJ6TkdjU34XEsXc6bdfpwWQ31LPP3LPkdV0CQAzbV1+7RXFPU7ePynsROE1SRGF13fp6xmk/mILDZdaaWnopKmhg+aGDprrO2i92kVHWw/SYdl4L/Mn0dBUx9BYF0MTPYzN9TEx08fEwgBjc31MzQ0wtTTE3MoIMytDdCZAgfQvCZlMoLzkMslxZSTFlXO1oWP0Nk0tdQJDnOQiLMIZ3Um2N+cvXOXI8QLOnC0ZHVM0GgVb4oOv9/hHwTq7+zl4ppCvT+TT0i4XwFqa6iyOcWftYr8xtaO43NzB5yeyOZxSgmRYnpaeOc2cDYuDmBvgrLDI0LcRBIGE0mo+OJVBySV5NEeZAqx3UMKOjHw+Sc6ma8R3zG2qJc/PCSNypuI8z9LrLvF6YhIFDfILABMdbZ4MDuZBX+87dsGXSKXsKCngrZw02kcsKIKmTuP3odH4WE297ecVBIFTlyr5Z14ctd3ytLizkTm/959NtLXjDz5OFF6TlF+y8Opo7aGmvIGaigbqzjdx5WILV2pbaG/uvqnH6xvqYGSmh5GJPvpGOugZaKNvoI2eoQ46elry6JSOBlra8h8NTXXU1NVQU1dFTU0VNXVVVFBBQEAQBBDkX8gymYxhiZShISlDkmGGh6RIBuWRs4F+CQN98n/7+yT0dQ/Q09VPX4/8356ufrra+xgekv70C/gGuvpamE8xwnKqMRbWxlhYm2BlLf/vKdNMMbMyRFVJXwC/dARB4HxFI0lxpSSeLaP+ctvobRqaagSGOhE1223SibD+AQnxCeUcPpZPWXnD6HEbaxOWLvZm0XxPjMZ5LubQsJSzqRV8eTSHyprrUwsi/Gdw79IAfN2mjVnUuKWjhx2nc9kbXzBqRWFracz6hYEsDp2FpoK6A7+NIAgkldXw3sn0GwTYveHerI8JwMxAsXvU1T/AttRcPkvLpU8if53+dtY8PzecwOnTFHIOQRA4XXWe/yalcKFN/vdkbWjApvAwlrvNumMx2zU4yHt5GXxamMugVB45XerkwsvBkXfUASmRStlRlctbhcl0jBTgR0514Pd+s3E1+W4doCi8Jim/FOHV3dlHWV4dpbm1VBZdpraigfaWnh+8v5GpHlPtzLC0NsbS2gSLqcZYTDXCfIoRxub6GJnqT5i5dt9GEAQG+iR0tffS1dFHZ1sv7S09dLR209HSQ1tLN+3N3bRe7aK1qZP+XslPPqe6hhpWNiZMsTVliq0pNtPNsZluwTQHc6xsTFAboxqZnzuCIFB9/iqJZ0tJOlfG5W8Ur18TYTFzPQiJdJ5Uhq3nLzRx+Fg+Z86V0DcSBdPQUCM60oVlS33HvSNSEATyyy6z60gOKTkXRu0oXBwsue+uAGaHOKM+Rr/jXb0DfHUun11ncunslX/5Wpno8+CCAFZGeqKtpZx9/z4Bdq0GbH1MACb6ik3DtvX28XFSNjsz8xkcifSFO9qzaW4YHjZTFHKOYZmMfcUlvJmSNuqC72xuxktRkcTOuPN0bn1PF//NTGFfRQkC8g7Ihzx8ec4/BGPt23+/Ogf72VKcyvaKbIZkMlRVVFjr6M0L3lFY6FxP2YvCa5LycxVeHa095KVWUZhRTWluLXXnm75zHxUVFabameLgMhX7mVZMm2GBtb05NtPN0Tccu1qP8aavZ5DWq500N3bQ3NBJc30HTQ0dNF1p5+qVdpobOn40taqmrsoUW1PsZlhi62jJtBmW2DnK/1tXf/JEaCYagiBQc76JxHOlJJ4tvUGEaetoEBrpQsw8dwJCnCZNd2R/v4Rz8WUcOpp/w5zIGQ4WLF/qy9zZbujqju/vTF19G7uP5XIsvmS0DszK3IC1i/25a47nmPmB9Q1I2J9YxBensmnukHuBmRro8sB8f1bHKt4Q9RrfJ8B0tTR4INKXddH+CrehuNrVw3sJGezNKWZ4xD9rvpsTz80Jw9Hi9uYcfpuBoSE+z8vn/YxMOkfSnIHTbHg5OhJf6zv3ACttaeK19MTRDkhDTS2eCwjlIQ8ftNRu/wK9truNf+XFc6KuApB3Vj7tEcbDroFoqamLwmuy8nMRXhLJMCXZteSmVJKbXEX1Nxy3r2Ez3Rw3P3tcfexwnGWD/UwrtCdZEfN4IB2W0nK1i8ZLbTReaqWhrk2elq1pof5iyw0O7t/G0toYOycr7GdaYT9zysi/VmhNomjNROCaCIs/U0z86RIa6ztGbzMw1CY8ehaxCzzw8rVHTW1ypIQrKhs4dDSfs3GlDA7KBY6uribz53iwbKkPDtPH1x2/o6uP/acK2HMij44ueT2Pvq4WK+Z5sWaRHxZjNMNSMjTMoZQStp/Ior5lxBBVT5v75vqxdo4PBrqKFULXEASBxNIa3j2ZRtll+YWrvrYmD0b58VC0n8KNWC+1dfB2XDqHC8sQBLndxgofN34VG4KNsWK+mzoHBvggI4vPcnNHo2wLZjrxYlQEM0zvvK4voa6G19ISKG+Td43aGhjx25BIlji63FF0LbPpEn/PPjPqgG+rb8zvfGMJN56KsbGxKLwmG5NZePX2DJAVX07a6RKyEsu/kzKbMcsa3zAn3P2nM8vXHmOziTHs9+eETCaj9WoXl6ubuVTdzKULTVyqbqLuQtMP1sqpqqpgbW+Og+sUHFym4uAyFUc3a8ynGIldmDeBIAhUlNYTd7qYhDMlN3RHmprrEz3HnZh57ri6TwxD05+iu3uAk2eKOXQkj0vfqG/z9rJl+VJfIsPHLs33fQxKhjiRWMauI9mjfmDqaqosiJzF/csCcZimmKjMTzE8LOVERjmfHsuk7qp8HXo6mqyd7cv9c/0wVlJHpiDIuyDfPZFG5YgNhYGOFutj/Hkg0lfhkbeqphbePJvK2TL5nEMNNTXuDfTkiahgzBRU8N/Q3c2bKansKy5FJgioqaiw1suTZ8NC79iCQiqTsbeihP9kJtPUJ49U+lpN5Y9hMfhPsbnt55UJAvtrink9L56r/fK/eR89cw7c/bgovCYbk014DQ9JyThXxtkDOWQlVtxQRG5iYYB/hDN+ETPxDZspCq1xpruzj4tVV6k7f5XaSvm/NRWNdLX3fu/9DY11cXS3wcnNBid3a2Z6TGOKremkEA/jhVQqozi/jrjTxSSdK6W7a2D0NutpJsxe4MmchV7Y2I7t0OjbQRAEcvMucvBIHilpVchk8o96M1N97lriw12LvTEdoyjT9yGTCSTnXGDnoSwKK65H1MP8ZvDQikC8XRVTGP5TSGUyzmRX8smRDKrr5elnHS0N1sR68+D8AEwNldOwcM0H7N2TaaNGrMZ62jwcG8i9Ed4KH8ZdcKmBzWdSSK+R2yzoamqwPtSPR8L90ddWTLStsrmF15OSibtQLT+HhgYbA/15NDAAPc07E5S9QxI+ys/mg/xM+oflEd3FM5z5XWjUHRXg9w1L+LAkgw9K0+nr6aHu8b+KwmuyMVmEV+OlNk7syeTU3uwbIinTHCwIm+dO2DwPZnraiJ13ExxBEGhv6aGmQt5NWlveyIXyeurONyGTfreOzNBYl5me03D2nIazpy3OXraYTuIB1MpkaEhKTsYF4k4Vk5pYcUMKeJaHDXMWehEzzx3Dce4kvBmamro4cryAI8cLaB8R6urqqsREubJyuT9urndel3MnFFXWs+tQNglZVaOF+J4u1jy4PJBwP8cxscuQyQQS8s/zyZEMyuvkqUAtTXVWR3vz0MIAzJU0D1Iqk3Eir5L3T6WPjiIyM9DlsblBrA71RPMOLRu+TdqFOv53JpmiK/J6MxNdHZ6ICuK+IC+FnSvj0iX+nXDdgsJCT4/nw0NZ7elxRyapAE29PbyRlcJX5cXIBAFNVTUe9vLjV37BGGndfpq4obeLY5WFPOoXKQqvycZEFl4ymYzMuHIO70glL+U817bexFyfuSsDiF3mg4PL7XuniEwcJIND1FZe5XzJFS6UXqGq+Ao1FQ3fa4thaW2Mi7dchLl62THTc5pYM/Yt+vskpCZWcPZEIbmZ1aPRI3V1VQLDZjJ3oRfBETMnbGfuNYaGpCQkVbD/UA6l36jbdHWeysrlfsREuY7ra7jU0M7Ow9kciy9haKRmyGGaGQ8sC2RexNg44guCQEpRDR8eSqO0Vi5OtDTUuDvai3ULA7EwVk6UcFgq42hOGe+dSh8dxj3F2IDH5wWzPMhNYaOBYMQeovQ8/zuTQm2rXOxZGxvy7OxQ7vJyVYjXmSAIHK+s4vWEJC51yk1SnczMeDlaMR2Q5a3N/D01nqTLcoNXU20dXggM4z63nzZK/SHE4vpJykQUXpLBIc7sz2Xf1kSu1LSMHveLmMmitcGEzHZDfZJ0cYncPhLJMLUVjVQWXaKy6DKVhZeoO9/Etz8C1NRVmeFqzSxfO1x97HDzm46ltbGYohyhrbWHuFPFnD1eyPlvuMrrG2gTNceNeYu8cPOynfDvV0VlA/sP5XIuvoyhEUFuYqzL0sXeLFvqi7nZ+EVCWzt6+epYLvtO5tPbL681tTIz4N6l/iyb44XOGFwYCIJAWkktHx1Kp6ha7pumqa7GiihPNiwKxNJEOe/P0LCU/ZnFfHgqg6YueXTS1syIpxaEsshPcaOBQC729uWV8E5cGk3d8nM5W5mzaW44Mc6KcfuXSKXszC/g7dR0Ogbkqftg22m8EhONx5TbG2Z9DUEQiK+r4W+p8VzokKdrnUxM+UNoDDF2t75+UXhNUiaS8BoeknJqbza73j1LS6P8ikPPQJtF9wazeG0wU+3GpohVZOLS1zNIVfFlKgrqqCi8RHlBHW1N3y3iN59ihEeAA+4B0/EIcMDOyVJMQwO11U2cPV7I2ZPFtDR1jR63sTVl/hJv5izywtLKaBxX+NO0d/Ry9FgBB4/m0TLSWKCmJk9Drl4ZgOs4RsF7+gY5cLqA3UdzaR2xgDAy0GbNIj9WL/TBUMFeWN+HIAhklNbx0eE0Cs7Lo4Qa6mqsjPLk4cVBSouADUiG2ZNWyMdnM2nvGRkNNMWMZxeHE+M+Q6HCvl8yxBcZ+XyclDXqgh9gb8NL8yPxtlXM/ncNDPB+RibbcvKQSOVCf7nbLF6MjMDa8M5E7JBUypdlhfwvK5W2EQf8SNvp/CksBmdT85tfoyi8JicTQXgJgkBmfDkfvXaEK7XyCJeZlSGrNkaxYHWQ6AUl8oMIgkBTfQdleRcpL6ijLPciF8rqv+M7pm+kg0eAA56BDngGzWDGLOtJY7ugDKRSGYV5FzlzrJCkuFIG+uX1YCoq4Bs4gwVLfQiLcpnQKdzhYSnJqVXsO5BDUcnl0ePubjasXhlAZLjzuO3xoGSYE4ml7DiUxeXGDgB0tTVYMc+be5f6Y26i/CYBQRDIKr/ER4fSyKu6AsgjYHdHe7FhUSDmShJgfYMSdiblszUum+5+uSjysJvCc4vDCXG2U+i5OvoG+Cgpky8y8kfHLc13c2LT3AgczE0Uco4rnV28kZzCwdIyALTU1XjY358nggPveAZk5+AA7+Sks7UolyGZDDUVFe538+aFwDBMdX66FlMUXjfJO++8w+uvv05jYyPe3t5s2bKFoKCg771vTEwMCQkJ3zm+ePFijh49CsCGDRv47LPPbrh9wYIFnDhx4qbWM97C69KFJj78x2Gyk+ST5Y3N9Ln3qdksWhuEppIcmkV+3gz0SSgvqKMku4bi7FrK8i8y2H+j15iuvhbu/g54Bc/AM2gGTm7Wv1j3/f4+CUnnSjl1tIDCvIujx/X0tYid58G8Jd4T3pqisqqRvQdyOBdfyvCI6La0MGDlcn+WLPTGwEA5Xlc/hVQmIy69ku37Mzl/UT6QWlNDjSUxHty/LAAbK2Olr+GaAPvgYOpoBExeA+bN+kWBSivC7+obYFt8Dl8k5jIwYkQbNNOW5xdH4GmvGGf6azR0drPlXCoH8ksRBFBTVeGeAC9+FROM+R3aQ1yjuPEq/4hPIPOSXOSb6urwfFgYa70977gAv7azndfSEjlZUwWAgaYWzweEss7DF80fqZUThddNsHv3btatW8f7779PcHAwmzdvZs+ePVRUVGBp+d05TG1tbUgk172pWltb8fb25uOPP2bDhg2AXHhdvXqVrVu3jt5PS0sLE5ObU/vjJbz6ewf5YstpDm5PQTosQ11DjRUbIrj3qdno6Y/Ph6TIz5PhISkXSuspyqqmKLOa4uwa+noGb7iPrr4WHoEz8A6egW/YTKa7TJnQQkNZNFxp5/SxAk4fLeDqSLofwG66OQvu8mHuIm9MTJXzRa0I2tp6OHgkj0NH8uno7ANAW1uDhfM8WbXSn2k242OrIQgCaXk1bN+fMWpFoaaqwpwwV9atDGKG7c2nl+5kDZlldXxwMJXCC/IasGtdkOsXBSrNhqKlq5ePz2TyVVohwyOdy7M9HHl2cTiOUxRbPlJ5tYU3TieTUFkDyC0oHgn3Z0OYP3pad+43JggCZ85f4N8JSdS0y4v8Hc1M+V10FDEKKMBPvVLH/6XEUdYqF+kzjEz4Q1gMs+2/P1UrCq+bIDg4mMDAQN5++21A3rVna2vLs88+y+9+97uffPzmzZv5f//v/9HQ0ICenvzDb8OGDXR0dHDgwIHbWtN4CK/zpVd47fkd1F+Ue9AExc7i8VeWYjNd+R8+IiJSqYya8gYKMy5QmFlNcVYNvd0DN9zHxFwfn7CZ+IY54RPmhMUU4/FZ7DghkwkU5NZy6kg+yXFlo87yamqqhEa5sGiZL35BMyZsulYiGeZsXClf78+mukb+JaaiAmEhM1mzKhAvj7Ebfv1t8ssus31/Bun5taPHYoJmsn5VMC4Od1a8fTMIgkB6yUU+OJRKcbW82UJbU521s315aGEAxkqqQ7vS1sl7J9M5kl2GTBBQVVHhroBZ/GphKFNNFPvdk1lzif+cShq1oDDX1+WZ2FBW+XmgroDf2SGplF0FhWxJTaO9X/7ZEW5vz+9jo3CxuLOJC1KZjD3lxfwnM5mWfvnFQ5TtdP5feCxOJjcKVVF4/QQSiQRdXV2+/vprVqxYMXp8/fr1dHR0cPDgwZ98Dk9PT0JDQ/nwww9Hj23YsIEDBw6gqamJiYkJs2fP5m9/+xtmZt9/JTE4OMjg4PWr/a6uLmxtbcdEeAmCwJEdaXz42hGGh6RYTDXimVfvJijGVannFRH5MaRSGdVl9RRkXKAg7QJFWdXfSU3aOlriH+mMX/hMPINmoD1G8/omAr29gyScLuHE4TzKS66MHrewMmTBUh8W3uWL5ZSJWZAvCAK5+Rf5el826ZkXRo+7OE9hzd2BREe6jJsrfkX1VT7bl0F8ZtXosTC/GWy4OxgPZ+X7lAmCQGpxLR8cTB21odDT1uT+eX7cP89PaaOILjS28vbxVM4WnQdGnOkjvHl0TpBCB3ELgsCJkko2n0mhrk0evXW0MOXF+ZEK64DsGhjgvfRMtuXmMSSVoqqiwj2eHmyKCMNc784iw92SQd7OSWdrYS4SmRQ1FRUe8vDlhcCwUf8vUXj9BPX19djY2JCamkpoaOjo8ZdffpmEhAQyMjJ+9PGZmZkEBweTkZFxQ03Yl19+ia6uLg4ODly4cIHf//736Ovrk5aWhtr35Ib/8pe/8Oqrr37nuLI3rqern81/+JqUk8UAhMxx49evrcHAeOKbOYr8spBIhinPryMvpYq8lCqqii+P+mABqGuo4RHggH+UMwGRLtjPtPrFpCVrzl/l+KE8zp4oHHXJV1EB/2BHFi/3IyRyfMf7/Bh1da18vT+bk2eKkVwbfm1pyN3L/VmyyBs9vfFp4qm+1ML2/RmcSalANvL1Fuhpx4ZVofi6Kd8NXxAEkgqqef9gKpWX5NFBA10tHpwfwL1zFT8S6BqFFxt482gKWeflzvR6WppsiPXnoWg/dBWQFryGZFjKl1kFvBufQedIdCpo+jReXhiFu7ViIox1HR28npjM8Qp5rbKepiZPhQTxsL8fWndo8lrb2c7fUxM4XSsXqibaOvw6MJz73Lzo6+kRhdePcafC64knniAtLY3CwsIfvV91dTWOjo6cOXOGOXPmfOf28Yh41VQ08NenttN4uQ11DTU2vryY5evCfzFfViKTm+6OPvLTz5ObXEVuciVN3xhQDfIO3IBIFwKjXfEJd/pF1ChKBodJji/j+KE8CnJqR48bm+ixYKk3i1f4M9VGMV1liqajo4+DR/I4eDiX9g55KkdPV5Oli31YtTIAC/Px8QO71NDO9v0ZnEgqQzpSC+U9y4ZHVoUS4Gmn9M9LmUwgLq+KDw6mjY4iMtbXYcOiQFbHeqOt4JFAMFL7VlnH5iPJlF+Ru++b6uvy5PxgVoV4KtSAtqt/gA+Tsvg8PW+0A3KplysvzA3HWkFDuLMvX+HvcfEUNcojiNOMDHk5OopFzjPveP+SL1/kr8nnqGyX742rqTkvegcyf5aHKLx+iDtJNfb29mJtbc1f//pXnn/++Z88l4WFBX/729944oknfvK+yg5VluVf5E8bP6W3e4Ap00z53eb7cfGyVfh5RETGAkEQuFLbQk5SJTlJlRRmXLhhNI+6hhqegQ4ExrgSHDsLa/uff93ilUttnDicx+mjBbS1Xh/YHRDiyJKV/oSEO6OmPvFqwSSSYU6fLWHPviwu1sm/zNTVVZkT68ba1UE4TL+zWp3bpaGpky8OZnEkrnjUDd/DeSqPrA4j2Nte6QJMKpNxOquCDw+lUXe1AwALYz02Lg1heYSHUtz4ZTKBUwWVvH08lboW+TltzYx4bkk4872dFfqa6zu62Hw2hcMF5YDcYmN9qB+PRwYqZAakTBA4WFrGfxKTudoj/3sInGbDH2bH4GF1ZxG2YZmMnaUF/Dczhc7BAWT9A1x68U+i8PoxgoODCQoKYsuWLYC8uN7Ozo5nnnnmR4vrt23bxpNPPsmVK1d+sHbrGpcvX8bOzo4DBw6wbNmyn1yTMoVXUVY1f358K/29Etz8pvOXD9ZjMAnmxImI3CyDA0MUZ1WTnVRJVnz5qA/dNaY5WBAU60rwbDfc/ex/1pYVw8NS0pOrOHYgh+z06/VUZhYGLFrmy8JlvhPSnFUmE8jIqmb31xkUFF4aPR4cNIN71wTj7Tk+rv7Nbd3sOJTNgdOFSIbkqVH3mVN5ZHUoIT7Tlb6mYamMo2mlfHQojcY2uUmxjbkRjy8PZWGwYsb0fJshqZR96cW8fyqd1m55NNLD1ooX7ook0EmxF+wl9Vf514lEsmpH7CH0dHh2diir/TwVUoDfJxni46xsPszMYmB4GBVglYc7v44Mx1L/zjzU2gf6+V9WCqfKS8h4fJMovH6M3bt3s379ej744AOCgoLYvHkzX331FeXl5VhZWbFu3TpsbGx47bXXbnhcZGQkNjY2fPnllzcc7+np4dVXX2XVqlVMmTKFCxcu8PLLL9Pd3U1RURFaN2HupizhlZtSyV+f2s7gwBDeIY785f0NaOv+cgqSRX6ZXK5pJiu+nIy4Moqza24wctU30iEgyoXg2FkERrugZ6B8F/Pxov5yG8cP5nLiSD6d7fIvUFVVFYIjnFm60h//4LEZJH2rlJbXs3tPBkkplaPDr11dpnLvmmAiwmaOSxdnS3vPiAArYHCkNm2W4xQeWRNKmK9iisR/DMnQMPsSi9h6NIPWLvlezrA246kVYcT4Oinl/H2DEj6Lz2FbXA79EnlEOXKWA88vicDZWnFRZEEQOFdezX9OJY3OgHS0MOU3C6KImqkYcVvf1c1/EpM4VCaPsOlpaPBUaLBC6r+utrYyxdxcFF4/xdtvvz1qoOrj48Nbb71FcHAwIDdMnT59Otu2bRu9f0VFBa6urpw6dYp58+bd8Fz9/f2sWLGCvLw8Ojo6sLa2Zv78+fzf//0fVjcZ0lSG8CrMuMAfN37KkGSYwGhX/rDlwQntgC0iogx6u/vJTa4i41wZWQnldI3UE4E8Jekd4kjYPHdCZrthajkx5qQqGolkmJSEco7uy7nBnHWKtTFL7w5g4V0+GE7AKPjlK23s2ZvF8VNFo3MhbaxNuHdNEPPneozLYO62jl52HMpi/+kCBkbsPVwdrXh0TRihYyDA+geH2H02j+0nsujqk9cJu0234plVkQTNUqwj/TVau3t5/1QGe9OKGJbJUFGB5YHuPL0wDCsFOu8PSaV8lV3E23FpdPTJC/DDHO347cJonK0UI/Ryr9Tz97h4ChrkFh62Rkb8PjaauU6Ot713YlfjJEXRG3e5upkX1r5DT2c/oXPceOXNB9AYhw8pEZGJhFQqoyzvIhlxZWScLeVSdfPobSoqKrj62BI234OweR5Y/0xnktbVNHP0QC6njxXQM+KbpqmlTuw8D+5aHYCzq/ItFG6VtvZeDhzK4cChPLp75Gs2M9Vnzd0B3LXEB13dse+EbOvsY9fhbPaezBsVYO4zp7JxzdjUgHX3DfDFqRx2ns6lf1AejQqaZcfTd0fg7qBYR/prXGxu561jKZwukFtvaGuo81C0Hw/PDlBIXdY1uvoH+CAxk8/T80ftIdb4e/Ds7DDM9O/8AuF6/VcSV3vkszzD7Oz44+wYnC1uXeCJwmuSosiN6+nq5/lVW6i/2MosXzte++xxMdIlIvI9XK5uJvV0MalnSqgouHTDbTNcpxI234Pw+R4/S6uKgYEh4k4Vc/jrLM5XNo4ed3W3YdnqQKLmuI1LROnH6O+XcOR4AV/tzRwdzK2vr8XKZX7cvTwA43GwxWnr7GPHwUz2nbqegvRwnsqj94QR6Kl8AdbW1cenRzPYm1A42gQw238mv1oRzvSpypkQUFDbwBuHE8mrkbv/m+jr8NSCUFaFeKDxI6N1bpW6tg7+eyqJU6VyCwd9LU2eiApiXagvmneYHgTolUj4ICOLj7OykUjlHl33+3jzfHgoxjo3X4IgCq9JiqI2TiaT8eqTn5EZX46ljQlv7n0GY1PlD4IVEZnstDR2knamhNTTJRRmViOTXq8Ls3EwJ2KBJ5ELvZgxa+rPSoQJgkBZ8WUO7ski6dz1GYtGJrosXu7H0rsDsJhgKViJZJgzcaV8+VUGly63AaClpc6SRd6sXRWE5Tist7Wjly8OZrH/VMFoEb63qw2P3hOGv4dyUoDfpKG1iw8PpnE0rXTUkX5puBuPLwtjiqnirTkEQeBc0QU2H03mYrO8Lmu6pQmblkQQ63H7abvvI7v2Mv88kUBJvdzqYpqJIS/Oi2SB+53bQwBc6ujkn/EJnKwa8ejS0WZTeDj3enveVPOCKLwmKYrauAOfJfPB3w+jqaXOf7/8FU7uNgpcpYjIL4Ou9l4y4spIOVVMTlIlwyP1RQDW9mZELvIiapEXDq4/LxHW3trDsYO5HN2fQ0uzvINOVU2FyJhZrLgnCDev8eks/CGkUhnJqVXs3J1OZZU8aqeursr8uR7cf08INuPgYdbS3sMXB7M4cLoAycjvjZ+7LY+vDcfLVfmfxxeutPDegRTi8+QdrZrqaqyd48uGRYEYKWEM0ZBUyt60It47lU57Tz8A/jNseGl5FO62ikt5ymQChwpK+d+ZFJq65elBf3sbXlkUrTAD1tSLdfztXByVLXJbk1kWFvxpTixBtj9uoCsKr0mKIjbu6pV2nlzyBgN9Ep7+ywqW3h/60w8SERH5UXp7BsiKLyf5RBFZCeVIRup5QG5TEbXYi6gl3tg7KX++31ghHZaRmljBwT2ZNxTjz3Sdyop7goie6z6h0pCCIJCTW8uOL9PJL6wD5N2bMVGuPHhf6Lh4gTW3dfP5gUwOnikaTQGG+EznsbXhzHJUTg3WNym6UM/b+5LJqZDbNBjoarFhURBr5/goxYS1Z2CQT89l83l8DoMjr3eJnyvPLQlX6AzIPskQnyRn8WlKDgNDw6iowN2+HmyaG4a5/p0Pjh+WydiZX8CbKal0DsibF5a6uvDbmCimGnx/5FAUXpOUO904QRD4yxPbyIwvxyPAgX998TiqSvB3ERH5JdPfO0hGXBlJxwvJSqhgSHJdhE13nkLUEm+il3j/rArzq6uucnBPJmdPFo2KThNTPZas9Gfp3QGYmk2sUobiksvs+DL9hpmQEWEzefC+UFycp475ehpbuti2N52j8SWjTvhRgU48tjYMRzvlCsJrcyC3fJ3E+StybzsrE32eWB7GkjA3pXiANbZ389bxFI5klwGgpa7Gg9F+bJyjGGPUazR0dvPG6WSOFI7YQ2hp8qQC67/a+vr5X3IKXxYUIgA6Guo8FRLMxgD/79hPiMJrknKnG5dwtIB/vrATdQ013j20CVtHSyWsUkRE5Bq9PQNknC0l4Vghuck3piOdPacRs9SHqMXemFlNrPqo26Wzo49jB3M5/HXWaBpSXV2VmPkerLo3BEdn5UdxboXzF67yxa40EpMrRr3AAv0deOj+MDw9lD978dtcbuxg69dpnEwqQyYIqKjA7FAXHrsnDDtr5RTBX0Mqk3E8vZz3D6SMmrDOsDbj2VWRRHgpxwKj9NJV/nMokewL8oibib4OTy8M5e5gxRijXiOvrp5/HIunuF4+HsjO1IjfLowm1mWGQl5XydUm/nr2HDlX5I0EdsZG/CE2hjlOjqP3EYXXJOVONm5IMsyj81+nqb6DB5+dywPPzvvpB4mIiCiM7s4+Uk+XkHC0gIK086PDvFVUVPAOcWT2cl/C5nv8LOZHDg9LSY4r58BXGZQWXR497u0/nbvvDSY43HlCmbJerGth5+4MzpwrGd0XXx971j0Qho+X8ovev03t5VY+2ZPK2TT5IGc1VRUWx3jwyOoQrMyVK9IHh4bZcy6fT49mjHqA+TlP4/k1UUqxoBAEgfiSat44nDRagO80xYzfLI8m1MVeYee5Vv/1xpkUmkfqv8Id7XllcTSOFncefRYEgUNl5fwrPpGmXvnzx85w4A+zY5huYiIKr8nKnWzcyT2ZbP7DXkwsDNh69reidYSIyDjS0dpD0vFC4o/kU5p7vT5KU0udkDluzF7uh3+EM+oak39sUXnJFfbvziDhbAkyqfwrwcbWlLvvDWHuYi90dCbOlIz6hg527k7n5Omi0c5NL09b1j0Qhp+P8m0fvk1VbRMf7U4hOacaAA11Ne6e781DK4MxVbKZbXffAFuPZfLlmeuDqucHufCrleFMszBW+PmGpFL2pBby3sl0OkeMUaPcHHhxWRQOloqL9vUOSvggMZNtqbkMSaWoq6pyf7A3T8eEYKhz5xc9PRIJ76alszU7lyGZDA01NR4PCuD+Wa6ic/1k5HaFl3RYyqML/kPjpTYef2UpKx+OVOIqRUREboXGS23EHcnn3IFcLtdcN2s1NNEjeok3c5b74ew1bUJ1Ct4OTVc7ObQni6MHcujtkUdSDAx1WLrSn2WrAzGzULydwe3SeLWTXV9lcPxk4agbvoe7DesfCMffT/mzF79NUWU9H+xKJrdE7iOnq63B2iX+3HdXAPpKNoZtbO3ivQOpHEsvRRBAXU2Ve2b7sHFJsFI6IDt7B/jgdDpfJhcwLJOhrqrK2nBvnpwfgpGe4qLBF1s7+PfJBM6Vy0WtqZ4Oz88JZ5Wfu0Lq2qrb2nj1TBwpF+UXVpYa6qS98LwovCYbtyu8kk4U8o/ndmBorMtn8a+IcxhFRCYggiBwvuQK5w7lkXAkn/YR80+Qd0bOWeHHnBV+WEw1Hr9FKoD+Pgknj+Szf3cGDVfkqSV1dVVi53uy+oFQHCZQ7Wlzcxe79mRy5Fj+qABzn2XN+ociCBhjASYIAllFF3l/VzLlF+S1Sob62qxbGcyqBT5oKbmDtKKuibe+TiKjVC4kDHS1eGRJMGtn+6Cpofhz1zS18cbhJBJK5MLISFebXy0IZU2Yl0Lrv5KrannteALVLXKvN7eplvxxSSy+dnc+nUEQBE5VnefvcfE0trRS9cdXROE12bhd4fX/HttKVkI59z41m/UvLFDiCkVERBSBdFhKbkoV5w7mkXamhMEB+bgXFRUVfMKcmL8qgNC57pO6ZEAqlZGWVMm+XWkUf2MiQFCYE/c8GIan79in9n6IltZudu/J5NDRfCQjXarubjZseHDsI2CCIBCfUcWHu1O4eEUuFizN9Nm4JoxF0e4KFSXfR1pxLW/uSRztgLQ2N+SZuyOZF+islPchreIirx9M4Hyj3DfL0cqUl1fEKLT+a0gqZUdGAe/EpdEzKAFguc8sXpwXiYXBndtP9A8NkVBWziJvL1F4TTZuR3h1d/RxX9j/IR2W8eHxF8VORhGRSUZvzwCpp4o5vS+Hoszq0eN6BtpEL/Fm3qoAXCaYaemtUl5yhT07UkmOKxvtLnRxs2bNg2GER7uipmQxcbO0tfWwa08Gh45cF2Ae7jZseChizGvAhqUyTiSW8slXqVxtlXchTrcx5Yn7IogKdFLqWqQyGUdTS3nvQArNHfJCcs8ZU9l0TzTeToqf4zkslbEvo4i3j6fS0Suv/4p2n8FLy6Kwt1CcAW5rTx9vnElmX24JILefeCYmhAdCfO54zJFYXD9JuZ2Nu1ZU7+AylXcPb1LuAkVERJRKQ10rZ/bncGZ/Dk31HaPH7ZwsmbcqgDnL/TAxnzi1UrfKlUtt7N2Vzqmj+aN+YNbTTFh1Xyjzl3hPmAhfa2sPu75K59DR6ylIL49prB8RYGPJoGSYvSfz2b4/g66R4eDuM6fyqwci8XWzVeq5+weH+OJUNttPZI8O4Z4b4Mwzd0cwzdJY4efr6hvg/VPfqP9SU+WBSF8enxeMgY7iat0KLjXwt6Nxo/YTjham/GFxLKGOt9/hKgqvScrtbNwfN35CTlIl619YwL1PzVbyCkVERMYCmUxGQXo1p/dlk/IN01I1dVWCY2exYE0Q/pHOEyZSdKu0t/Vy6OtMDn2dTXeXfMSMkYkud68N5q5VgegbTAzLjZbWbnbuzrihBszHy45H1keOuQ9YT98gOw5lsftoDgMjvw+hvg786oEoHO3MlXrulo4e3j+YyqHkEmSCgLqaKvfN9WXjkhClFP/XXG3j3wcTSCmvBcBUX5fnl4SzPNBdYTYlMpnAvrwS3jidTHuf/HdwgftMfrswmqlGt35xIwqvScqtbpx0WMrqgL8w0Cfh3cObcHAZe0dmERER5dLb3U/C0QJO7c2m4hu1UhZTjZi/KpD5qwOwtB77eYSKoL9fwsnD+ezdmcbVxk4AdHU1WbLSn7vvC8FsgkT3mlu62bU7nSPHC0YFWFCAA4+sjxxzJ/yW9h627k3n0NkipFIZqioqLI5x59F7wrA0U+77VXWpmTe/TiS9RF6Ab6yvw5PLw1gRpVhD1Gskldbw74MJo/5fHrZW/HZlLN7TFfeed/YP8Pa5NHZmFiATBLk7fXQw68P80VS/+fSjKLwmKbe6cedLr/DsirfQ1ddiT/ZfxPFAPzNkMhkDfRL6uvvp6x6gv2eAIYmU4aFhhiVShiRDSEe8iFRUVVBRUUFFBVTVVNHU0kBDSwNNbQ00tdTR1NZE10AbXQNtNLUmRjpH5Na5WNXIiT1ZnD2QS3dHHyAvyPePdGbR2mCCYlwnpTfY8LCUhDOlfPV5CjUXmgDQ0FRj/hIf1jwQivU05bq63yxXm7r4Ylcqx08WjY7+CQ+dycPrInCcMbb1tZca2nl/VzJx6XITVk0NddYu8eOhFUFKt6BIKaph81cJ1DTIi/9nWJvx67XRhLhPV/i5hoal7EzO5/2T6fSOFMbfFTCLTUsjsDBU3KiqisZm/u/IOXLq5O70081M+OOSWMKdbi61LAqvScqtbtzhL1J5968H8Y905m+fbByDFYooAkEQ6Gzppr6mmfqaZpout9J+tYv25i7am7roaO6is7WHvu4BlPEnpq6pjq6BNnoGOhia6WNoooehqT5GZvIf0ynGmE0xwnSKEWZTjNEz1JnUhd0/RySDQ6SeLuH47gwKM64X5JtaGjB/VSAL7wnCymbyRcEEQSAjpYovP0sedcRXVVUhao4b966LYMbMiTGE/Ep9O9t3pI464auoQGz0LDY8FIHtGIvE4sp63tmRSEHZFQCMDLTZsCqUu+d7o3ELEZtbZXhYyt7EQj48mEbnSEF8uKcDL9wTzfSpin8PWrp6eetYCgcy5YXxuloaPD4vmIei/BT2OgVB4HBhOa+fTKSlR35hM8/Nid8tjMba+Me/k0XhNUm51Y37z292c/ZgrjgiaALT291PddFlLhTVcaHoErVl9dTXNNHXPXDTz6GqpoqeoQ46elpoaKqjoaWOuoY66ppqqI104giCMPojk8oYkgwjGRhGMiBBMjjMYJ+EgZHxILeKlq4mltNMsZpmhqWdGVa28p+pDhZYO1igr2SHbZEf50ptCye+yuT0vmw62+QdaCoqKgRGu7DkvhD8o1wmZS1YUf5Fvvwshay086PHQiOduW9DJK7uNuO4suvU1bWy9fNk4hPlQ5pVVVVYON+TdQ+EY2U5dvM5BUEgOecC7+1IonbEgsLGypinHogkNnimUi+cunoH+OhwOl/F5SOVylBTU+WeWG8euysUQwUaol6j6GIj/9wfR1FdIwD2Fia8cncsYQq0n+geGOTtuDR2ZOQjlcnTj7+KCWFdqN8Pph9F4TVJudWNe/He9yjNreWVzfcTtdh7DFYo8mMIgkBDbQtFKZUUpVVSllVN/Tecyr+JiooKFjYmTHWwYIqdOaZWRhhbGGBiaYiJhSFG5gboGeqga6CDlo6GQj44pVIZ/T0D9HUP0NfdT09nP93tPXS19tLZ1kNXWw8dzd20NXXS1thJa2MHPSPprB/D0FSPqQ6WWDtYMM3JClunKdg6T8HawRLNCdKl9ktgSDJM+tlSjn2ZQf43xIqljQlL7g1m/upAjM0Ul5oZKy5UNvLl9hQSz5aMWlH4Bc3g/ocj8fId2w7DH+L8hSa2bk8iNV3+vmtoqLFsiQ8P3BeKifGd+0TdLMNSGUfiivnkq1RaR2wgPJyn8uy6GDydFW8D8U0uNrazeU8CSQUjhqj62jy1PFwp9V8ymcDh7FI2H02mtVv+GTXH04mXlkdhY2qksPNUXm3hr4fPjqYfHS1M+X9LZxPk8N1uUlF4TVJudeMejPw7rVe72LznGVy8ldtWLPL9dLb2kHWmmJy4EopSq2ht6PjOfSxsTHD0tMXR0xYH92lMc7Ri6nSLSSFKBvsltDZ0cPVyG011rVy93ErTpVYaL7bSUNtM29XOH3ysqqoKVnbm2LtOxd7VmumzbLB3tWaakxUaSnbh/qVzpbaFY7vSObUvm55OeceWuoYaEQs9WXp/KG5+E8e89Ga5dLGF3dtTOHOicHQmpIePHQ88HIlf0IwJ8XpKSq/w8dZE8gvrANDR0WT1ygDuWR2Evp5y666+Sd+AhJ2Hstl5OGu0A3JOqDNP3h+JjZWxUs+dXlLLG7sTqK6XG6I62Zjz0n0xBLgqfhh5d/8g759KZ2dSHlKZgJa6GhvnBLEhNgBtBX3GCILAwfxSXj+VRFuv/G/pLi9XfrMg6gbzVVF4TVJuZeOGJMMs9/wjgiCwK+1Pk/JKdrLS0dxFwoEckg/nUppxHpns+p+BuoYaLn4OeIbNxCN0Jk5edhj9jPemv2eAxost1Nc0c+XCVS5VNXLp/FUuVzXSO2IT8G3U1FWxdZ6Ko4dcjDp52THDcxp6BoqfC/dLZ3BgiMRjhRzdmUZF4fWOyBmuU1n6QCixy3zRnkBDrG+Ghvp2vvo8lVNHrls8uLhZ88AjUQSHKzetdjMIgkBObi0fb0ukolKeDjM00Ob+tSGsWOaH1hg2tzS39fDxVykciSsencO4epEvG+4OwVBfeZYdw8NSvk4o5MODqXSNlDjE+jmxaU00NhaKi0hd43xjC6/tiyfrvPx33MbUkJdXxBDr4aiwc3T2D7D5TAq7swsRBNDX0mTT3HDuDfRCTVVVFF6TlVvZuOaGDtZFv4a6hhqHiv8+7h82P3cEQaAguYJDH8eRcbII2UhHE4CDuw1B8zzxiXLF1X+GOCsT+fvV3tRFXWUDF8sbqKuop7asnovl9T8oyKY5WeHiN52ZPtNx9rXH0cN2UkQFJwtVxZc5sjON+MPXzUv1jXRYsDqQpfeHMsV2YnQO3iwtTV3s2ZnGsf05DI68HieXqTy0MYqQSOWMt7kVBEEgMbmSTz9LpO6SvO7KwtyAh9dFMH+ux5jW3Z2/2MzbXySQWSC3gTDU12bjmlBWzvNGXYkF+B09/Xx4KI298QVIZQKa6mo8tDCADYuC0FGwABUEgVMFlfznUCJXO+RzUKPcHPjdyhimmRkr7DxFVxr56+Fzo+ar7taWvLpsLrb6OqLwmozcivC6XNPMYwv+g56BNl/nvDpGK/zlMdA7yLmvMzj0cTwXy+tHjzv72hNzdxBhi72xUrJ54c8JQRBovtJOdcllLhTKGw4uFF2i6XLbd+6rpq7KDA9bZgXMwDXAgVkBM7CyMxv3L9TJTndHH6f3ZXN4RxqNI4JARUWFkNmzWLYuHO8Qx0n1Hre39bJ3ZxqH9mYx0C93V3dynsIDG6MIi3IZ99cilco4fbaErduTaGqWj/6xtzPj0YejCQ9V7uifb5OeX8OWzxOouSRPA9pZm/DsQ9GE+Sk3VXv+Sgv/3RVHVrk8ImVlasCmNVHMDVC8QO4blPDh6Qy2J+QyLJWNph8fnh2AloKGfUtlMnZnF7H5TArdA4Ooqqhwt4cTf7vnLlF4TTZuRXjVlDfwq2WbMTHXZ2fqn8Zohb8cutt72fvuaY5uTaSnU168qa2rxdy1ISzdGI29i3ILVX9pdLR0U5lXS1X+RSpya6nMv0hnS/d37mdsYYBbkCNuQY64Bzvh6Gkr1ovdJlKpjKyEcg59nkpeStXocfuZVix7KIzZy/wmVfS2s6OPr3emcejrLPr75H5PM2Za8eDGaMKiXBTmeH67SCTDHDicy45daXSNdDW7u9nwxMaYMXXBH5bKOHKuiA93p9AxEn0O8LTjuXUxONlbKO28giBwLreK/+1OoLFN/rft5zyN39wXy0xbxZ+35mob/9h3jowqudibZmbEKytjiXRzUNg5mrt7+ffJRI4UliMdHKDq378Xhddk41aEV0XBJTateRtLGxM+i/vdGK3w58/wkJRDH8ex4/Ujo5YPU6dbcNfGGObfH4aeoViHNBYIgsDVulbKc2soz66hPLuaC0WXGB6p6bmGlo4Gzr7T8Qp3xivcBdcAB9Eg9jaoO3+Vw1+kceZADgMjokXfSIfFa4O568EwzKcovi5HWXR29LF3VxoH99wowNY9FkPoBEhB9vQMsOurDPYeyB5NkYaFOPH4xmjsxzB63ts3yGf7M9h9NJehYSmqKiosne3B4/dGYKpEi5iBwSG2n8zms+OZDA7Jz7sqxounVoQr3H7iWvrx9QMJNHXJuzxjPRz53coYppooThylXrjIgcw8Xr9/pSi8Jhu3JLwKL7Fp9dtYTDVie8Lvx2iFP29KMs7z9su7qC2VGxHOcJ/G/b9ZQugib3EqwARAMjBEVcFFSjMvjP50jfhWXUNTW4NZgTPwjnDBJ8oVZx971JRYw/Jzo6ern9P7sjn0eepoGlJNXZWoxd6s3BDBzDGeT3gndHX2sXdXOge/yqRvRIDNdJ3K+sdjCBzjFN/30dLazWdfpHDsRCEymYCqqgqLF3rx8EMRmJqOXUNOfVMn7+1I5Gya3AFfT0eTh1eHsmaRr1INWBtau3hzTyJnsuXnNdbX4ZlVESwL91B4dLJ3QML7p9LZkZjHsEyGtqY6T84P4aFoPzTUFPMaxeL6Scot1XhVN/PYwv+gb6jDnuy/jM0Cf6YM9A7y0Z+/5thnSYDcl+qR/3c38+4LFQXXBEYQBC5VNVKcfp7C5AoKkytpb+664T66Btp4hjnjG+WKT5Qrdi5Tx/0LdzIglcrIii9n39YkijKvO+N7BDqw6pEogmJdJ83fRldnP3t3prH/q4zRGjBXdxvWPR6D/wSwobhY18JHnyaSkiZP92pra7B2dRBrVwehM4YdpwXll9m8NY6KGvnIJtupJjy3Tvn1X1lldby+K27UfsLdYQq/fWA2btOnKPxcVQ0t/H3vOXKr5RfXjlPM+MOq2QQ43vkFhSi8Jim3snFtTV08EPF3VFVVOFL22rh/eExWzhfW8a8nPuHyeXmHysIHw3n4TysxHMMrThHFIAgCdZUNFCZXUpBcQUFyxXcMYM2mGOEX44ZfrBs+Ua4YT5AhzBOZ8yVX2L81iYRjBaOzQa3tzVi5IZK5K/0nTR1YR3sve75I5dDXWaMpPg9vW9Y/Hou3//TxXRxQUHSJ9z+Ko7yiAQATEz02PBTBkoVeY9YBKZMJHIsv5v1dybSN1LYGedvz/PpYHKaZKe28w8NSvjyXz0eH0ugdkKCiAisiPXl6ZQTGCraZEQSBQ9mlvHEoifYRX65lgW68sDQSM4PbT7GKwmuScisbN9AnYaWPvKh+X95f0RlDc76fC0kHc/j3r7YyLBnGbIoRL77zML5RruO9LBEFIZXKqC6+RH5iOfmJFRSnVyEZGBq9XUVFhZk+dgTO9SBwniczve0mTRRnPGhp7OTwF6kc+zKDnpGibANjXZbeH8Kyh8InjZdge2sPX36ewpF92QxJ5DWDvgEObHgyllnjnEoVBIH4xHI+3ppI/YgZs72dGU88GkvIGEbnvl3/paaqwqqFvmxcE4qBEsYAXaOlo4e39iZxLK0MACM9bZ6+O4IVkZ4KTz929g7w1rFkvk4vQhDAUEeLTUsjuTv49lKdovCapNzKxgmCwCq/P9PfO8iHx1/E1tFyjFb58+Dgh+f44I97EASBoPmevLhlvRjl+pkjGRiiJOM8ufGl5MSVUlNy5YbbTSwMCZjrQdA8D/xi3dBVosHkZKa/d5Az+3PYvy2Zhjp5ekhTS525dwew6pFIrO0nh71KS1MXuz5L5vjBXIZHInmhkc6sfzx23IdxDw1JOXQ0j+07UukaEbl+PvY89fhsnMbws/5yYwdbtseTlH0BAGMDHZ68P4IlsR6oKfEiJb/qCv/84iznr7QA8vTj7x6Yw6zpit+XgtoG/r73LOVX5OPdfB2s+ePqOcycemu/x6LwmqTc6sb96q7N1FQ08OqHDxMUI0ZqbgZBENj+2iG+/N9xAJY+HM2Tr62dlEOERe6MtsZOss+VkHm6iNz4Mvp7rg8uV9dUxyvMmeAFngQv8MLKVnlplsmKVCoj9XQxX3+UQGXRZUAeRQxf4MHqR6Nx8ZocY8wa6zvY8Wkip48VIJMJqKhAzDwP1j0ajY3d+O57T88AX3yZxr4DOQwNSVFRgYXzPXlkfSTmZmOXJs8oqGXztjgujgzgdp1hxQuPzFbq/MdhqYyvzuXzwcHU0fTj6hhvpXQ/Dktl7ErO5+3jqfRLhlBXVWVdjB9PzA9BR/PmuqRF4TVJudWN++uvtpN2poRf/b/l3PVg2BiscPLzxb8Ps+P1owCs//1y1m5aKNbHiTAkGaY4/TxZp4vIOFn4neHm091sCF3kTdhiHxw9bcXfmW8gCAJFWTV8/VECWQnlo8e9QxxZ81g0fhHjb+FwM9TVtvD5R/EknC0FQFVNhQVLfHjw0WgsLJX3RXozNDR28NGnCcSNvL/aWhrce08Q96wOQkd7bGrshoel7D2Zz8dfpdLbL+8SXRjlxq8eiMTcRHnZguaOHjZ/lcDJzAoATAx0eH51FEvC3BT+e9XY3s2/DsRztkg+7Nza1JA/3D37pry/ROE1SbnVjfvotSPs25rE8nXhPPnHZWOwwslNwv5s/vn4xwA8/n9rWPnknHFekchE5fL5RtJPFpJxsug78zin2JsTtsSH8CW+uAY4iHVh36C2spGvP04g/kj+aCG+k7sN9zweQ9j8sR2Tc7ucr2jgsw/jyRgxldXUUmf56kDWrovA0Gh8ffxKSq/w7ofnKC2TT9EwN9fn8Y0xzIlxGzOD2LbOPj7YlTQ6/1FXR5ONa0JZs9BXqeOHssvr+NeOc9Q0yKNufs7T+N2Dc5hhrfioZFzxBf65P46GdrnR6wIfZ15eEY2F4Q8LTFF4TVJudePO7M/hv7/9Cnf/6fxn11NjsMLJS311E8/M+Qf9PQOsfX4hG/64YryXJDJJ6G7vJfN0EanH8sk5V8Jg//UCfbOpxkQs9SXiLj9mBTlOCmExFjTVt7N/WzLHd2eMvl82Dubc83gMsXf5ToppAyUFdXzy3jmK8+sA0NPX4p6Hwlm5NhjtcZwheq0A/8NPEmi82gnALNepPPPkHNxm2YzZOkrPN/K/recoqZJ3YU63MeXXG+cQ4GGntHMODUvZcTqHjw+nMyAZRk1NlYfm+/Po0hC0FWyc3Dco4d2T6exIzEUqEzDQ1mLT0ghWhXx/ob8ovCYpt7pxF89f5cnFb6Clo8He3L+KH/o/gGRgiF8v/jcXii7hEeLEP/e/IJpqitwWA72D5MSVknwkl4yTRTfUhZlYGhK+xJfI5f64hziJf49AZ1svhz5P4dAXqfR0yovELaYasWpjNAvWBKI9hj5Vt4MgCGSmVvHpu+eouSD3tzI112fdozEsWOqDmvr47bFEMszX+7P5Ylca/SOpvzmxbjz+SDSWY5QavWY/8e7OpNHxQ3NCnXnmoWiszJW3hobWLl7fFUdivrzo39rckN/cN5tI7xkKP1fZ5SZe/eo0pZfl++/rYM2f1szBacqNxfei8LpJ3nnnHV5//XUaGxvx9vZmy5YtBAUFfe99t23bxsMPP3zDMS0tLQYGrn/wCoLAn//8Zz766CM6OjoIDw/nvffeY+bMmTe1nlvdOKlUxmr/PzPQJ+H9Y7/G3ml8O3EmKu+9sptDH8dhaKrHO/F/xHyqyXgvSeRngGRwiLyEMpIP5ZJ2vIDekS8eAFMrIyKX+RF9dyCu/g6TosZJmfT1DHJsdzr7Pk2ifWRQtJGpHis3RLL0wVD0JngHqVQqI+5UMZ99EMfVRnmUaZq9GY88NYfw6PEdxN3a2sMnnyVy4pTcFkFLS5171wRz75qxi8x19Qzw8Vcp7DtZgEwQ0NZSZ8OqEO5bGqBU9/uE/Au8vvPc6OzHWF8nXrwvlimmim08kMrkxfdbjo0U36up8sjsQB6bGzQ6eFsUXjfB7t27WbduHe+//z7BwcFs3ryZPXv2UFFRgaXld9t1t23bxvPPP09FRcXoMRUVFaysroudf/3rX7z22mt89tlnODg48Kc//YmioiJKS0vR1v7pD5bb2bjfPPA+xVk1PPvXu1l8b/BNPeaXRE3pFZ6O+RuCIPDqzqcJmuc53ksS+RkyJBkmP7GcpIM5pB0vGB2sDvKasOiVAcxeE4yd89RxXOX4Ixkc4sz+HPZ8mEDjZXmtjr6RDis3RLDsoXD0J/gsVIlkmKP7c9i5NYnOEXNeN89pPPbsPNzHuYuzsqqRd94/S2GxvMPUytKQJx6NISbKdcyEYVVtE298eo6CcrlVi521CS9tnEOAp73Sztk/OMRHh9PYcToXqVSGrpYGT60M557ZPgq3vGhs7+Yf+84RXyKf5jDd0oQ/3zMX/xnTROF1MwQHBxMYGMjbb78NgEwmw9bWlmeffZbf/e67Q6e3bdvGpk2b6Ojo+N7nEwQBa2trXnzxRV566SUAOjs7sbKyYtu2bdx7770/uabb2bgdW07zxZYzRC7y5PdvPnhTj/kl8epD75J+opDIZX78/pPHx3s5Ir8ArkXC4vdlkX68kIG+wdHbHD1tmb0mmOiVAZhNMR6/RY4z0mEp8UcK+PK9c1we6SDVM9Bm+bpwVmyIwECJQ5oVQW/vIHu+SGXvrnQGR0x5I2JceeRXc5g2jhYUgiCQkFTB+x/FcbVJPj7L28uWZ56cO2b+X4IgcCKpjLc/T6B95AJkbpgLz66LwUKJXonnLzfzj8/PUnhB3ngwy96K3z80V+HeX4IgcLqwin/ui6OlW/761oR68kiUN9OmWIrC64eQSCTo6ury9ddfs2LFitHj69evp6Ojg4MHD37nMdu2bePRRx/FxsYGmUyGn58f//jHP3B3dweguroaR0dH8vLy8PHxGX1cdHQ0Pj4+vPnmm995zsHBQQYHr38od3V1YWtre0sbV5pby4v3voeBsS670v4k1pV8g+riyzwd+zdUVVX4IOXPTHNS/OwvEZEfY6BPQsbJQuL2ZpJ9tni0009FRQWfKBdmrwkhfIkPOhM81aYspFIZSccL2fXuWerOy2todPS0WL4unJUbIjA00RvnFf44rc3dbP8onpNH8uWDrtVUWLLCnwc3RmNiOn5rHxgYYvfXGez6KoPBwWFUVVVYusibR9ZHYjRGora7d4CPdl9PP+rqaPLomjBWL/JFXUnfUzKZwIGkIrbsTaK7bxBVFRXWzvHhyRXh6CnYdqOrb4D/HUlib3oxAKZaqiT8c5MovH6I+vp6bGxsSE1NJTQ0dPT4yy+/TEJCAhkZGd95TFpaGlVVVXh5edHZ2cl//vMfEhMTKSkpYdq0aaSmphIeHk59fT1Tp15PJ9xzzz2oqKiwe/fu7zznX/7yF1599dXvHL+VjZMOS1kT+Cr9vYO8ufdZnD3Hd+TFROJfT35C/N4solYE8MpHj473ckR+4XS29pB0KIe4PRmUZl0fPK2lq0nEUj/m3ReKZ9jMX6Q9hUwmI+VUMTvfOUttRSMAOnqaLHsonFWPRGFgPLEjYLXVTXzyztlRCwodXU3WPhTOqvtC0BrHDsirTV28/1Ec8Yly/y8DfW0e2RDJXYt9xuwivaL6Kv/55Oxo96OTvQW/eWyuUs1XWzt7+d9XCZzIkL9uKxN9Xn5gDtE+jgo/V9b5S/x1zxnqGpoo3PI7UXj9ELcjvL7N0NAQs2bN4r777uP//u//bkt4KSLiBfB/T28n9XQJ9/1qNus2Lbjpx/2cGeiTcK/riwz2D7H51O9w8Z0+3ksSERmlobaZc19ncu6r9BvMWq3szJh3Xxhz14b8It3yZTIZaWdK2fnOWapHvKp09LRYsT6clQ9HTvgUZH5ODR+/fZbKkbVbWBny8JOzmb1A8bMGb2ldhXVsefcM1SO/a06Oljz39Dw83cfmQl0mEzgSV8S7O5LoGukEXj7Xi6fuj8RQidHetOJa/rnjLFea5Q0Rs/1n8vJ9sZgbKzblOSAZJqW4grn+HqLw+iFuJ9X4faxZswZ1dXV27dp1W6nGb3O7xXlxh/P494tfMs3Bgg9PvPiL76ACSD9RwKsPvYflNFO25f5dfE9EJiSCIFCeU8OZL9OI35dFX7f8S+laKnL+/eGELfZBcxyjJuOBIAiknSllx5bTVJfLIyV6Btqs3BDBig0R6BlM3CJ8mUwg/nQxn753jqaRDkjnWdY88fw8PH2UV2T+U0ilMg4dzefTzxLp6ZFf8M+b484TG2MwG6MB5x1dfbzzRSJH40sAMDbU4bl1MSyInKW0z+iBwSE+OpzOF6eykcoE9HW0eHZ1JCsVPHhbLK6/CYKDgwkKCmLLli2A/ErLzs6OZ5555nuL67+NVCrF3d2dxYsX88Ybb4wW17/00ku8+OKLgHwjLC0tlVpcD/JW7XtD/sqQZJh3D2/CweWX3TkF8L/nt3NqZyp3bYzhV//86fdeRGS8GeiTkHosj1M7UylIut49rW+sS+yqIBY+GMEMj19WKYFMJiPtdClfvH16NAWpb6jD3RujWP5QOLr6WuO8wh9mcGCIfbsz+PKzZPr75D5bETGuPPrMXKynmY7bujo6+vhoawLHTxbKned1NVn/YDh3L/dXqvP8N8krvcx/Pj5DzWX5kHU/d1t+89hc7K2V975UXmrmb5+dorT2KgA+M234w0NzcVCQ870ovG6C3bt3s379ej744AOCgoLYvHkzX331FeXl5VhZWbFu3TpsbGx47bXXAPjrX/9KSEgITk5OdHR08Prrr3PgwAFycnJwc3MD5HYS//znP2+wkygsLFSqncQ1Xn3qM9LPlrL2yVg2/Hrhrb8hPyMEQeAB99/S3tzFP/ZuwjdKHCAuMrlovNjCmd1pnN6VRtOI7QKAi990Fq2LJHpFANp6E1d0KBqZTEbKyWK+2HJ6tAjf0ESPtU/EsOT+0HGto/op2lt72P5xAscP5iKTCWhoqLFybTD3PRyJ3jjuYVl5PW+9c4byyhHneXtznn9mHj5eynOe/yZDw1J2Hclm69fpDEqG0VBXY93KIB5aEYSmhnImG0hl8sHb7+5PoX9wCA11NTYuCWb9osA79hsThddN8vbbb48aqPr4+PDWW28RHCz3woqJiWH69Ols27YNgBdeeIF9+/bR2NiIiYkJ/v7+/O1vf8PX13f0+a4ZqH744Yd0dHQQERHBu+++i7Oz802t5042LvFYAa9t2omZpSGfxf/uF+3M3tHcxX1uL6OiosL+i2+iNcHdsUVEfgipVEZ+YjknPk8m/UQBw0NSAHQNtJlzTwhLNkRh76q8IuWJxrUuyC+2nOZKTQsAZlaG3P/0XOavCkBdY+J+7tVcaOKDN0+RmylvrDAx1WPDk7OZv8R73LrRZTKB4ycL+WhrAp0jkwXmzXHnyUdjMFWi9cM3qW/q5L+fnCUtrwaQe3/99vF5+LopzxetsbWLf+44S3Kh/JxONub8cf08PGbcfrZIFF6TlDvZOIlkmIci/0FXey9/fm89IXPclLTKiU9RahUvL/8vU+zN2Zr9t/FejoiIQuho7uL0l2kc355MQ+31gnyPECcWb4gifKkvmgqeVzdRkQ5LOXMglx1bTtPcIK+jmmpnxkPPzyN6ifeE7QwVBIGMlCo+ePMUVy7JI5lOzlN46tcLxrX+q6urn0+2JXL4WD6CAHq6mjyyIYrlS33HRBQKgsC5tEo2b4ujtaMXgKWxHjz9YBRGSqrnEwSBk5kV/GdXHB09/aiqqHDfXD+eXBGGzm38HYnCa5Jypxv30T+PsO/TJIJiZ/HqBxsUv8BJwrHtSWx5cQcBc9z5vy+fHe/liIgoFJlMHgU7ti2JtBMFyKRybzAjcwMW3B/GkoejsRzHGqKxRCIZ5viXGXz53jk6WnsAmO4yhfUvLCA4VnkF23fK0JCUQ19n8cUnCfSOFLpHzXHjsWfmYjXVeNzWVV7RwOa3T1FRKa+nc3K05IVn54/Z8O3u3gHe25HEgTOFgLz4/vn1scyPUJ77fkd3P//9Mo7jI9YTNuZG/GH9PIJm3VrKVRRek5Q73bjL1c08tvA/qKqq8Mnpl5li+8v48P02n/51P3u2nGT5Y7E8+Y+1470cERGl0drYwckdKRz7LInWhg4AVFVVCFnkzbJHY/EKd56w4kOR9PcOcmB7Cns/TqB3pDPU3X86j/xmEW5+08d3cT9CR3svn30YP1r/pamlztqHwrnnwbBxq1uTSmUcPV7Ax1sT6e4ZQEUFli7y4bFHojEwGBuj36KKK/zzw9PUXJIX3wd7T+flx+Yy1dJIaedMKarhH5+f4erI3MeVUZ48vzoKfd2bq8MThdckRREb9/uHPyYvpYoVGyJ44vd3KXiFk4P3f7+bgx/FsXbTQjb8YcV4L0dEROlIh6Wknyjk8KfxN3RETnezYfmjscSsCkJb9+df69jd0ceejxI4uD0ZyeAwAKFz3Fj/4kLsnRQ7OkaRXKhq5L03TlKYdxEAqylGPP7cfCJix27O4rfp6Ojjg4/jOHFa7sxuYqzLU4/PZu5stzFZ09CwlB2Hsti2Nx3JkBRtLXUeXxvBmsW+Cp/BeI3eAQlv701iT1wBAJYm+vz+oblEeM34yceKwmuSooiNy06s4E+PfoqOniafJ/5+QvvdKIstv9nJsW2JPPjyUh74zdLxXo6IyJhysbyeQ5/Ec/ardAZHbAwMTPRY+GAESx/5ZaQhmxs72LnlDKf2ZstH+aiqMO/uAB54bi4WE3RGpiAIJJ4t5cMtp2m+Kp+z6BvgwFO/XsD0GWMzZ/H7yC+sY/OWU1ysk0effH3s2fTMPOzGyOD3Yn0b//rgNPll8uHfsxyn8MqT83Gyt1DaOXMrL/N/205xqakDgEUhs3jx3hiM9X/4+1QUXpMURWycIAg8ueQN6s43sfG3i1m9MVrBq5z4XPPwWv/75dz7wqLxXo6IyLjQ09nHqZ2pHP4knsaL8g5AVVUVwpb4surpebj6O4zzCpXPpQtNbHvjBKmn5YadmlrqLF8XwdonYybsRenAwBC7tyfz1RepDEmkqKqpsHxNEOsejUZvnGZ6Dg1J+WpvJtt3pCKRDKOhocb9a0O4f20ImprKsX74JjKZwKFzRbzzeQK9/RLU1FR5YFkgD68KQUtJ5x8YHOL9g6nsPJ2LTBAwM9Tldw/OIdZv5vfeXxRekxRFbdzJr7PY/PuvMbU04NMzv53QHjfK4M0XPufEFyk8+Nu7eOClJeO9HBGRcUUqlZF1uoiDH8WRPzKzD8A92Im7fzWX4AVe42ZnMFaU5V3kk38foySnFgBDY10eeHYei+8NnrAWFA1X2vngrVOkJshTx6Zm+jz27DxmL/AYt/RjfUMHb71zmoyRWaO200z59fMLxsz7q7mthzc+PUtC5nkA7G1M+f2T8/F0UV7xf3F1A3/ddorqennEb36QCy/fNxvjbwl3UXhNUhS1cUOSYR6d/zpN9R08+cdlLF8XrsBVTnw++8dBvvzfce56JJpf/eu+8V6OiMiEoab0CvvfO0Pc3sxRTzCbGZasfGouc9eG/Kw97wRBIONcGZ++foxL1XI7Dpvp5jzym8WEzh2buqXbITv9PO++cZLLI6k+T187nnlpMQ6O45N+FASB+MRytrx3lvZ2ufXD4oVePLExBkPDsYkixqVX8t9PztLW2YeKCqxe6MsT90Wgq62c31/J0DAfHU7ns+NZyAQBUwN59Gu2//Xolyi8JimK3LhjX6az5f/t/0VGvQ5/Es+7v/uS8KW+/HHrE+O9HBGRCUdrYweHP47n6LZEejr7ADA002fZxhiWPhKD0RjN7hsPpMNSTuzJ4ou3To9aUHgEOPDo75bg4qU80847QSIZZu+udHZuTWJwYAhVNRVWrAniocdixs39vqdngA8/SeDwsXxAXnz/9JNzmB0zNjYeXT0DvLU9nmMjcx+nWhjy2yfmEeQ1XWnnLKlp5NWtJ783+iUKr0mKIjduSDLMxnn/prmhkyf+cBcr1kcoaJUTn+TDufz9kQ9xC5zBf4+9PN7LERGZsPT3DHBqZyr7PzjL1ZGIipaOBvPvD2fV0/OwGqMC6vGgt2eArz9KYN+niaMdkLHLfHn4pYUTtgC/qbGT9988RXJcGSBPPz6xaT4xc93HLWJXVHKZ/24+MVp8HxTgwAvPLWCKlfKsH75JRkEt//rwNI3N8oaEpbEePLsuGgM95dTDXYt+bT+RhVQmj379ft1c/BwtReE1GVG0Yj72ZQZb/t8+DI11+fTsyxO2mFTRnC+s49k5/0DfWJevKv87YVMIIiITBemwlOTDeex95xRVBXUAqKmrErsqiDXPLcDO+fZHqUx0mhs7+OyNk5w7mIcgCGhpa7DmsWhWPRqN9gRNvWann+ed/54Ydb/3C5rBs79ZjM04eTcODUn5ck8Gn+9MZWhIira2Bo8+HMWKu/zGpH6wb0DC+zuT2XsyD0EAcxN9fvvEPML9ftoG4nYprW3kL59ej37N8bHn38+uFoXXZEPRwks6LOWppf/jUnUzax6L4ZHf/DI6/IYkw9ztsIlhyTBbs//GFHvz8V6SiMikQBAECpIr2L35xGghvoqKCmGLfbhn00Kcx3GsjbKpKr7MB38/PFqAbz7FiIdfWkTM0ok5gkgyOMxXX6Sw67NkhiRSNDTVuG99BPc8FD4mnYbfR11dK//ZfIKiErn1g9ssa17atBCH6cqzfvgmBeWX+cd7p7jU0A7A4mh3nlsfg6GSukEHh4b58GAan5/MZmiwn/zP/yAKr8mGMnLEGXFl/OWJbWhoqvPRyZewsjFRyPNOdJ6b+w+qCur4/SePEbnMf7yXIyIy6ajIq+WrN0+QejR/9JhfjBv3vrAIz7Dvb6mf7AiCQPLJIj759zGuXpZ/ebt42/LkH5fh6j02nXu3ypVLbWx5/djo8G0bW1Oee3kxvoHKi/b8GDKZwJFj+XzwSTx9fRLU1VV54N7QMbOeGBgc4sPdKew+mjMS/dLj5cfmERHgqLRzFl6oZ/+5bP7y+HJReE02lCG8BEHglfUfUZB+gajFXryy+QGFPO9E560Xd3B8exKrn5nHxj+vGu/liIhMWi6W17Nny0ni9maNzoX0DJvJA79Z+rMdSSQZHGL/1mS+fP8cAyMmtHNX+vPwiwsxtVTel+rtIggCCWdKeX/zSdpGGgbmLPTkiefnY2yiNy5ram7uYvPbp0lNl1s/TLc35+VfL2KWq/WYnL+o4gp/f+8kdfVyAb0wyo1NG2KVFv0Si+snKcrauAul9Tx391vIZAL/3P443iHKU/4Thbi9mfz7yU9xcLfh3fg/jfdyREQmPY0XW9iz5SSndqaOWlF4hDhx/2+W4hPp8rMUYG1NXWx74wSn9+UAoKOnyf1Pz+X/s3eWYVGtXRi+6VRCCVEM7E5CVEDBQOzu7u46dnd3d2F3iwV2t2KjIErnMDP7+zHKdzzHdpKz7+vi8pyZPXuv8ZXZz6x3rWfVbVMBIw1t532PxIQU1i49zb6dVxAEyJTZjC59qlItoKRG1uez9cT8RSeIiU1CX1+Pxg1cad+mIiYmqu+0T5WksXJ7MFv2X0MuCGS1sWR4t2qUL61882BReOkoqly4RWP3cGBzCLnyO7BwT1+tNQ1UFnFRCTQrNBhBEFh/awp2Tv+NLVYREVUTGRbF9nlHObLpAlKJohuwqHs+Wg7JuALs4a1XLJ2wj0e3XwOQPU9Wuv1Vh3JeBTUc2dd5eC+MuVMP8OxJBAAly+Si77Ba5MipmS7V2NgkFi49yYlT9wHIkd2Gwf39KVFcPfYddx+/ZeLiI+nZr9pVitG7jc9PD8D+GUThpaOocuHiY5LoVH0mcdGJdBlei/rtKyn1/NpIf/9pPLz6nD6zW+LfOuO/XxERdfLhXTSB849xeMM50j7ZMRRxy0vrYbUpVamQhqNTPnK5nJN7rrN6xuF0/y8P3yJ0GV6LbBoSNN9DKpWxa+slNqwIIjVVqii+b1eJpq0rYKShL94hl0KZPf8IHz4o/v7q1S5Dl47emKmhezRVksbSLRfYfkhR++WQJRMjulfHtYRyGkZE4aWjqHrhjmy/zLyROzE1N2bpwQEZvtB+86yDbJi6n7KVizBxex9NhyMikiH5GB5D4PyjHFr/fwFWokIB2o6oSxG3jFfWkBifzOaFJ9m74QIyqRwjY0OadvWhcRcfjNWwffarvHsbzYLph7h6MRSAXC52DBhRm8LFcmgknoTEVJauOM3Bw7cAyOZoxZABNSmlpuaFmw/eMGnxUcIiYgBoWL0UPVp6YfaHJuOi8NJRVL1wcrmcIS2Xce/aC8pWKsCElR0y5LbAZ94+e09H99Ho6+ux9sZkcbtRRESFfAyPYfs8hQD7vAXp6leMNsPrkE9Ns/zUyaunESyZsI+bIYricUdnW7qPqoubj/Zl+wRB4PSxuyyZc5TYGMWYnbqN3WjfrQpm5prxKrt2/QUz5hwm4r3C+FSd2a/klDQWbTzDrmMK8eeczYZRPWtQrMDvF/6LwktHUcfCvXkWSY86c0mTSBkwtQlVG2Rsq4XBtWdy9+JT2v1Vj6b9amg6HBGRDE9kWBSbZx3i2Obg9C7IirXL0HpY7QxnxCoIAucO32b55AN8/CQgyvsVpeuIWjjk0IyZ6feIjUli2bxjnDh8GwAHRyv6DgugnEc+jcSTlJTK0hVB6WOHsjlaMWRgTbUN3b506wWTlxwlMioBfT09WtVzo2Pj8hgZ/vpWrCi8dBR1Ldz25UGsmXkYSyszlh0coJXt0cri2OZg5vRdT3YXe1ZcHJehM3wiItpEWGgEG2cc4MyuqwiCgL6+Hr5Ny9N6aC3ssmufKPkTkhJS2bzoBHvWnUcmlWNiakTzHr406FBJK7sfr158yrypB4kIjwXAr2YJuvWtTmYrzUw3+Wf2q37dsnTp4I2pGmYMxyWkMGfNKY6eU4xhyp/LjtG9a5I3568Zb4vCS0dR18LJpDL6N1nEk7thuHoXYtzydhlWkCQnpNCy+DCSE1IYt7knblWLazokEZH/FC8ehLF+6j5CDim2dYxNjajTuTJN+lQnk7VmPKZUxcsn4Swat5c7n8xMc+azp/f4BhQrp3z7gj8lOUnC2mWn2bP9EoIANrYW9B4SQEUNbZUmJqay5G+1Xzmy2zBsUABFi2RXy/VPX3zMjBUniIlPxtjIgO4tKtHYvwz6+j93bxSFl46iroUDxQdE7/oLSJNI6TOhAf5N3VV6PU2ycuxOdi46TnHP/EzfO1DT4YiI/Cd5cPUZq8fv5m7IEwAsrc1p2q8GdTpWxlgNmQ11IQgCp/fdYMXUg+ndj9UbudJhsD+ZNWRm+j3u33nNrIn7ef3yAwDefkXpObCGxoxXL199xow5h/nwIQF9fT2aNXanbSv1jEH6GJPI5CVHCbnxHIByxXMyskcN7LNk+uFrReGlo6hTeAHsXHWWldMOYmpuzKJ9/XDSwpZoZRD5NpoO5UYiTZMx58hQCpXVvm+fIiL/BQRB4Mrxu6yZuJsXD94CYJ/DljbD61C5kZtWzkT8XeJjk1gz8zCHt10GILONBZ2HBeBbr4zW7TBIUqVsXH2G7RuDkcsErKzN6TnQH2+/IhqJNT4+hQVLTnD85D0AXPLYMXxwAPnyOqj82oIgsOf4beavDyJVIiWThQkDO/pSrWLh775OFF46irqFl0wmZ1ib5dy98pwiZXIxfWNXDH6jqFAXmN17Hce3hlC+ZklGr+uu6XBERP7TyGRyTm2/yPqp+/nwydTSpZgzncc3zHAeYPevv2DB6N28eBwOQEmPvPSZ0ACnXL9WQ6QOHj98y6wJ+3ge+h6ACt6F6DOkJjZZLDUSz9nzj5gz/xgxsUkYGOjTrnVFmjdxx8BA9QL91dsoxi04zINQxbpVq1iYQZ18v2m6KgovHUXdwgsg4k0UPerMJSkhlabdKtNuQMbs/Hv1+B3dK41HLheYe2wYBUvn1nRIIiL/eVKTJexdcZptcw+TFJ8CgHv1EnQa24Ac+Rw1HJ3ykKbJ2LXmHJsWHEeSKsXYxJCWvavSoH0lrZsikpYmY8vac2xZex6ZTI6VtTm9B9fEy7eIRuKJjklk9ryjnA9WbFEXK5qd4YNr4ZTNWuXXlkplrN11kbU7LyEXBBztMjOmtz8lC/3bA00UXjqKJoQXwNlDt5jSbzN6enpMXN2BMhUKqO3a6mRWr7Wc2HaR0t6FmLyjn6bDERER+UTMh3g2zzjAwXXnkMvkGBjqU6u9Ny0GBZDZVjPZFlXw9tVHFozale795VIoG30nNaJAcc2YmX6P0MfhzBi/l2dPFWOHvP2K0muQP1bW5mqPRRAEjp64y4LFJ0hKkmBmZkzPblWoWb2EWrZC7zwKY9yCw7x9H4u+nh5tG7jTvqEHhn/bIRKFl46iKeEFsGD0Lg5tvYR1FksW7euHrd2Piwl1jYhXH+jkMQZpmowpu/pluC0NERFd5/WTcFaO3cnlY3cAsLQyp8WgmtTq4KOVtgy/gyAInNh9jRVTDxIfoxgcXa9dRVr3rYapGsxDf4W0NBmb15xly7rzyGUC1jYW9B0WQAVvzXx2hofHMmXmQW7fUczM9PTIx6D+NbBRQ3dsYlIqs1ef4vBZxbzJovmzMaZ3TXI4WgOi8NJZNCm8UlPS6Nd4IS8ehVPC3YXJazplyHqvxcO2sn9VEHmLOzPv+HC11AqIiIj8GjfOPGDFmB08vxcGgHN+R7pOakLZyprZ7lIFMR8TWDZpP0EHbgKQLWcW+k1qSAl37Ruz9PjBW2aM38vL55EAVK1Zkh4DqmNhaar2WGQyOTt2XWHVunOkpcmwsTZnyMCaeKhpPNXxCw+ZseIECUmpmJsZM6ijLzW8iojCS1fRpPACeB36nr6NFpCcKKFRZ286Dq6p9hhUTUxkHJ08xpAYl0zPac2o1cFH0yGJiIh8BZlMzvHNwaybspeYyHgAyvuXpPP4RmTLbafh6JTH5dMPWDBmNx8+mZnWbO5Bh8H+GhE130OSKmXDyiACN4UglwvYOWRm0Ki6lNaQR1nos/dMmraf5y8UNhj1apehW2cfTNQwLzP8QxzjFhzi1gPFF4MaXkXo3NgVJ0c7UXjpGpoWXgDnDt9mct9NAIxc2JoK1YppJA5Vsn9VEIuHbcUisxkrQsZhk4Gd+0VEdJ3EuGQ2zTjA3hWnkcvkGJkY0qhXNZr0qYGphuYMKpvEhBRWTz/Eoa2XALDLZkXfiQ0pW6mghiP7N/duvWL6+L28C1N0o9Zv5k6HblUw0YAXm0QiZfmqIHbuuQZArpxZGDmstlpsJ2RyOet2XWJ1YAhyQcDexoS9y3uLwkvX0AbhBbB88n52rz2PuaUJ83b2JkeejPPtEhTfpPtVm8rT26/wbeLBoEXtNB2SiIjID3j56C1LR2zn5tmHANhlt6HLhMZUqFVa63yxfpdbF0OZO2IH4W+iAKjasBxdhtfCMrNmRvl8i+QkCcsXHOfgboXgcc6VlaHj6lGg0O8Pmf4TLl99xrRZh4iKSsTIyIBO7b1oVN/1p13n/4TbD8MYM/8gb8Mjubx7pCi8dA1tEV7SNBnD2izn3rUX5Mhjx5zAnlr3i/+nPLz2nAH+0xEEgYnbelO2SlFNhyQiIvIDBEEg+OBNlo8O5P1rhTgp51uU7lOa4ZRBviCmJElYO/sI+zYEIwgCWR2t6DdJO7Nfl4OfMHvSfqI+JmBgoE+bLj40aeWpkdrZmJgkZs49woVPkxFcy+Zh2OAAbNXgwB+XkMKp4LvUr+4qCi9dQ1uEF0BUZDx9Gy7gQ3gs5SoVYOzy9hmuEH3piG3sXXGarE42LD03GosMJi5FRDIqKUkSts87QuDCY0glUoxNjWjarwaNelbLMOOH7l59zpzhgbx9+RGAGk3c6DysFuaWXzfw1BRxsUnMnXqQ86cVQ6aLlcrJkNH1cHSyVnssgiCw/9AtFi09iUQixcbanGGDAnBzdVH5tcXieh1Fm4QXwNN7YQxqvoTUlDQatK9E5+G1NB2SUklJTKWHz0TevYikRqsK9J3TWtMhiYiI/AJvnoazaOjW9O3H7C729JzenNLe3x/voit8zn7tXX8BAPvsNgyY0piSHtrV+SgIAscP3mLR7CMkJ0kwtzCh1yB/fGsU18g28PMXkUycup9nn7owGzUoR+f23iqd9ygKLx1F24QX/N9cFaDf5EZUb+Sq4YiUy53gJwypOwuACVt7U85X3HIUEdElBEHgzJ6rLB8ZSPT7OAB8GrrSdUJjrO2043P0T7l9+RlzhgWm137Vae1J+0H+Wuf79fZNFNPH7eH+nTcAVK5WjD5DamqkQ1MikbJ0xWl277sOQP58DowaXgfnHLYquZ667t86v++0aNEicufOjampKe7u7ly+fPmbx65YsYJKlSphY2ODjY0Nfn5+/zq+Xbt26OnpffFTo4Zuj+DxqlmSFj19AYXJ6mfH5YxCcc/81O1cGYBZvdcSFRGr4YhERER+BT09PXzqu7IiZBx1OlVGX1+PoJ1X6FJhHMe3KOqkdJ0Sbi4s3t+Pms09ANi3IZje9ebz+JPA0Racctgya0k72nTxQd9Aj9PH7tKt9XLufzI8VSfGxob06VmVSeMakjmzGU+eRtC11zqOn7qn9liUiU5nvLZt20abNm1YunQp7u7uzJ07l8DAQB49eoS9vf2/jm/ZsiUVKlTA09MTU1NTpk2bxu7du7l37x7Zs2cHFMIrIiKCNWvWpL/OxMQEGxubn4pJGzNeAHK5nOkDt3Lm4C0sMpkya1sPcuVTfbuuukhNltCvxjRe3A+jtE9hJm7rjb6+zn+vEBH5T/L45kvm9d/Is7uKm33JSgXpM7MlTi7//lzXRa6de8Ts4YFEvY/HwFCfFj19adq1stYZXj+4+4Ypo3cR/jYGfQM9Wnf0plnbihqpFY78EM+kafu5dVvxb6JGteL06emHmanyMobiVuNP4O7ujqurKwsXLgQU4sLZ2ZnevXszbNiwH75eJpNhY2PDwoULadOmDaAQXjExMezZs+e3YtJW4QUgSU1jeNuV3L/+AoccNszZ3hObrBlnrNCrx+/oU3UKqUkS2o+qT5M+1TUdkoiIyG8iTZOxZ9lJNk7fT2pyGsamRrQcFECDHlW1bij17xAXncjCsbs5d1gxWqlgSWcGz2hG9txZNRzZlyQmpDB/+iFOH7sLQPHSORk6tj72DlZqj0Umk7NhczAbNgcjlwvkypmF0SPq4qKkblhxq/EHSCQSrl27hp+fX/pj+vr6+Pn5ERIS8lPnSEpKIi0tDVvbL/eLg4KCsLe3p2DBgnTv3p2PHz9+8xypqanExcV98QMQFZXwG+9KtRibGDF6cRuccmUh4k00Y7qsJTkxVdNhKY2cBbLRfXJTANZN3svdixlrS1VE5L+EoZEBjXpVY/GZ0ZTyKoQkJY01E/fQr/pUnt3Vru253yGzjQXD57Zk8MxmWGQy5dGt1/SsO5ejgZe1amvVwtKU4eMbMGRMPczMjblz4xXdWy8j+OwjtcdiYKBPu9YVmTW1GVlsLXn56iPd+6zn4JFbWvV39iN0Vnh9+PABmUyGg8OX22UODg6Eh4f/1DmGDh2Kk5PTF+KtRo0arF+/npMnTzJt2jTOnDmDv78/Mpnsq+eYMmUKVlZW6T/Ozs4AjB2yjbjYpN98d6rDytaC8Ss6kNnGgid33zCpz0akaV9/b7pItRaeVG7khlwmZ3LH5XwMj9F0SCIiIn+AUx47Ju/oy4AFbbG0Nif0zmv6VJ3Mhmn7SZNINR3eH6Gnp0eVOqVZcqA/JT3ykpqcxty/djKp90biY7Tr/uHnX4Il67tQsIgT8XEpjB2yjcWzjyDRwBqUKpmTlUva41YuDxKJlJlzjjBlxkGSUyRqj+V30Nmtxrdv35I9e3aCg4MpX758+uNDhgzhzJkzXLp06buvnzp1KtOnTycoKIgSJUp887hnz56RN29eTpw4ga+v77+eT01NJTX1/1mjuLg4nJ2dqVx2OIWL5WH6wtZaN68L4NGt1wxts4zU5DR865Zh4PQmGcY5OiUxlf41p/PifhhFXF2YumcARipsQRYREVEPURGxLBq6heCDNwHIUzQ7A+a1JV/JnJoNTAnI5XJ2rTnHutlHkabJyOKQmcEzmmmd7URamow1S06yY/NFAPIVzMZfExqQPWcWtccilwts2X6R1evOpW89jh1Zj9y5fm+7Vtxq/AFZs2bFwMCAiIiILx6PiIjA0dHxu6+dOXMmU6dO5dixY98VXQAuLi5kzZqVp0+/vm1lYmJC5syZv/gByGxtzpOH7xg1cAvJydqnwguWdOav+a3QN9Dn5N7rrJ55WNMhKQ1TCxNGremKRWYz7l95xopRgZoOSURERAnYOlgxck1Xhi3vROYsljy/F0bf6lNZN3mvzme/9PX1adTRmznbe5I9T1Y+RsQxvO0KVs84rFXvzcjIgC59qjFhVjMyW5nx9NE7erRbwamjd9Qei76+Hi2blWf29Ob/33rsvZ6jx++qPZZfQWeFl7GxMWXLluXkyZPpj8nlck6ePPlFBuyfTJ8+nQkTJnDkyBHKlSv3w+u8efOGjx8/ki1btl+Kb8y0JlhYmnD31mvGDN5KakraL71eHbh6F6LfpEYA7Fhxhu3LgzQbkBJxcrFn8JL2AOxffYaDa89qOCIRERFloKenh3f9ciw7PwavumWRy+RsnXOYvtWm8Pye7td+5SuanYW7+1KjiRuCIBC4IojBLZby7tW3a401gXuFAizZ0JXipXOSnCRh6pjdzJ16AEmq+kViyeLOrFjSjnJlcpOSmsbUmQeZOVcz26A/g85uNYLCTqJt27YsW7YMNzc35s6dy/bt23n48CEODg60adOG7NmzM2XKFACmTZvG6NGj2bx5MxUqVEg/j6WlJZaWliQkJDBu3DgaNmyIo6MjoaGhDBkyhPj4eO7cuYOJyY/HPPw9VRn2Ko5hfTaSnCShrLsL46Y3w9hE+7a8dqw8w6rphwDoOaYetVp+W7jqGltmHWL91H3oG+gzfnNPcZ6jiEgG49y+aywcsoW4jwkYGhnQelgdGvasmiHGo104dpe5f+0gITYZc0sT+kxoiHdASU2H9QUyqZxNa86yafVZBAHyFnBk5KRGZHdWjcnpd2ORydm4JYR1G88jCArD1XGj6pHN0fqnXi/aSfwkCxcuZMaMGYSHh1OqVCnmz5+Pu7s7AD4+PuTOnZu1a9cCkDt3bl6+fPmvc4wZM4axY8eSnJxMvXr1uHHjBjExMTg5OVGtWjUmTJjwryL+b/HPhbt78xUj+m8iJTkN1/L5GDOtiUpHHvwu6+YcZeuSUwAMnNYEv/plNRyRchAEgdm913Fi20XMLE2ZdXAweYpk13RYIiIiSiQmMo75AzcRcvgWAEXc8jJwYbsMMXT7/dtopg3Yyv3rLwDFvMeuf9XWOsf7a5dCmTp2N7HRSZibGzNgZB28qhTRSCxXrj1n4tT9xMUlY2lpwoghtSnv/uNaOVF46ShfW7jb11/wV//NpKZKca+Qn1FTGmud+BIEgWWT9rN3/QX09fUYPq8lFasX13RYSiFNIuWvxvO4E/wEu+w2zDkylCw/+Q1IRERENxAEgRNbQ1gyYjvJCSmYmpvQZWIjarSqqPONQzKpjE0LT7B1yWkEQSBnPntGzG+ldSbYHyPjmTRqJ3dvvgKgbmM3uvSpipEGfNfev49j7KQ9PHj4DoCWzcrTvs33zV9F4aWjfGvhblx5xqhBW5FosfiSy+XM/Wsnx3dexcBQn5ELWuPhq5lvLMomPjqR/v7TCQuNIE/R7MzYNwiLzGaaDktERETJRLz6wKze67gT/AQAz4BS9J3disy2lhqO7M+5EfyUGYO3Eh0Zj4mZEb3G1te63QmZVM7a5afZ9mkoeJHiOfhrUiPs7NVvKJ6WJmPJitPs3nsNgHJlcjNyeB2svvHZLwovHeV7C3f98jNGD1aIL9fy+RgztYnW1XzJZHJmDt5G0IGbGBoZMGpha9wqF9Z0WErh3YtIBtacQXRkHMU98zNxWx+MTY00HZaIiIiSkcvl7Fp8gnWT9yqsGbJZM3hxe0pWLKjp0P6YmI8JTB+0lRsXFMKyeiNXuo+ui4mWfZZdPP+Y6eP2kBCfgpWNOSPGN6C0q4tGYjl5+j4z5xwhJTUNB4fMjB9VnwL5/+1+IAovHeVHC3fj6nNGD9xCaqqUch55GTO1idb9wsikMqYN3MK5w3cwNDJg7NK2lK2k+x9YAKF3XjO4ziySE1KoEFCa4as6Z4giXBERkX/z9NYrpnZdRVhoBHp6ejTuXY3Ww+ro/MghmUzOtqWn2Dj/BIIgkKdgNkbMb0kOLatpexcWzfjhgYQ+DkdfX4+2XSvTtHUF9PXVv/X77Hkko8bt4u27GIyMDBjQpzo1qn1ZTiMKLx3lZxbu1rUXjBy4hdSUNEq75mHs9KaYaVmhpDRNxpR+mwg+fg9jE0NGL2lL2YoFNB2WUrh1/hEjmy5AKpFSo1UF+sxupfM1ICIiIl8nJTGVZSO3c2SjYuurQOlcDF/RGcffNNnUJm4EP2X6wC3EfEzAzMKY/lMaU6nG970p1U1qShoLZx7m6IGbAJSvVIAhY+ppxFg8ISGFSdMOcPFyKAB1apWmVzff9Bo0UXjpKD+7cHduvmTkgC0kJ0koVtKZCbNbYGHxY7sKdZImkTK57yYunryPkbEhIxe2xs2nkKbDUgrn919nSqcVyOUCdTtXpuukjOPcLyIi8m/O77/OvAEbSYhJwiKzGf3ntaFCrdKaDuuPiXofx5T+m7l75TkADdpXosNgfwwMtSerJwgCR/bdYOHMw6SlyciRKwtjpzYhpwYydHK5wIbNwemWEyWK5WDMyHrY2liIwktX+ZWFe3D3DX/130xCfAoFCjsxeW5LMltpV8F3mkTKlH6bCTlxD0MjA/5a0AoPDbUIK5vjW0OY3XsdAE36VKfdyHqi+BIRycC8fxPF1C4reXDlGQB1OlWm49gGGJtoV7nHryKTylg7+yg7Vp4BoLibC8PmtMDWLpOGI/uSR/fDGDcskA/v4zAzN2bImHpU8NbMl/mQi0+ZNG0/iUkS7LJmYsKY+mRztBCFly7yq4r56aN3DO+7idiYJFzyOTBlfitsbC3UEOnPI01T1HydP3IHA0N9hs9tSYVqxTQdllI4sOYMi4ZsAaDNsDo0H1hTwxGJiIioEmmajHVT9rJjwTEA8pfMybAVnTOE59eFo3eZNWw7yYmp2NpnYsS8VhQtm1vTYX1BdFQik/7awe0bCk/N5u0q0qazj0ZqbV+9+sjIcbt4/SYKIyMDunWqSMP65UXhpWv8Tqry5fNIhvbaQNTHBHLkzMKUeS1xyGat2kB/EZlUxozB2zhz8Bb6BvoMmt6EyrV1P00PsGvJCVaM3gFAu7/q0bRfDQ1HJCIiomouH7/DrF5riYtKxCKzGYMWtcOjhna5wv8Ob55FMqHXel49fY+BoT7dRtYhoLmHVmXzpVIZKxacYPe2SwC4V8jPsHH1NVP3lZjK5Gn7CbkUilSawvlTY0XhpWv87h5x2KuPDO2zkffhsWS1z8zUeS01sv/9PWQyOXOGB3Jyz3X09PToNa4+NZu5azospbBl9iHWT9kHQKshtWgxKECrPqhERESUT+TbaKZ2WsH9T1uPTfvVoPWwOjrf6ZycmMrcETs4e/g2oLCc6DG2ntZ5R544fDt9vqNzrqyMn9GU7DmzqD0OuVxg7YZz7Dt4mb2Bg0XhpWv8SXFe5Ps4hvXeyOuXH8hsZcbkuS0pUNhJRZH+HnK5nCXj93FgcwgAnYYG0LCjl4ajUg7b5x9lzYTdgOIDuO2IuqL4EhHJ4EjTZKwcu5O9yxUj00p7F2Losk5YZdFtw1VBENix8gxrZx1BLhcoVConIxe0JouD+o1Mv8fjB28ZO2QbHyLjscxkyogJDSjnkU8jsbx9F0l2J3tReOkaf9oVERuTxMgBm3l0/y1m5saMm9GUUmXzqCDS30cQBNbMPELgiiAAWvT0pVWfqhlCpOxeeoLloxTbjg16+NFpbMMM8b5ERES+T9DuK8ztt4HUJAl22W34a01XCpbOremw/phr5x4xtf8WEuKSsbXPxMiFrSlcKpemw/qCqI8JjB+2nft33qCvr0ennn40bKH+7VGxq1FHUcbCJSWmMnboNm5efYGRkQFDx9bHSwtH92xdcop1c44CULtlebqO1P0UPcD+VUEsHrYVAP82leg5vXmGeF8iIiLf58WDMCa2W0bYs/cYmRjSZ1Yr/Jp6aDqsP+btyw+M77Gel08iMDQyoN+kRvjWK6PpsL5AIpGyYMYhju6/CUD1WqXoMzRArXMeReGloyhr4SSpUqaO2cX5oIfo6UHPgf7UaeSqxEiVw/6NwSyZsA9BEKjkX5xBM5ppXR3B73Bkw3nmD9yEIAh41S3LoMXtMcoA70tEROT7JMYlM6PHGi4dVdRHNejuR4fR9bXKF+t3SEpIZeaQbYScuAdAo87etBtQQ6u+VAqCwJ7tl1k27xhyuUCxUjkZM7UJVtbmarm+KLx0FGUunEwmZ9HMwxzYrRjw2bxdRdp1rax1W19nD91ixuBtSNNklPTIy6jFbTTSnaJszu29xvTuq5GmyShbuQgj13TFVMtMbkVERJSPXC5n4/QDbJl1CIAyPkUYtqIjmay1y+rnV5HL5WyYd5ytSxT1bO5VCjNkZnPMLbXrc+1KyFMmjdxJUmIq2bLbMH5mM3KpodlMFF46irIXThAENq05x/rlQYAi/dp3WACGWvbt60bwUyb0XEdyooR8RbMzbnl7rTPv+x2unb7PhHZLSU2SUNjVhbEbe5DZVreLbkVERH6Oc3uvMavPOlKTJGR3sWfsph7kyPfv4cq6RtCBm8weFkiaREruAo6MXdoWhxy2mg7rC14+j2T0oK28C4vG3MKEkZMaqrzoXhReOoqqFu7QnuvMn34QuVygnEdeRk5qhLmWZV+e3H3DqE6riY1KxCGHDRNWdMA5r72mw/pjHlx5xugWC0mISSJHPgcmbuuNQ07dn/MmIiLyY0LvvGZ8myW8fxOFpZU5I9d2pWTFgpoO6495dOs143qsIzoyHussloxd2o6CJZ01HdYXxMYkMW7Ydu7efIW+gR69BvpTq0E5lV1PFF46iioXLuTcIyaP3ElqqpR8BRyZMLs5WbJqV1bp7csPjOq0mrcvP2JpZcaYJW0pVk67ujJ/h5cP3zKq2QIiw6Kxsc/M+C29yFcip6bDEhERUQMxkXGMb7uUB1eeYWCoT59ZrajWwlPTYf0xkeExjO2ylmcP32FsYsigGU21bsh2WpqMuVMOcPzQLQAatfCgU6+q6Osrv+RGFF46iqoX7uG9MEYN2kJsdBIOjlZMnNNCLXvfv0JMVALjuq3j4c1XGBkbMnhGUyr5a9cv8+/w4V00o5sv5Pm9MMwsTPhrdRfKVimq6bBERETUgCQljTl91xO06wqgmO/a9q+66OtrT3H675CUkMq0AZu5HPQQgA6D/WnUyVuraokFQWDzmnOs+1RyU9GnEEPG1sfUVLkzNkXhpaOoY+HehUXzV//NvHn1EctMpoya0pjSWpZVSkmWMH3AFkJO3kdPT48Og/1p2NFLq36Zf4fEuGQmtl/GzbMP0TfQp9eM5vi3rqTpsERERNSAIAhsnH6AzTMPAlCpThkGLWqPsZIFgLqRSWUsn3KAfRuCAfBv6kbPMfW0rpPz1NE7zJq4j7Q0GQWLODF+ZnOlzjYWhZeOoq6Fi4tNYszgbdy7/RoDA336Da9F9VqlVHa930Emk7Ns0n72b1T8Mtdo7ErPsfUxVKMviypIk0iZ228DpwIVc8Ya9qxK+1H1taotW0RERHWc3H6Ruf02IE2TUax8fkav76bzHY8Ae9dfYNmk/QiCgFvlwgyf0wJTc2NNh/UFd2++YsyQbcTHJZMtuw2T5rQgh5LGDInCS0dR18KBwutr5sS9BB1X+LI0a1uBdl2rqGTv+3cRBIF9G4JZPnk/crlAqfL5GDG/JZms1OPLoioEQWDzrENsnLYfgPL+JRm8uD1mGcBGQ0RE5MfcPPeQ8W2WkpyQQq5CTkzY1hs7JxtNh/XHBB+/x7QBm5GkSilQPAfjlrfHWsvGJ71++YG/+m8m/G0Mma3MGD+zGUWK/3ljgCi8dBR1Ci9QDPdcvyKIzWvOAeDlW4TBo+piomWp78unHzB1wGaSEyU4u9gxbnl7smlgGKqyCdp9hdm915GWKsWlmDNjN3bHLrt2tWWLiIiohmd33zCq2QKiImLJ6mTDxG29yVVIu+br/g4PbrxkbNe1xMUk4ehsy8RVHcmeW7s6uaM/JjBq0FYeP3iLsYkhIyY0xNPrz7pNReGlo6hbeH3m2MFbzJ2yH6lUTsEiToyd3lTrOh6fPXjLmK5r+RAeS2Zrc/5a2JoSbi6aDuuPeXDlGePbLiEmMh4bu8yMXNuVIm55NR2WiIiIGoh4/ZGRTebz5mkEltbmTNjam0JaNl/3d3jzPJJRHVcT/iYKK1sLJqzsQP5iOTQd1hckJ0uYPHInly48QV9fj16Da1KrftnfPp+67t9iUUoGoVpASabOb0WmzGY8uv+W3u1X8uThO02H9QUuhZ2Yt6MX+YvlIC4miRHtVnBo6yVNh/XHFHZ1Ye7RYeQpmp3oyDiG1pvN4Q3nNB2WiIiIGnBwzsKsg4MpVC4PCTFJDG8wlxtnH2o6rD8mRx47Zm/vQf5i2YmNSmRo62XcDHmq6bC+wMzMmLHTmuJfpzRyucD8aQfZuOoM2p5PEjNeSuazYo6OjsHa2krt1w97HcXoQVt5/fIDJiaGDBlTn0pVCqs9ju+RmpLGnOGBnDmo8GWp3cqTLsNr6XzRfXJCCrP7rOf8/usA1GrvTddJTXT+fYmIiPyY5IQUJrRbyo0zDzE0NmT4ik541iyl6bD+mKSEVMb3WMeti6EYGhkwZFYzrfP6EgRFyc2m1YovvLXql6XnIP9fbngSM146ztQZB0hOkaj9utmdbZm/qgPlPPKSmiplwohANq4+q1XfAExMjRg6uzlt+1cHFIO2R3VaTVx0ooYj+zPMLE0ZsaozbYbXAeDAmjMMbzCH6PdxGo5MRERE1ZhZmjJ2U08qBJRGKpEyqcNyTm6/qOmw/hhzSxPGr+xAxRrFkabJmNJ3Mwe3aNf70tPTo22XyvQa5I+eHhzYfY1JI3cikUg1HdpXETNeSuazYq5YZSyFCuZk4tiGONirr9brMzKpnOULjrN7m2Irz8u3CANH1sHMTLtag4OP32PG4K2kJElwzGHLqEWtcSms+8WpF4/eZnq31SQnpGDrYMWIVZ0p6q7aOWMiIiKaRyaVMbffBk5su4ienh5957SiessKmg7rj5HJ5Cwetye9PKTjkJo06uSt4aj+zdlT95k2ZjdpaTJKl8vD2OlNMftJSwyxuF5H+bxwAfWmkZgkYG1lzvjR9SmuoaLEw3uvs2DGIaRSOS75HBg7vSmOTtYaieVbPH/0jvHd1xP+JgoTMyP6T26Md0BJTYf1x7x+Es6Edkt5/TgcA0N9Oo5pSL2uVXTeRFZEROT7yOVyFg/bysE1ZwHoM7tlhjBaFgSBdXOOsm3paQBa9PSlVZ+qWveZduPqc8YM3kpKchqFimZn4uwWZLYy++HrROGlo3xeuCdPXzNt1nGehr7H0FCffr2qEeCvGTFx79Yrxg8PJDoqkcxWZoya3JiSZXNrJJZvER+TxNQBm7l+/gkAjTp7025ADZ03JU1OSGFu/42c3XMVAK+6Zek7tzXmot+XiEiGRhAElo7Yzr6VCpHSa0YLAtp5aTgq5bBt6WnWzj4CQP12Fek8vJbWia+H98L4q/9m4uOSyeVix9R5rchi9/1Of1F46Sh/XzgjY1OmzTzEmXOPAKhfpww9ulbBUANjGN5HxDJu6HaePHyHvoEeXftUo14TN636ZZHJ5KydfYQdK84AUNozH0Nnt8BKiSMhNIEgCOxbGcSK0YHIpHKc8zsyYlVnchfOrunQREREVIggCCwfFcieZacA6Dm9ObXaa9/23O+wd/0Flk7cB0DNZu70HFtP6+ZWvnj2nuF9N/ExMh5HJ2umLWxNtu+Y3IrCS0f558IJgsCGzcGsWX8egBLFnRk7si42GhgvkZqSxpwpBzh19A4Afv4l6DM0QOmDRv+Us4duMXt4IKnJadhls+Kv+a0pWPLPXYk1zf3LoUzutIKP72IwNjWi++SmVG9VQavEr4iIiHIRBIFV43axc9FxAAYsaEvVZuU1HJVyOLrjCvNH7kQuF6jWqBx9JzbUOvH17m00w/ts5O2baLLaZ2b6wtbfHDEkCi8d5VsLdyHkCZOnHyApSYK9XSbGj2lAwfyOao9PEAR2b7vE8gXHkcsE8hZwZMzUJlpX9/XicTgTe20g7MUHDI0M6PpXbQKae+i8SIn5EM+snmu5ekox5smngSu9ZrbAItOP6w9ERER0E0EQWDYykL3LT6Gvr8ewFZ2oVOf3jT61idP7bzBz8DbkcgG/+mXpN7mR1pWIfIyMZ2jvDbx68QEbWwumLmhNnrz2/zpOFF46yvcW7tWrj4wct4vXb6IwMjJgYN8aVK9aTCNx3rr2gokjdxAbnUSmzGaMmNCAsu7a5baeGJ/M7GGBBH+aRelbtwy9xtfHVMs6M38VuVzOzkXHWTtpL3KZHKc8dgxf0Zl8JXNqOjQREREVIQgC8/pv5OimCxgY6jN6fXfcqhbXdFhK4czBW0wftBW5TI5v3TL0n9pY68RXdFQiw/tu5NmTCDJbmTF1fivyFcz2xTGi8NJRfrRwCYmpTJ62n5BLoQDUr1uW7p0rY6QBk833EbFMGB7Io/tv0dfXo20XH5q2qah1Q7Z3rjrLmpmHkcsFchdwZMS8ljh/5duKrnH/cijTuq7i/ZsoDI0MaDeyHvW7+Wpdql5EREQ5yGRyZnRfzZndVzE2NWLS9j4UK59f02EphXOHbzN1wBbkMjlV6pRmwLQmWie+4mKT+av/Jh7df4uFpQlT57eiYJH/19rqvPC6dOkS7u7uqji1VvMzCyeXC6zbeJ71m4IBKFY0O2P+qkvWLOqfrShJlbJw5mGO7L8BgHuF/AwZU49MmbVr6+v2pVCm9t9M9IcETM2N6TOhAZVrl9Z0WH9MfHQic/qtJ+SQwsW/tE9hBi5oSxZHa80GJiIiohKkaTImtl/GpaO3sbQyZ8b+gRmm0ebC0btM6b8JmVRO1Ybl6DdJ+2q+EhNTGdl/M/duv8bcwoQp81pS+JPdk8471zdu3FhVp/6CRYsWkTt3bkxNTXF3d+fy5cvfPT4wMJBChQphampK8eLFOXTo0BfPC4LA6NGjyZYtG2ZmZvj5+fHkyROlxqyvr0f7NpWYNK4hFhYm3L0XRtde67h957VSr/MzGJsYMuCv2vQfURsjYwMuXXhCz3YrtG7OYwn3vCzc24+SHnlJSZIwfeBW5o/aSWpKmqZD+yMy2Vgwam03es9qiYmZETeCHtDDewIhh29qOjQREREVYGhkwLDlnSji6kJCbBIjmy4gMixK02EphQrVizF0dnP0DfQ5vvMqC8fs1qqpKQAWFiZMmtOCYqVykpSYyvC+m3hw941aY/ijjFeTJk2++rggCBw+fJiEhITfDuxn2LZtG23atGHp0qW4u7szd+5cAgMDefToEfb2/96KCg4OxsvLiylTplCrVi02b97MtGnTuH79OsWKKWqtpk2bxpQpU1i3bh158uRh1KhR3Llzh/v372Nq+mPvpV9VzG/Cohg9fjfPX3zAwECfbp0r07BeWY0UkT999I4JI3bwLiwaI2MDeg30p0ad0lpV0C6Tydm88ARbFp9CEARcCmVj+LyW5Mhjp+nQ/pjXT8KZ1nUVoZ8EuH+bSnQZ3whTCxMNRyYiIqJs4qMTGVR7Jq8evcO5gCOzDgwmk41uW+d85u8F97VbedJ9VB2tuo8AJCdJGDlwM3duvMLc3JjJ81qSI5eV9m812trasmHDBiwtLb94XBAEmjZtSkRExB8H+D3c3d1xdXVl4cKFgKJo2dnZmd69ezNs2LB/Hd+0aVMSExM5cOBA+mMeHh6UKlWKpUuXIggCTk5ODBw4kEGDBgEQGxuLg4MDa9eupVmzZj+M6XdSlckpEmbNPcrJ0/cB8PEqxOD+NTA3V/8NNz4umRnj93Lx/GNAYTnRe0hNrRs1dP3CY6YP3EpsVCJmFsb0HFMf33plNB3WH5MmkbJ+yl52LFS0njvlsWPgwnYUcdOuxgcREZE/JzIsiv7+0/n4LobinvmZFNgXI2NDTYelFE7svsbsYYEIgkDjzj50GOyv6ZD+RXKyhNEDt3Dr+kvMzY0ZOaUerh6FtXur0cfHh0yZMuHt7f3Fj4+PDyVKqHZ6uUQi4dq1a/j5+aU/pq+vj5+fHyEhIV99TUhIyBfHA1SvXj39+OfPnxMeHv7FMVZWVri7u3/znMrAzNSYv4bWold3XwwM9Ak6+5Buvdfz/EWkyq75LTJlNmPs9Ka0714FfX09Thy+Te/2K3nx7L3aY/keZSoUYNHefpRwdyE5UcLMIduYOWQbyYmpmg7tjzAyNqTjmIZM3tmPrE42vH0eyeDaM1kzYTeSVN3eVhUREfkSu+y2TNzWGzNLU+4EP2HBoM1atzX3u/jVL0vv8fUBCFwRlD5mSJswMzNm/KzmlCidi6QkCWOHblPLdf9IeO3atQsvr6+PQDh+/PifnPqHfPjwAZlMhoODwxePOzg4EB4e/tXXhIeHf/f4z3/+yjlTU1OJi4v74ud30NPTo2G9csyb2YKsWS15/SaKHn02cPzkvd8635+gr69H87YVmb6oDbZZLXn14gO9O6zi2MFbao/le2RxyMzktZ1p3bcq+vp6nNxznd715/P0XpimQ/tjSnsVYsnZUfg28UAuF9g+/yj9qk/lmZprEURERFRL7sLZGbGyM/r6ehzfEkzggmOaDklp+Dd1p9PQAADWzj7CgU2qS2D8LmZmxkyY1ZxiJZ1JSlDPF/efFl7x8fEMHDiQwoULY2dnR758+ahZsyaTJk3i4cOHqoxRq5kyZQpWVlbpP87Of+awXrRIdlYsak+5MrlJSU1j8vQDzJ53FIlEqqSIf54SpXOxZH1Xyri5kJqSxswJe5k1cR/JyRK1x/ItDAz0adHTj2kbupLV0YqwFx/o32QRu1afRS6Xazq8P8LSypxBi9oxal03rLJm4vm9MPpWm8KWWYeQpsk0HZ6IiIiSKOdblK6TFDXTaybs5sKBGxqOSHk07OhF8x5VAFg0bg+n9l7XcET/xszcmImzW9BveG21XO+nhVebNm0IDAykRYsWTJo0id69e3Pq1Ck2bNhA0aJFqVu3Lm/fvlVlrF+QNWtWDAwM/lVHFhERgaPj1x3hHR0dv3v85z9/5ZzDhw8nNjY2/ef16z/vTLS2NmfqxMa0bVUBPT3Yf+gmPfttICws+o/P/avY2FowaU4L2nTxQV9fj6MHbtK7/UqeP1Vt/d6vUsw1D4v39aO8X1GkaTJWTD3IqE6riXr/exlIbcKzZimWnh2FZ0AppGky1k/dJ2a/REQyGHU6VaZ2Rx8AZvZcy6vH2tVZ/ie07luNOq09AZg9PJBrn2qItQlzCxN8qhZVy7V+WngdO3aMvXv3MmrUKLp06ULfvn0xMjLi0KFDPHv2DAcHB1xdXXn+/Lkq403H2NiYsmXLcvLkyfTH5HI5J0+epHz5r8/BKl++/BfHg2JL9PPxefLkwdHR8Ytj4uLiuHTp0jfPaWJiQubMmb/4UQYGBvq0a12RqRMbY2VlxtPQ93TptZbTZx4o5fy/GkurDl5MW9D6/1uPHVdxYPc1rapHyGRtzqhFrek1rj4mpkZcP/+E7rXmEHJC/du1ysbaLjMj13Rl8OL2WFqbE3rnNX2qTmbDtP2kaSAbKiIiony6TmxMyYoFSUlKZWK7ZSQlpGg6JKWgp6dH179q41OrFDKpnEm9N2SIkpDf5aeFl4ODA0lJSV99LleuXCxfvpzu3bvTt29fpQX3IwYMGMCKFStYt24dDx48oHv37iQmJtK+fXtAkaUbPnx4+vF9+/blyJEjzJo1i4cPHzJ27FiuXr1Kr169AMU/jn79+jFx4kT27dvHnTt3aNOmDU5OTtSrV09t7+vvuJVzYcXi9pQoloOkJAnjJ+9j7sJjGtl6LFk2N0s3dMW1fD4kqVLmTzvIpJE7SYjXng8HPT09App7MH9Xb1wKOxEXk8T4HutZMHoXKUnas0X6O+jp6VGlsTvLzo+hQkBpZFI5m2cepI/fZB7deKHp8ERERP4QA0MDhi7rSBZHK14/CWdevw1a9eX2T9DX16f/1MaU9MhLcqKE0Z1X8+7VR02HpRmEn2TWrFlCgQIFhJs3b6Y/ZmlpKYSGhqb///PnzwULC4ufPaVSWLBggZAzZ07B2NhYcHNzEy5evJj+nLe3t9C2bdsvjt++fbtQoEABwdjYWChatKhw8ODBL56Xy+XCqFGjBAcHB8HExETw9fUVHj169NPxxMbGCoAQGxv7R+/rn0ilMmH5qiDBp9pUwafaVKFzjzXC6zcflXqNn0UmkwuBG4OFGp4ThKru44RW9eYJ926/0kgs3yM1NU1YMfWAUCP/EKFG/iFCx2rThYc3tS/O30Eulwtndl8RmhYaJNTI2lWoad9NWD4qUEhOSNF0aCIiIn/IvUtPhQDH7kKNrF2FPctOajocpZIQnyz0qD1H8ZlcdboQG5Wg6ZDSUdX9+5/8ko/XoEGDmDNnDlWrVqVevXoMHDiQu3fvkidPHgCmTp3K0qVLefHihWpUog6g6pEDl688Y9L0A8TFJWNmZsyAPtXxq1JE6df5GR7eC2PyqJ2Ev41B30CPVh29ad62otbN57oR/JRZQ7fxMSIOfQN9mnevQrPuVTDUwHxMZRP7MYFlI7dzeodiYoO9sy29Z7SknK96ahVERERUw97lp1j613YMjQ2Zc3gI+Urk1HRISiPqfRz9my7mfVg0xcrlYdLaThhrgX+Z1s5qvHTpEjNnzuTQoUMkJydjaWlJ1qxZiY2NJSUlhbVr16ptXJA2oo6Fi4yMY+K0A+kjhvyrF6d3Dz/MTNVvcpqYmMqC6Yc4dfQOAMVK5WTY2PrYO1qpPZbvER+TxKJxezjzyRKjQPEcDJreNEMM2wa4fPwOi4Zs4f0bxegRnwaudJnQGBt71X14iIiIqA5BEJjQdikhh2+RPa8DC04Mx8zyx9NTdIWXTyMY0GQRSQmpVK5TmsEzmmrc3V5rhddnJBIJ169f5/Hjx8TFxZE1a1aqVKny1VE9/yXUtXAymZwNm4PZsDkYuVwgV84sjB5RFxcNjc45cfg2C2ccIilJgmUmU/oODcDbT/uyLkEHbrJo7B4S4pIxNjGkw+Ca1G5VXusGuf4OyQkpbJi2n73LTyGXC1ham9NxdAOqtfTMEO9PROS/RlxUAj18JvLxXQxVm3syYH4bTYekVG5ceMKozquRSeW06u1Hy95VNRqP1gsvka/zeeGio2OwtlZ91ufmrVdMmrafDx8TMDIyoHuXKtSrrZn5im/fRDF1zG4efupWqRZQku4DamChZbMGI8NjmDtiB9fPK4afl/TIS//JjXDIYavhyJTDk1svmdd/Y/rMx6Lu+eg5vTl5imTXcGQiIiK/yu0LjxlWfw6CIDByTVcq1Cqt6ZCUypHtl5k3cicAQ2c3x6dWKY3FIgovHeXzwvUcvYEJAxtgk9lc5deMjU1i6sxDXLwcCoCnRz6GDPDHykr11/4nUqmMDSvOsHX9eQQBHJ2sGTqmHkVLald9giAIHNx8kZXTD5KanIaZhTGdhtbCv6mbxtPdykAmlbFn+Sk2TNtPapIEfQN96nWtQsvBtTDPQNsVIiL/BdZO2sO2uUewscvMsgtjMsww7c+smn6IHSvPYGJqxIzN3chfLIdG4hCFl47yeeFc603E0T4Lo3vXpFwx1YsOQRDYtfcay1YGkZYmI4utJcOHBFC2dG6VX/tr3Ln5kulj9xARHou+vh5N21SgdSdvDA21q6D97csPzB4WyL1rLwAoUzE/fSc2xN7JRrOBKYn3b6JY+tc2Qg4patuyZLOm64TGVKxTJkMITBGR/wKS1DR6VZnE68fh+DbxYNCidpoOSanIZHLGdVvHlTMPyepoxbydvbG1y6T2OEThpaN8XrhG3RcR9iEZPT1oU9+djo09MVRDt9/T0PdMnLqPl68+oqcHzRq7075NJYw00MGXmJjK4llHOP7ppl+gsBNDx9bDOVdWtcfyPWQyOfvWX2Dt7CNIUqWYWZjQZXgtqjd2zTDi5PKxOywZsY3wlx8AKONThB5Tm5I9r8MPXikiIqINPLjyjIEBMxAEgfFbeuHqV0zTISmVxPhk+jVaxJvnkRQpk4sp67uovdNRFF46yueFi3j/gdW7rrHv5KduvwLZGNcngGz2qq/7SklJY/GyU+w/dBOA/PkcGDm0NjlzZlH5tb/G2VP3mTf1APFxKRibGNKxhy91G7uhr69doubNs0hmD9/OgxuvAChdIT99JzTIMLVfqckSts8/yvb5R5FKpBgaGVC/mx/NBviL248iIjrAspHb2bPsFPbOtiw7PxZTc/V3squSN88j6ddoIYnxKdRqUZ6eY+up9fqi8NJR/rlwJ4IfMm3ZcRKTJViYGTOkS1WqViiklljOXXjMzDmHiYtPwcTEkB5dqlA7oJRGsjgf3scxc+I+rl9+BkCpcrkZNLKu1tlOyGRydq89x4a5x5CkSjE1N6b9QH9qtfTIMJ2BYaERLB2xnaunFKOUbB2saD+qPlUau2WY9ygikhFJSUylS4WxRIZF03xgTdoMq6PpkJTO5aCHjO26FkEQGDKrGZVrq6+ZQBReOsrXFu7d+1jGzD/I3U9DT2v6FGVAhyqYq8F3K/JDPNNmHuTajZcAlHfPy+AB/thYq784UxAEDuy6xvIFx0lNScPcwoQeA2pQtWYJrdvSC3vxgbkjdnD3qmL2aNGyuek3qRE5XDRj16FsBEHg0rE7LB8ZyLsXkQAUKpeHbpObUlBDdYEiIiI/5ty+a0zuuAIjE0OWnhuDk4YshFTJ+nnH2LLoJCZmRszb0Ytc+R3Vcl1ReOko31o4qUzOmh0hrNt1Cbkg4JzNhrF9alI4r+r/QcnlAjv3XGXF6jOkpcmwsTZn8ICalHfPq/Jrf42wVx+ZMWEv9++8AcDTuyB9hwRgk8VSI/F8C7lczqEtl1g98xDJiRKMjA1p1duPBh28MoTrPSiKdvcsO8WWWYdISUoFoGpzT9qOqEMWR2vNBiciIvIvBEHgr8bzuHHmIW7VijNuU09Nh6R0ZDI5ozqt5saFJ+TIY8e8nb0xt1S9LZEovHSUHy3cjftvGL/gEBEf4zEw0KdzE09a1nXFQA1bPM+eRzJx6j6ev1AUWAf4l6Rn1yqYmam/TkAmk7N9YzAbVgQhlcrJbGVGr0E18fYronXZr4iwaOaP2pnu++VS2Im+ExtSoLhmWp5VwcfwGNZM2M3J7ZcAMDE3pnHv6jTs7oeplvmwiYj813n9JJzuXuORSeVM3zuQ4p75NR2S0omJSqB3vfl8CI/Ft24ZBs1oqvJrisJLR/mZhYtLSGHa8uOcvvgYgFKFczCqlz/Z7FQ/3kUikbJq7VkCd11BEMApmzXDBwdQrKhmRMSzJxHMmLCX0MfhAFSqUpjeg2tirWU+NYIgcGL3dVZMPUB8TBL6+nrUbVOB1n2rYZaBhMmDq89YMXoHD64oavGyOFrRdkRdfJtmnBo3EZGMwILBmzm09izFyudn+t4BWveFVRncvfqcoa2WIZcLDJzWBL/6ZVV6PVF46Sg/u3CCIHDozD3mrD5FUkoaluYmDOrkS7WKhdUS542bL5k68yDvI+PR19ejWWN32rWuqBHbCalUxpa159m85hwymRwra3N6D66Jl69mhn9/j5iPCSybvJ+g/TcBsM9uQ6+x9XD1Vk/DhDoQBIFze6+xesJuIl59BMClmDOdxzekVKWM8z5FRHSZyLfRdHQbRVqqlMk7+lLaWz33DnWzZfFJ1s89hqm5MQt29yGHCmvaROGlo/zqwr0Jj2HcgkPce6IovK9WsTADO1Yhk4Xq2/sTElNZsPgEx07cBSBfXnuGD66lsXmPTx+9Y8b4vTwPfQ+Al28Reg70x8ZWu7JfAFfOPGTh2D28D4sGwKtmCbqOqI1tBhpKLUlJY9/K02ydc5jEuGQAXP2K0X5UfXH8kIiIFrD0r+3sXX6KQuXyMPvQkAyZ9ZLJ5PzVfiW3LobiUtiJuYE9MVKRv5covHSU31k4qUzO2p0XWbvzInJBwCFLJkb2rEFZNTjeA5w594jZ848SF5eMoaE+7dtUomkjNwzUYPj6T9LSZGxafZat688jlwlktjKjx4AaVK5WTOs+VFKSJGyYd4w9684jlwuYW5rQfqA//s3cNfJ3pypiPyaweeZBDq49g0wqR09PD98m7rQeVgf7DOJxJiKii0RFxNKu7F+kpUqZsX8QxTzyaToklfAxIo4etecQF5NE8x5VaNOvukquIwovHeVPFu7u47eMW3CYsIgYhet8QFm6NKuIiRrce6OiEpg17yjBF58CUKSwE8MGBeCsoRvrk4fvmDVpH8+eRADgUbEAfYbUJKsWZpSe3gtj/qhdPLmr6NIsUDwHvcc3IF/RjJUVehMawfrJezm37zoARiaG1O7oQ9O+Nchsq10dqSIi/xXmDdjIkQ3n8Qwoxai13TQdjso4d+Q2k/tsQt9An9lbe1CwpLPSryEKLx3lTxcuKUXCgvVn2HviNgAuzlkZ09uf/LntlR3qvxAEgaMn7rJw8QkSkySYmBjSqb03DeqW1YjLvFQqY9v6C2xafRapVI6FpQld+lSjRm3NmMB+D5lMzqEtF1k7+whJCano6+tRu7UnrftWwyKDucI/uv6cVeN2cSdY0eVpkdmMxr2rU7dLlQznpC0iou28fPSWbhXHo6enx8pL4zOkr9dnpg3YQtCBmzi72LFgT19MTI2Uen5ReOkoylq4C9dCmbz0GNGxSRga6NOpiSct6riqZd7j+/dxzJhzmKvXXwBQsoQzg/v7k11Dg6Ofh75n9qR9PLr/FlC43vcbVgsnLdzminofx/IpBzhzUDGf0tY+E52H1cI7oKTWicU/QRAErp68x5qJu3l+LwwAG/vMNOvvT43WFTE2Ue4HooiIyLcZ1WwBV0/eo26XKnSb1ETT4aiM+JgkutWaTdT7eBp29KLT0AClnl8UXjqKMhcuOi6JacuOc/aKYvuvaP5sjOpZg5xOqhccgiCw78BNlq48TUpKGqYmRnTu6E292mU0kv2SSeXs2naRdcuDkKRKMTExpE0XHxo09cDAUPvqqa6df8zicXt4+1LRFVjC3YUeo+uqzYFZXcjlcoJ2XmH91H3pHZD2OWxpMTAA36YeGcZoVkREm7l8/A5jWiwicxZLNt6eqrLic23g8ukHjOm6Fn19PeYE9lKqn6IovHQUZS+cIAgcPnOfOWtOkZgswcTYkJ6tvGhQrZRaBNC78BimzzrMzduKwdElijszZIDmsl9hr6OYN+0AN6++ACBfwWwMGFGLfAWzaSSe7yFJTWPn6nNsW3KK1JQ0DAz1qdumAi17VVWLC7M6SZNIObY5mC2zDvIxPBYApzx2tBxSC+/6rhmq2UBERNuQSWW0Ljmc6PdxjF7fjfL+pTQdkkr5vOWYp2A25u/qrbQveKLw0lFUtXDhH+KYvOQoV+8oBFC54jkZ0b06jllVX2wulwvsO3iDZSuD0rNfnTp4Ub+OZmq/BEHg6IGbLJ9/nIT4FPQN9GjYzIPWnX0wVfKevzKIeBPFsskHCDnxaSi1fSY6DgmgshbWqv0pqckSDq07x7Z5R4j9EA+AcwFHWg6qRcU6ZUQBJiKiIlaM2cGuxScyfJE9KFztu9aYRVxMEm37V6dZ9ypKOa8ovHQUVS6cXC6w69hNFm08S6pEirmZMX3b+lCrsnqsFt6FxzBj9mFu3FKIv2JFszO4vz85nbOo/NpfI+pjAktmH+HMyfsAODpZ02doAOU0NIPyR1w585ClE/elbz8WLZubbqPqkC8DemIlJ6Swb2UQOxYdIyEmCVAIsBYDA6hUt6wowERElMzz+2H08J6AoZEB2x/PwiyDNfX8k5N7rjNzyDaMTQxZdmggjs5/XoIjCi8d5fPCRUfHYG1tpZJrvHobxcTFR7j7WGG66lEqN8O6VsM+SyaVXO/vyOUCBw7dZNmqIJKSJBgZGdC+dUWaaMj3CyDk7CMWzDzMh/dxAFSuVoxu/aprpfFq+vbj0lOkJqehp6eHf1M32vSrjpUWxvunJMYls2fZSfYsO0VC7CcBlt+RZgP88a5XDgNDsQZMREQZCIJAB9dRhL/8wLhNPXGrVlzTIakUQRAY3nYFty6GUqFaMUYubP3H5xSFl47yeeHajlvNpO4NyG6nGvElk8vZduAay7ddQJImw9LchH7tKuPvrZ4h0xHv45g97wiXrz4HoEB+Rwb39ydfXtXbXnyNpMRU1i0PYm/gZeRygUyZTenU04/qtUtrZDv0R0SGx7B6+mGCDtwEwDKzGa36VCWgecYsSE+MS2bvilPsXnoyPQOW3cWeZgNqUrmhqyjARESUwIJBmzi07hx1O1em22TVD5XWNC8eh9Oz7jzkMjmT13SidIU/GxYuCi8d5fPClWo9iUyZMtG/qTf1KhVXmRh68eYjExYd4UGoYsi0ZxkXhnbxw85W9dmvz75fi5eeIj4hBQMDfVo0dadVc0+MNdRV8/jBW+ZOPcjTR4psYLGSzvQZGkBuF80Iwh9x58ozlk7Yx7OHinhz5rOny4jalK1YQMORqYbE+GQOrDrDriXHiYtKBCBbbjsa96mGbxMP0YZCROQPuHDgBhPbL8M5vyPLg8dqOhy1sHTiPvauv4BzXnsW7+v3R19cReGlo3xeuDZjV3PvtWKOn2ex3IxsWxV7G9WIIalMzuZ9V1gVGEKaVJH96tPWhwCfomrJfkVFJTB34XHOXXgMgHMOWwb1q0GJ4sp3Fv4ZZFI5ewIvs275aVKS0zAw0Kdhcw9advTCzEz7DD5lMjlHAy+zbvZR4j5lg9wqF6bz0AByuGRMM8SkhBQOrjnDzsUn0ovws2SzpkF3P/xbV8zw9SkiIqogPiaRJvkHArDt0cz/xESJhLhkOladQVx0Ij3H1qNWi/K/fS5ReOkonxcuKjqag5eesnj3BSRSGZZmJgxqXpmA8oVVJoaevf7A5CVHuf9Ukf3yKJWboV2q4qCGzkdQzHycv/g4UZ8yGXUCStG5ow+WFpqxTngfHsviOUcIPvMIAHtHK3oMqIGnV0GNxPMj4mOT2LzoJPs3BiOTyjEw1KdWy/K07OlHJmtzTYenElISUzm84Tw7Fx1Lt6GwtDanTqfK1O1c+T9x4xARUSbtyv5FxKuPTNvTnxIVtPOzTtns2xDMkgl7sc5iyarjQ37brkcUXjrKPxfu+duPjF1zlHvPFWLIu1Rehrf2I6uVagqppTI52w5eY8Wn2i9zM2N6tfamrq/qtjv/Tnx8CktXnubQEcXIo6xZLenbsxoVPf9s7/1PuHj+MYtmHibi043do2IBegyogaOTtcZi+h5vnkWycvpBLp16AEAma3Na9vLLsPVfoGg6OB14mcCFxwgLVcznNDE3pkbLCtTv7oeDhjpnRUR0jfFtlhBy+BbdJjWhbhfl2CxoO2kSKd0CZvP25Uda9vKjVZ+qv3UeUXjpKF9bOKlMzvojV1i+LwSpTI6VhSmDW1ShultBlYmhl2+jmLzkKHceKcbslC2Wk6FdqpLD0Vol1/snN26+ZNa8o4S9VWy3elUsQO8efmRVQ+fl10hJSWPzmrPs2BSCVCrHxMSQFu0r0bBFeY3Vo/2I6xces2LKQV48Voj2HHns6DikJu5VVJc11TQymZzggzfYPu8oTz+Z9uob6ONdvxwNuvuRr0RODUcoIqLdrJ+6jy2zDlGthSf957XRdDhq49zh20zuuwlTc2NWnxiCTdZfv9eIwktH+d7CPX0TyZjVR3n06j0APqXzMqyV6rJfMrmcHYdvsHTLeVIlUkyMDenSrAJNapbBQF/11g+pqWms3xTM1sBLyOUCFubGdOrgTZ0AzXUavnoeyfzph7h94yUA2Z1t6TGgBq7l82kknh8hk8o4uuMK6+YcIy5asYVbzDUPnYYGULCEZmro1IEgCNw484DABce4efZh+uMlKxWkYY+qlPNVT/2iiIiucXL7RWb2XEtpn8JMDuyr6XDUhiAI9G24kCd339Cokzcdh9T85XOIwktH+dHCSaUy1h6+wsoDF9OzX4OaV6aGeyGV3UjehMcwddkxrt97DUCRfI4M71advDmzquR6/yT02XtmzTvCg0+de0UKOzGwbw1c8mimcFwQBE4fu8vyBceJ+pAAgKd3Qbr1ra6124+J8ckELj/D7rXnkKRKAfAOKEm7ATWUYhyozTy99YqdS45zds815DI5ADkLZqNBNz8qN3LDWAunFYiIaIrPcxvzFndm4am/NB2OWrl0+gFju67FxMyIdaeH/7I3oii8dJSfXbgnryMZu+b/2S+vUnkZ0cqXrNaqKSYWBIH9p+6wYP0ZEpMlGBro06a+O20buGOkBg8lmUzOvgM3WLn2LElJEgwM9GnayI3WLTw1NuYnMTGVjSvPsHv7JeQyAWMTQ5q1qUCTVhUwNtHO7cfIdzGsn3uMk3uuIwgChkYG1GnlSbPuVTJsAf5n3r+JYu/yUxzecJ7khBQArO0yUbujDzXbemH9G1sLIiIZjUfXn9Ov+jTsc9iy7sZkTYejVgRBoE+DBTy9F0bTbpVpN6DGL71eFF46yq8snFQqY+2RK6zcr8h+ZTI3YWBTHwI8VWeCGhkVz4yVJzl/NRSAPDmyMKxbNYoXcFLJ9f51/Q/xLFh8It16IpujFX16VsXDTXNjfl48e8+imYe5dV2x/ejoZE3XvtXw9FJdDd6fEnr/LaumH+RG8FMALDKZ0qSLD3XaVMBUCy0zlEliXDJHNp5n7/JTRIYpagiNTAzxrleOOp0rk79kLg1HKCKiOd4+j6Sj2yhMzU3Y/XKepsNRO8HH7zGh53rMLEzYcG4EFr9gTSMKLx3ldxbu6ZtIxq05xoOXim4uz2K5GdHaD8csqll4QRA4GfKIOWtOEx2bhJ4eNKhWim7NK2Jhrh7rhwshT5i/6DjvIxUeTt6VCtKzmy92GspaCIJA0Il7rJh/nA+fYirj5kKP/tXJqaEt0R8hCALXzz9m1fTDPP9kGJvFPjMte/tRrWHGH8cjTZNxfv91di05wZObL9MfL+LqQu3OlalYq0yG7QIVEfkWb0Ij6OwxBvNMpux8NlfT4agduVxOt4A5vA59T9e/alOvbcWffq0ovHSU3104qUzOxmNXWb43BIlUhrmJEX0aedHAu4TKCtHjEpJZsP4MB4PuAWBna8mgTr5UKqeeQvPkZAnrNl4gcNcV5HIBMzNjOrSpSH0NDlFOTpawdd15dmwKIS1NhoGBPnUau9K6ozeWmbTT1FMulxO0/ybr5h7j/acMUI48drQdUJ0K1dQzQF2TCILAw2vP2bfyNOf3XUeaJgPA1sGKmm0r4d+mErYOqhndJSKibTy9/YrevpOxdbBi091pmg5HIxzaepEFo3fj6GzLymODf/p+IgovHeVPF+5FeBQT1h7j1lOFDUSZAtkZ2bYaOR1slB1qOlfvvGTa8hOERcQAUNmjAP3bVyarjXrMK0OfvWfO/KPce6B4z/ny2tO/dzWKFM6ulut/jbdvolg27xgh5xRbolY25nToVoVqtUppTBT+CIlEysHNIWxdcjq9A7JA8Ry0H+RPKS3t2lQ2UeGxHN5wjoNrzxL9aWi6oZEBFeuUoVZ7b4q45c3wQlTkv83di08ZXHsm2XLbsfrKBE2HoxFSkiW09ppMQmwyoxe3obxf0Z96nSi8fkBUVBS9e/dm//796Ovr07BhQ+bNm4el5dfFQlRUFGPGjOHYsWO8evUKOzs76tWrx4QJE7Cy+v+34a99KG/ZsoVmzZr9VFzKWDi5XGD76Zss3HmOFIkUEyMDOtcpT6tq5TBU0U0/JTWN1TtC2LL/KjK5gIWZMd1bVqKeX0m1WD/I5QKHjtxi+aozxH8qnK5ZowSd23tjrcGi8auXQlky+yivX34AIG8BR7r3q0aJMrk1FtOPSExIYdeqs+xac46UJAkApcrno+2A6hQq+d/wwUqTSLlw4Ab7Vp7mwZVn6Y/nLuyEf5tK+DbxwCKzmQYjFBFRDReP3GJc6yX/ya7Gv7N6xmECVwRRukJ+Jq/p9FOvEYXXD/D39+fdu3csW7aMtLQ02rdvj6urK5s3b/7q8Xfv3mXMmDG0a9eOIkWK8PLlS7p160aJEiXYsWNH+nF6enqsWbOGGjX+3w1hbW2NqenPbTMpc+HCImOZvOEEl+4r6lcK5rRnVLtqFMqpuoHPj1+8Z9qy4+lDt4vmz8awrlXJm1M9dU4xMUksWxXEkWN3AMhkaUqnDt4E1CihsUyTVCpj344rbFh5hsSEVAAqVSlMp15+ZHNSXSbyT4n+EM/WJac4tPVS+vabh28R2vStRp5C2TQcnfp4cuslB1af4czuK6QmpwFgYmaEVz1XaratRMEyucUsmEiGYdvcI6ydtAefhq4MXdpR0+FojHevPtLBbzp6enqsPT0U+5/4rBaF13d48OABRYoU4cqVK5QrVw6AI0eOULNmTd68eYOT08916AUGBtKqVSsSExMxNFTYB+jp6bF7927q1av3W7Epe+EEQeBA8H3mbAsiLikVA309WlUrR+c6Hpgaq8aGQSaXs+voTZZtOU9SimLIdIva5Wjf0ANTE/VYP9y594Z5C48T+kxht1GwgCP9elWjUEHNCYbYmCTWLQ/i0J5ryOUCRkYGNGjuQfO2FTHX0DzKnyEiLJpNC09wcrcibj09PbxqlqBVn6rk0NLGAVWQEJvEye2XOLz+HC8fvk1/3KVoDvzbVKRyI3cxCyai80zruoqgXVdoP7IeTfr+mp1CRmNYm+XcuhhKqz5VadnL74fHi8LrO6xevZqBAwcSHR2d/phUKsXU1JTAwEDq16//U+dZuXIlw4cPJzIyMv0xPT09nJycSE1NxcXFhW7dutG+fftvfiNOTU0lNTU1/f/j4uJwdnZW+sJ9jE1k5pbTHL+qqDlytrdmRGs/XAurbuvo/cd45qw5xZnLCssCJ3srBnb0pXzpPCq75t+RyeTs2X+dNevOkZgkQU8PAvxL0qmdF1ZWmtt+fP40gqVzj3Hj6nMAbGwtaNe1slbXfwG8Dn3PxvnHOXtYMUdT30Afv/plaN7dN8ObsP4dQRC4fzmUw+vPcXbvNdI+GdKamBlRqU5ZqresQFGPfGIWTEQn6e41nhcP3jJuc0/cqhbXdDga5dTe68wYvA2HHDasPjEE/R9MbBGF13eYPHky69at49GjR188bm9vz7hx4+jevfsPz/HhwwfKli1Lq1atmDRpUvrjEyZMoEqVKpibm3Ps2DHGjBnD9OnT6dOnz1fPM3bsWMaNG/evxw9fukUNtxK/+M5+zJmboUzdeILIGEXxdO0KRenb2AtrS9V9Uz975SmzV5/k/UeFy3tljwL0a+eDna16rB+iohJYujKI4ycV3ZeZLE3p0K4StWtqTugIgsDF849ZPv84Ya+jAMiT157OfapSzl1znmQ/Q+j9t6yfd4zLpxVDuA0M9alavyzNulfBIcd/R4ABxEcncirwEofWn+PVJ0sOgOwu9vg1K49vUw/stHg7WUTk70SFx9KqxDAEQWDTnWnYOv63u3lTkiW08JxIcmIqs7f1oHDp73v8/SeF17Bhw5g27fvtrw8ePGDXrl1/JLzi4uKoWrUqtra27Nu3DyOjb2+fjR49mjVr1vD69euvPv+tjFeRHpOp61mKwXV9sFGyKEpISmXR7vPsCLqFIIBNJjMGNvOhupvqxg4lJktYFRhM4KHryOQC5qZGdG5WkYbVS6ms4P+f3L7zmnmLjvPsuSJDmS+vPX16VqV40Rxquf7XSEtT1H9tWn2WhHhFU0A5j7x06VOV3C6qq8VTBg9uvmTTghNc+9S5aWCoT7WG5WjarQoO2f9bYkMQBB5cecbRTRc4u+caKUmK32l9fT1KexemanNPyvuXFMcTiWg1+1aeZsnwbRR2dWH2oSGaDkcrmDZgC0EHbtKgQyU6D6v13WP/k8IrMjKSjx8/fvcYFxcXNm7c+NtbjfHx8VSvXh1zc3MOHDjww6L5gwcPUqtWLVJSUjAx+XEdz+eFK9ZzCnrGJthYmjGsfmVqlCqgdFF0O/QtE9cd59lbxd9Z+aK5GNbKj+x2qvuW8+TFe6avOMG9J4rsQP7cdgzpXJWi+dVTeyWTydl38Car150l4VOhe1XfonTt6EOWLOqxv/gacbFJbFp9jn07riCTydHX18O/bhnadPLGRoNx/Qz3r79g4/zj6S74hkYGnwRY5Z8qSM1oJCekcH7/dY5tCeFuyJP0xy2tzPGqVxa/puUpVC6PuBUponUMrjOLuyFP6DKhEfW7/bim6b/AhaN3mdh7Aw45bFhzcuh3f2//k8LrZ/lcXH/16lXKli0LwLFjx6hRo8Z3i+vj4uKoXr06JiYmHDp0CHPzH9cJTZo0iVmzZhEVFfVTsX1euOA7j5lxKISn4QpR5FUkD381rEI2G+UuZppUxvojV1l14CISqQwTY0M61/agVdWyGKrIuVwuV8x9XLzpHPGJKejpQR3fEnRrXhGrTOopTo6JSWLl2rMcOqLI+pmZGdO6eXka1i+HsbHm5iyGvfrIykUnuXDmIQBm5sY0buVJw+YemGn5KJ+7V56zccFxbl1UjJP6LMCadPH5z21Bfubt80hObA3hxLaQ9PFEoNiKrNzYncoN3XD6DzUoiGgvEa8+0L7cKARBYP3Nydhl/2/+zv6TlGQJzTzGk5qcxoLdfchX9Nv+kKLw+gH+/v5ERESwdOnSdDuJcuXKpdtJhIWF4evry/r163FzcyMuLo5q1aqRlJTE7t27sbD4/9RyOzs7DAwM2L9/PxEREXh4eGBqasrx48cZNGgQgwYN+mod19f4+8KZmVuw6uQVlp+4hFQmV7jR16xA0wolMfhBkd+v8ioimskbTnD1oWJLNF/2rAxv7UfJfKqbwRgVm8SiDWc4fPY+AFaZTOnR0osAn2Jq8f4CePjoHfMXH+fBQ0UGLruTDT26VqG8u2aNMm/feMny+cd5/MkU1jaLJa07e1OjVmkMDLW3AB/g9uVnbFpwnNuXFP5XBob6+NYrQ9NuVXDKmUXD0WkGuVzO7QuPObE1hPMHbpD6yR8NoGDZPFRu4EqlumVFh3wRjTGjxxpOBV6itE9hJgf21XQ4WsW47uu4ePI+7Qf506SLzzePE4XXD4iKiqJXr15fGKjOnz8/3UD1xYsX5MmTh9OnT+Pj40NQUBCVK1f+6rmeP39O7ty5OXLkCMOHD+fp06cIgkC+fPno3r07nTt3/mE3xGe+tnCh4R8Zt/04N18oxEGJXNkY08SP/NmyKuFv4v8IgsDBkAfM2R5E7CcT0vpexendsBKZLVQ37ubG/TfMXHWC568V2b2i+bMxqJMvBfM4qOyaf0cuFzh+8h7LVwcRFaVoOnAtm4de3XzJqUGhIJcLnD15n9VLThL+NgaAnLmz0qGHL+UrKX/rWdncufKMzQtPcjNEsQWpb6BP5VqlaNa9Cjlc/rtZnuSEFIIP3eRk4CVunX2IXK74CNXX16OkVyF86rviGVAKSw123or8t/g8Jghg/onh4qD4f7Bn3XmWTdpP2UoFmLjq295movDSUb61cHK5QGDIbeYeOE9iqgRDA306VHGls58bJkbK3RqLiU9m3o6z7L+g6AK0zWTOgGbeKi2+l0plBB65wartwSSlpKGvp0f9aiXp0qwCmVQo+v5OUlIqG7eEsGP31fQ5i/XrlKFtqwpY/sKEemWTlibjwK6rbFp9lrjYZACKlXSmUy8/ihR31lhcP8uDGy/ZvOgkV88qmln09PSo5F+cZt2rkEeDvmraQFRELOf2XuP0ris8uvY8/XFDY0Nc/YriXc8V92rFMdVinzcR3UYQBEY0msfNsw//86ap3+L5o3f0qD0XEzMjAq+Mxegb5Sii8NJRfrRw4THxTNl1mtN3FXU0ueysGdXID7f8yr8BX3v0mikbTvIiXFGf5lY4J0Nb+pLLUXUF05FR8cxff4aTwYqbtHVmM3q09KKmd1G1bT+GhUWzePkpgi8qMjVWVma0b12JWjVLatRnKzEhhW0bLrBr6yUkn7yjynsVpEP3KuTSgTqhR7dfs3XJKS6evJ/+mHuVwjTtWvmHbdr/Bd4+e0/Q7iuc2X31C2sKE3NjXH2LUaF2adyqFsdcg18CRDIex7cEM7vPegyNDVkRPBbHXMrdSckIyOVympefSFx04ndtJUThpaP8zMIJgsCJ20+Zuvs0kXGKrbG6rkUYWMcLawvlFqdL0qSsP3qV1QcuIZHKMDI0oG2NcrSr6aYy53tQDN6etfoUL8MUoq9o/mwM6FCFwnkdVXbNf3L56jMWLzvFy1eKLdDcubLSo2sVXMuqxwD2W0S+j2P9iiCOH7yFXC6gr69H1Zolad3ZG3sdqBEKvf+WbctOcf7IXT5/fBR3c6Fpt8qUqZBf67dQVY0gCLx48JYzu65wZu9Vwl98SH/OyMSQspWLUKFWGdyrFyeTtcV3ziQi8n1C77xmQM3pSFLSaDOsDs0H1tR0SFrL6M5ruHLmIT1G16V2K8+vHiMKLx3lVxYuPjmVeQfPExhyW+HHZWHGwDpe1C5XWOk3rzfvY5i++RTBd18AkMPOiiEtq+BZTHUiJE0qI/DwDVYHKrYfP3c/dm1WAevM6ql/+Ww/sXb9OeI++Wx5uOWle5fK5HTWbKH4y+eRrFl6iuAziuygkbEBdRu50qxtRTLrQH3Qm2eRBK4M4tTeG+mzIPMXy07jLj54Vi2m1S7+6kIQBJ7efsWF/Tc4v/86YZ9GYIGiaaFkxUJUqFUKjxolxcJ8kV8iITaJ3n6TCX/xgXK+RRm3uedP1yL/F1k/9yhbFp+ieiNX+k1u9NVjROGlo/zOwt168ZZx20+kW0+453fmr4a+5LZX7pagIAicvPaE2duCeB+tcKH3LZufAU19cFChC31kVAKLNp7l2HmFU3omC1O6NKtAvaollN7d+S3i41NYv/kCu/deRyaTY2CgT51apWnbqgJWGp7Pd//Oa1YtPsmdG68AMLcwoXHL8tRv6q7VMyA/E/kuhl1rznF426X0IdTZ82SlUUdvqtQro1F7D23icybswoHrXDhwgxcP/j8vUk9PjyJuefGoUQL36iXIkc/hP585FPk20jQZE9ot5fKxOzjkzMKCEyPIZCNmT7/HZz+vfEWzs2D31yfRiMJLR/ndhUuTyVgfdI2lRy+SKpVhbGhAR19XOvq6Ymyo3BtXYoqE5XtD2HpS4UJvZmJE59oetPArozLvL4CbD94we/Upnr785Dyfy47+7StTuoj6Csxfv4li6YrT6fVfFhYmtG5envp1y2pUIAiCwNWLoaxecorQx+EAWNmY06xNRWo3KIexifaLl9ioRPZtuMC+jcEkfGoisLHLRL02FajZ3ANLcQD1F7wJjSD44E2CD97g0fUXXzyXLbcdbtWK4169BMU88n2zGFjkv0dyQgqTO67g6ql7GJkYMuvgYLGL8Sd4++ojHf2mY2RsyJ7bE76aHRSFl47ypwv3+kMMk3aeIvjRSwBy2dnwV8MqeBRQ/jDsx68jmbrxJLdDFd+8XZyyMKRFFcoVUp0Qksrk7D1+i+XbgolPVGz9+XoWpFcrLxyyqu4f+j+5duMFS5afJvTT1k82Rys6d/DGx0t1nZ8/g1wucObEPdYtD+LtG0V9XFa7TLTo4EWN2qVUKoyVRVJCKke2X2L32vN8CI8FwMzCGP8m7tRrVxG7bNaaDVALiQyLIuTwLS4fu8OtC4+RSqTpz5lZmFDapzBufsUp51eULI7WmgtURKNERcQypsUint5+hYmZEcNXdsa9mvJnAmdEpGky6hb/C7lcYNOFkdja/XuXRxReOooyFk4QBI7efMz0PUF8iE8CoFbZQgys40WWTMpNJ8vlAgeC7zF/xzliEhRZihruhejX2Ius1qobdRMbn8zybRfYe/w2ckHAxNiQ1vXcaFmnHCYqLPr/OzKZnGMn7rJq7Tk+Rim2XosUdqJ758oU0+D8R1DYcxw/eIuNq88SGREHQLbsNrTq6EWV6sV1on4qTSIl6MAtdq0+y4tPWTwDQ328a5akYUcvXAqrztxXl0lKSOHGmQdcPnaHK8fvEh0Z98XzeYs7U65KUcpULkIRt7wYGmm/GBf5c948DWdk0wVEvPqIVdZMjNvUg4JlNNsopGu09prMh/BY5gT2pFDJfyczROGloyhz4eKTU1lw6ALbghVjcTKZmdA3oAINPYorvTYqNiGZJXuC2XlGcS0LU2O61ClP0yqqzbI8efGeOWtOc/PBGwAc7TLTq5UXlT3UZzCanCJh+47LbN1+mZRURY2SV8UCdO7gTQ4Nj92QpEo5uOcaW9aeJyZa0QGbM3dWWnfyplKVImqz6PgTBEHg6tlH7Fx1Nn0cEUBpz3zUb1+JspUKiEXB30AulxN65zVXTtzl8vG7PL7+gr9/ZJtZmlKyYgHK+BShtHchsucVa8MyIpeO3WZWr3XERyfilMeOCVt74+Rir+mwdI6BzZZw//oLRsxrSSX/f2cKReGlo6hi4e6+Cmd84Ekehim2xYrldGRkoyoUyaF8Z/gHLyKYuukk954rMhSK7cfKlCuk/K3OzwiCwMmQRyzccIb3HxWZp5KFs9OvXWW1ud8DfPyYwOr15zh8VNFlamCgT52AUrRpWQFra812GSYnS9gbeJnAjcHExym2aPPktad1Zx8qeBfUmZvt4ztv2LnyDOeP3kl3fHd2saNeu0r41iuDial6sp26SsyHeK6fvs+1Tz+xH+K/eD6LoxUlKxWiVKWClKxUCPv/6IzNjELk22iWjwzk/P7rABQsk5uxm3pinVV1zVAZmYm9N3Dh6N1vWkqIwktH+bxwo3ccYEitqliYKGcwskwuZ9uFWyw8HExCigR9PT2aVihJT//yZDZTriGjXC6w7/xdFu46n779WLVcAfo18VZp92NKahob915h074rpEqk6OlBrcrF6NqsIrZq9Dt69jyS5auCuHRFMavQ3NyY5k08aFS/HKYaFgaJCSns3naJHZsvkpSYCkC+Ao607uSNhw6MIfpMxJso9m0I5vD2yyR/eh+Zrc0JaOFBrRblsbVXX72frvI5G3Yj6AHXzzzg/uVQ0lKlXxyTLbcdJSoUoESFAhSvUAA7J9WZJ4soD2majD3LTrJpxkFSklLRN9Cnfjdf2gyrg7H45eS3mTlkGyf3XKfjkJo06uT9r+dF4aWjfF64/EMmk90uK38FVMavcD6lnT8yLoGZe89y+IbC+ylLJnMG1fGiZhnlF4XHJaawdG8wO07fQi4ImBob0qmWBy2qlsFYyWOO/k74hziWbDrH8QsPATA3M6ZdA3ea1FTtdf/JtRsvWLYyiCdPIwDImsWSdm0qUqOq5mus4uOS2bnlInu2XSLp08DmAoWdaNPZG9fy+XRGgCUmpHAs8Ap71l/gfVg0AIZGBngHlKR+u0rkLSLWgf0sqckSHlx9xs2zD7l1/hGPb7xELpN/cUy23HYUK5+fou55KeaRDycXe535t/Jf4faFRyweto2XDxVNT0Xc8tJrenPyaLjuNCOwcOxuDm6+SMtefrTqU/Vfz4vCS0f5vHA+kxcQ/snTqEohF0bUrEx2a+Ut5KUnr5i08xQv3ituVq55czC8YWXyOSp/XMTj15FM33yKm0/CAHC2t2ZAUx8qlsij0g/tO4/CmLP2NA9DFcLHyd6KHq28qOyuPnd0uVzgVNADVq09S3iEokMvV84sdGrvTQUtEDhxsUns2BzCnu2XSfn0761gESdadfTCzVN3XORlUhkhJ++ze8157v/NWqFYuTzUae1Jeb+iYhH5L5IYn8z9S6HcDn7M7fOPeHrrVfr27mes7TJR2NWFwuVcKFTWhfwlc4pzJTWANE3GhQM32LviFA8+ZdozZ7Gk05gG+Db1EGsglcSKqQfYtfocDTt60WlowL+eF4WXjvJ54cIjP7D5xgNWX7iGVC7HzMiQHj4etPUsg5GBcm4gEqmUdUHXWXH8EilpUgz19WnhVZru1TywMFXOFudnBEHg8MUHzNtxjo+xiiJvz2K5GdDMh9yOqqsjkcsFjpy9z9It5/jwqbi8REEn+rT1oUg+9Q1olkik7D1wg42bg9Md8IsWyU6XDt6U0IJB1zHRiWzfGMz+HVdI/bTdlL9QNlp18NKpLUiAR7des2fdec4duY1MqsjYZHHITECL8vg3dcPaVnXdthmZxPhk7l18yr2LT7l78SmPb778wrYCQN9An9yFs1OobG4KlM5NgVK5yFkwGwY6YGOii8RFJXB4/Xn2rw7i47sYQJHxrd6qAm2H1xVNUZXMssn72bP2PE26+NB+kP+/nheFl47yz4V78v4D4/af4tpLRbYon30WxtSqQrncyksbh0XFMn3PmfTB2/aZLRhU15vqpZR/w01MkbDqwEU2H7+O9JMDfHPf0nSq7YGlmeq+KSenpLFp3//rvwCqVSxMtxYVcVSj/1dCQgpbtl9i556r6QLHwy0vndp7kVcLuoyioxLZsSmYfTuvkpqiyIDlLeBIyw5eeHoV1IkuyM98CI/l0NaLHN52mZhPTReftyFrt/KkYAnNC15dRpKaxtNbr7h/OZSH157z8Nrz9Jv/3zExMyJvMWfyl8pF3hI5yVciJ875HcUM5G+Smizh8rE7nN51mSsn7qWLX2u7TAS086JmWy9xfJSKmDdyJ0e2X6ZNv2o07+H7r+dF4aWjfG3hBEFgz837zDh6jugkRbF6g9JFGVStEjZKHIp97v5zpu4+zeuPii0xt/zOjGhQGRcH5c8kfBkezZztQZy//RyALJnN6dmgIrU8i6r05v7+YzzLt17g0Jl7ABgbGdK8dlla1XXDwky5Wb7v8eFjPOs3BnPwiGLQtZ4e+FUpSvs2FcmmBQaXMdGJ7Nwcwt4dV9K3IF3yOdCifSUqVi6sUwJMIpFy7tBt9m24wOM7b9IfL1jSmTqtPKnoX0IcS6QkIt9G8+jacx5df87jGy95cusVyQkp/zrOyMSQ3IWzk7e4M7kLZydXoWzkLuSEtZ3YFPE1EuOTuRvyhPP7rnPh4M0v/k7zFnembpcqeNcvh7GJWDivSqYN2ELQgZt0GV6L+u0r/et5UXjpKN9buOikZGYfP8+Oa3cBsDIzZUDVCjQqU1xpN8LUNClrT19l5YnLpEpl6duP3aq5Y2mq/IzU+dvPmL3tDK8iFLVmRXI7MKCpD6XyZ1f6tf7Ow2cRzF8XlO7/ZWNlTqfGntT2LY6hGgvfX7+JYtXas5w5p2h2MDTUJ8C/JK2be5Ili+a3xGJjkti15SJ7Ay+nF+HnzJ2VZm0rUrlqMQwMdat25OGtV+zfEMzZw7fTB3Nb2VpQvZEr/k3dcXQW7ROUiVwu5+2z9zy+8ZLHN18Seuc1z+6+Jin+32IMFHVJOQtkI2cBR3LkcyBHPsWf9s5ZNN6Qok6SElK4fymUWxcecefCY57cevVFo4N9Dlt8Grji09CNPEVU+1kp8n/GdFnD5aCH9JnQAP+m7v96XhReOsrPLNyNV28Zt/8kjyI+AFAihyOja1WhqJPyPKvefIxl+p4ggu4pCjWzZjKnX61K1Cqr/GxHmlTG1pM3WHngIonJipt7NbeC9GlYCccsqvvHKwgCZ688ZdHGs7wJjwEgd3ZberbywrOMi1rrmh49fsfKNWe5+qkw3MTEkAZ1y9KssTuZtWBGYVxsMnu2X2LP9sskfLppZstuQ9PWFfCrqXsZo+gP8RzedonD2y6njyXS09OjbKUCBLTwwNW70H/qRq9O5HI54S8/EnrnFaF3XvPiwVtePnpLxMuPfOt2YmRiiGPOrGTLbUe23J//tMMhZxbscthibqlcSxx1khiXzLO7b3h6+yVPb7/mya2XvHkS8a+/C6c8dpTxKYJ3A1eKuLmIBfMaoFvAbF4+iWDiqg6UrVTwX8+LwktH+dmFk8rkbL58k/mnQkhMVfhyNXMtQV9fT6X6cp178Jzpe4J4GRkDQKnc2RjeoAqFcyi/HuljbCJL9lxg7/m7CAKYGBvSpno52tZwxVSFKfQ0qYw9x2+xekcIsZ9ERZmizvRu7U1BF/UZsALcuPmSVWvPcu+BohXcwtyYpo3daVivLObmmu8WS0xMZf/OK+zccpHYaMU4qqx2mWjcyhP/umU07lP2q8ikMi6eesChrRe5fv5J+uP2TtbUaOJG9UauoieYmkhJkvD6yTtePnzHm6fhvHkaQVhoBGHP3v/LX+yfWFqbY5/dFntnW7Jks8bWwYosDtbYOGQmi6M11naZyGRjoZGtOJlURtT7OKLCY/jwLoZ3zyMJC43gTeh7wkIjiH4f99XXOeTMQokKBSlZUeGjZqfhKRj/deRyOfVLjkKSKmXViSE45fx3CY4ovHSUX12493EJTD96loN3PvlyWZgzqHol6pYsrLSMjUQqZcOZ6yw7fomUT8akjcqXoLe/J9ZKrDH7zMOXEczaGsSNT/YTDjaW9GpYiepuhVRaWxSfmML63ZcJPHwdyadtqGoVC9O1eUWyqbH2RBAEQi6FsmrtWZ49jwTA2sqcFs08qFurtFZkl1JS0ji89zrbNwbzMVLhfm5lY06DZh7UblAOy0y6l4F4+/IDh7Ze4tjOq8THKESlgaE+HlWK4N/MndKe+cQsgwaQyeREvoni3YvI//88/8C7F5G8fxNFQmzST5/LzNIUqyyWZLa1wCKzGWaWpphbmqb/aWxmhJGxoeLHRPHf+l/JfMrSZEhS00iTSJGkKP5MTkghITaZpLhkEuKSSIhJIioilpjI+G9m8j5jl92GfCVykq9kTvIVV/wpFshrFx/CY2ntNRl9A3323p741eYQUXjpKL+7cBefvWLCgdM8+xAFQJmcToyqVYVCjnZKiy08Jp7Z+85y5OZjADKbmdCzhieNPUsovS5KEAROXnvCvMCzvPuo+EZYzMWRAU19KJFXtaaY7yLjWL71PEfPPQDAyNCAhjVK0a6BO5kt1bftJ5cLBJ19wOp15wl7q6iBy5rVklbNPKlZowRGWtAVJpFIOX7oFtvWXyD8bQwA5hYm1G5QlvrNPLDVgjq1X0WSmsa5w3c4tPXSF55gjjlsqdbYlar1y5LVUbwpaguJ8cl8CIsm4vVHIsOi+RgeQ1R4LFERsXwMjyU6IpbYqIR/mcGqEwNDfWwdrLB1tCZbrqxkz2tP9rwOih8Xeyy0oJxA5PtcOfOQ0Z3XkD13VlYeG/zVY0ThpaP8ycJJpDLWhVxn6ZlLJEnS0NfTo7lbSfpUUe5YoKuhb5i2O4hHbxXZmHyOWRhWvzJu+ZXfnp8iSWPz8eusPXSZpE8DqKu6FqRPo0pkU2H9F8CjZxEs2nSWq3deAZDJwoTW9dxo7F8aE2P1bVlIpTKOHr/L+k0XeP8pu+ToYEXrlp5U9yumFbVIMqmc08fvsm39BV5+ytIZGRtQLaAUjVuWx0lHZ/49f/SOI9svc3LPdRI/bUPr6+vh6lOIGo3dcPUuKHpU6QByuZzEuGTiPiYQF5VIbFQCSXHJJCWkkBSfQnKC4keSKiXtUyYrTSIlLVWK8A/TWEEQMDAywNjECCOTz9kxQ8wsTbHIZIallRnmmc2wtDLHxv7/W51itlS3WTvrCNuWnaZqg7IMmNrkq8eIwktHUcbChcfGM+3oWY7cVWSmbC3MGFi1EvVKFVHaVp1MLmfnxTssOBRMbJLihuRXIh8D63iR3Vb52YAPsYks2X2BfRcU9V/Ghga0rFaWdjXdlG72+ncEQeDSrRcs3nSOpy8VgsI+iyWdm1aghlcRDNT4YSqRSDl4+BYbt4YQFaUwg83uZEPb1hWo4l1YKwSYXC5w6cJjtq2/wP1P1g36+npUqlKEpq09yVdQfaa1yiQlWcL5I3c4GniFu1efpz9ua5+JqvXLUa1ROZxyKX/qg4iIiHYwsNkS7l9/Qf8pjajW0PWrx4jCS0dR5sKFhL5i0qHThEYqth9L5sjGyAAfimV3VEaoAMQmprDoSDDbg28jFwRMDA1oW7kcHaq4Yq6CQtZHr94zZ/sZrj58DSj8v7rW9aROxWIqtYGQyeUcO/eA5VsvEPFRkXXK45yFbs0rUrFsXrV2QKakpLHvwA02b79IbKzC1y2nsy1tWlbAx0s7uvEEQeDurVdsXXeBKyFP0x8v4+ZCk1aelHZV7bgoVfI69D1Hd1zhxO5rxH4SwADFXPNQrWE5KlYvjpk4NkdEJMOQkiyhcbmxSNNk3yysB1F46SyfF+7G8+eUyp37j88nkcrYePEGi4IukiRJUxTGlylGf7+KSjVfffz2A9P2BHHlqUIQ2We2oF+tStQso/yCeEEQOHMzlHmBZ3n9PgYAF6cs9G3shWex3Cq9oadKpOw4coP1uy8Tn6jI9JUo6ET3lpUoWUi9Q2iTklLZtfc623dcJv6ToWKunFnSBZi2mJyGPgln+4Zgzpy8h1ym+LjIV8CRRi3L4+VbBEMd3apLk0i5eOo+xwKvcO38k/QCajMLYyrWKEHVBmUpVk53BaaIiIiCc4dvM7nvJuyz27D21NBv/k6LwktH+bxw+SdOoXOlCvT08MBcCfVE7+MSmHnsHPtvPwQgs6kJfXw9aVpOeYXxgiBw8s5TZu07S1iUoiC+eE5Hhtb3oUQu5W8xpUll7Ay6xYr9F4n9JILcCuekXxNvCjgrr6nga8QlpLBp3xW2H7qePoLIs4wL3ZpXJF8u1V77nyQkprJrz1UCd10hISEVUAiwtq0q4F1JewRY+NsYdm29yOF9N9LHEdk7WtGgmTs1apfGXIezRJHhMZzcfZ1jO6/y7tXH9McdnW3xq18Wv3plcNDROjcRkf8643usJ+TEvW/OaPyMKLx0lM8Ll2f8JPRNTcmWKRMjq/hQLX8+pXxzvvYyjEkHT/MgXFGvVNAhKyNqVsYtj/KyNalpCvuJFScukyxR3GBrlS1En4CKOFpnUtp1PhOXmMKaQ5fYevImaVIZenpQq3xRutXzxMFW+df7O5FRCazZEcL+U3eQfRr9U61iYTo3rYCTvXo73xISU9m5WyHAEhMVAix3rqy0aempVQIsLjaJ/TuvsjfwCjGfBpdbZjIloH5Z6jVxI0tW1a6ZKhEEgXtXX3Bi9zXOHr5FcqIk/bkS7i741itDxeolMLfUClFjDAAAqPlJREFUXZEpIvJfIi46kZYVJyFNk7F4Xz/yFPp2EkEUXjrK54Xbff06cy5fIyxOkTmqmDsXo30r42L759+aZXI526/eYd7JYGKTFZki/2IFGFzdi2xWyrvpRcYlMP/gBfZeuQ+AqbEh7SuXo13lcpipoCvwTWQMi3ae5/hVRVOBibEhLfzK0NbfVaUDuAFevY1ixbYLnAxRXNvQQJ86vsVp19CDrDbqtVRISEhh556rBO66mi7AcuXMQusWnlpTAwaQmpLGiSO32bn5Im8+ZYkMDfWpXK04DZq7kze/8moRNUFKkoTg43c5vusaty6Gpm9Fmpga4eFbhCp1y1C2Yn6xK1JERIvZueosK6cdxKWwE4v29v3usaLw0lH+vnBGZmYsuXiZFVeukiaTYaSvT/tyZelZ3h0L4z/v5ItOSmb+yWC2X72DXBAwNTKkU0VXOlYsh6mR8kw6774KZ/qeIG6+eAeAvZUlfQMqEFBGNcOW74S+ZW7gWW49Vbi/W1ua0bmOBw28SmCk4pvcw2cRLNl8jiu3XwIK8deoRmla13NVqwcYKATYjt1X2bH7/wLMOYctrVt4UsVHO7ogQdEJGXLuETs2hXDv9uv0x0uVy03D5h64ls+vNdm63+X922hO7b3ByT3XefPJbgMUcyK9A0pSuU5pCpZwFuvBRES0iJRkCR18pxH9IYG+ExtSo4nbd48XhZeO8rWFexEdzcRTQQQ9U7SxO1haMtzHi4BCBZXyQf0wPJJJB09z9aXCKT6bVSaGVPeietH8SrsRCILA0ZuPmXvgPG+jPxmiOjswuJ43pfMof8jr5wL8+TvOpQ/gdra3pmeDiviWVd77+hbX7r5i6Zbz3HuiEJsWZsa0qONKk5plsDBTnf3F11BkwK6xc/fV9CJ8p2zWtGpenqq+RbWquP3hvTB2bb3I2VP30wvxc+TKQv0m7vjVLIGZmv/ulI0gCDy+84bT+24QdODmF12RTrmy4FOrFJXrlCZHHvXWCYqIiPybz9kuxxy2rDg66Ktu9X9HFF46yrcWThAEToU+Y+KpIF7HKob6ujvnYIxvFQrY/bl/kCAIHLn3mBlHz/EuVmGX4JY7B8Nr+ijV/f5z/dfKk/83RK1WMj/9alUiRxbl10RJpTL2nLvL8n0hRMUrRosUc3GkbyMvShdQbReiIAgEX3/Gsq0X0j3ArDOb0ba+O/WqlsREzaN/EhNT2bP/Ott3XiEuTmFD4ehgRYtmHlT3K6YVo4g+8z48lr2Blzm09zqJnxoGMmVW1IHVbuiKXQaYnyhNk3Ej+Amn998k+PhdUpPT0p/LXyw73gGl8AoogZ2jteaCFBH5j5KSJKFdlanERiXSb3Ijqjf6unfX3xGFl47yo4VLlUpZcfkqSy5dIlUqw0BPj5alS9K3gidWpn/uTp8sSWP1hausOHeFVKkMfT09GpUtRp8qnmSxNP/j83/mQ1wiCw8Hs/uywhDVyMCAFpVK0bmqm1Jd9j+TmCJh49GrbDh6lZRPXYiVSrrQs0FF8mVXrfGlXC5wMuQRK7Zd4E14DAB2tpa0beBO7SrFVb79+U+SkyXsO3CDbTsuE/1pJmHWrJY0behGQM2SmKnQkPZXSUpM5djBW+zedol3YYrMpb6BHpUqF6FeEzeKFM+RIbbnkhNTCTl5n9N7r3M9+OkX422Kls2NV82SVKxRHFs73W08EBHRJVbPOEzgiiAcnW1ZceTH2S4QhZfO8rMLFxYbx+SgMxx9/AQAGzMzBlaqQOPixZTipv42Jo4ZR89y5J7i/JYmxvTw8aCleymMlSgUHoVFMmv/WS4+VozlsTI3pVs1D5pUKIGRgfIFyYeYBJbvv8jec4ouRH09PQI8i9C1rieOKu6AlEplHAy6x9qdF9NNWLPZZaZ9Qw9qeBdVqQHs10hJSePAoZts23GZDx8TALCyMqNRfVfq1SmDpRbZO8hkci6ef8zurZe4feNl+uP5C2WjflN3vHyLaFXG7k+IiUrg/OE7nDl46wuXfD09PYq75cGrZkkqVCuGtQ7OwRQR0QUe3X7NgCaLkMsFxixpi4dvkZ96nSi8dJRfXbgLL14y4VQQTz8qusKKOtgzukplyuZQTt3UlRdvmHL4DA/evQcgp601Q2t4Ubmgi1Lrv84/eMHs/WcJjVC47Oeys6Z/rUpULqYaV/gX76JYtPs8p68rXNWNDQ1o6luKdv5uWKm4CF6SJmXfyTus332JD5/sFHI4WtOhUXmqViyk1jFEoBhFdPTEXbZuv8TbdzEAWFiYUL9OGRrWK4e1tfIyncog9HE4ewIvc+roHdIkMgCsbSwIqF+GWvXLkSUDZYUiw2MUIuzQLR7d+n/jgb6+HiXc81LJvzieVUURJiKiLNIkUvo0WMCLx+H41CrF0NnNf/q1ovDSUX5n4dJkMjbdvMW8CyHEpyrqYeoULsQQ70o4Zvrzm5BMLmfPzfvMPXGBDwmKranyLjkZ5u9NAQflbdNJZXJ2X7rLoiMhRH26ThmX7Ays7UXxXKqxFrgT+pYFO89z/bFirqClmQnt/F1p5lsaUxWMPPo7qZI0dh27xYbdl4mJV9Rc5c5uS4fG5aniUVDtnXwymZxTQQ/YtDWEl5/sHUxNjAjwL0GThm7Ya1ldVUx0Iof3Xmf/zqt8+DQ83MBAn0pVClO3kStFMliXYMSbKM4ducPZQ7d5cvdN+uP6+noUd3OhYvXieFYtiq2WrZOIiC6xfu5Rtiw+hZWtBcsODcTK1uKnXysKLx3lTxbuY2ISs86fJ/D2XQTAzMiQ7u7udHQti4nhn2/DJKZKWHb2MmuDr5Mm+3/9V+8q5clq+fP/OH9EQkoqa05dZX3QNVKlioxGjVIF6BNQgRxZrJV2nc8IgkDw3Rcs3HmOJ28+AJDFyoLOtTyoV6mYyrv+klIk7Dh8g037rqaPIcrjnIWOjcrj415A7QJMLhe4EPKEjVtCePwkHFD4a/lVKUrzxu7k/MacMk0hlcq4EPSQvYGXufu3rFDeAo7UaViOytWLY2qqWhGtbt6++sj5I3c4f+Q2T+6GpT+up6dHoVLOeFYrhmfVYt+cKSciIvJvPo8GAhg2pwXeASV/6fWi8PoBUVFR9O7dm/3796Ovr0/Dhg2ZN28elpbfTtn7+Phw5syZLx7r2rUrS5cuTf//V69e0b17d06fPo2lpSVt27ZlypQpGP6k8FHGwv2PvfcOj6s+0/4/mlHvvffee5csy71gA6YaMBBqgJRN3mw22f3t7rvZfTe7STabToDQiwHbYOPeq3rvvffe67Tz++NIIxsMWNJItmDu65pLcGZ05mi+4/ne8zz3c9/lPT38x4XLFHWJPlauFub8fH0a2/w1Y6PQPjTC/57LUOu/TAz0+W5aPE8kRmGgQf+vnuFx/nw6i2MFVQiCaEq6NyWC57ckYKnBnMl5KFUqTufW8OpnWXQNiJYXLnYWvHBPMtviV975fWJqlgMni/joeCETU2Ll0sfdlqcfSGJ9/Op7WQmCQGFRCx98lENJmajB09GB1GR/HnkogaBA51W9nltBQ203Rw8VcPFsObJZcYjC1MyQLXdFcPd9sbh8A4lId9sgmWcryDhTfkM7EsArwInkLSEkbQ7BO8jpG1UB1EILTaKqqIWfP/E35DIFu/cl89K/3rPoc2iJ19dgx44ddHd38+qrryKXy3nqqaeIi4tj//79X/o76enp+Pv78+///u/qY8bGxuoXWKlUEhkZiaOjI7/5zW/o7u7miSee4LnnnuOXv/zlLV3X/MKNjIxgYbF0ewVBEDhWXcOvrlyjd0IUTie6u/HPG9IJtNeMPURhayf/feoKFV29ALhYmvOTralsD/HX6Ad8bWc/vzt+jaxaUVRtZmjAM5vjeDQ1CsMVEFTLFUoOXy3njeM5DI6JLU9fF1u+d18qqeErH3o8PjnDxyeK+PhEIZPTYuSMn4cdTz+YRFqcZqKjFouq6k4+PJBLRla9+lhUhDt7H0ogLubOC4IeG53mzPFijn9aqJ6GBIhJ8Gb3/XEkJPsh1b0zDGQ1iYGeUbLPV5J5toLy/OYbpiMdXK1I2iySsJBoD61jvhZazKGrdYAfP/QyY8OTJGwM4l/+8sSSDKa1xOsrUF1dTXBwMPn5+cTGxgJw+vRpdu7cSUdHB87ON/8mn56eTmRkJL///e9vev+pU6fYtWsXXV1dODg4APDKK6/ws5/9jP7+fvRvwW1+fuEe/vgd/t+Wu/C1Wt439CmZnNfyRPf7eXuIveFh/F1qMjbGyxdNq1QCx8qq+d35THrHRIIX6ebEP2xLI8pdsxWRrNpWfnfsGrVdoieWo6UZ39uRxK6YoBURpE/PyvnwfBHvni5gYlqsQIX7OPHSnlRiA900/nyfx9jEDB8dL+TAqSKm5gmYpx1P3S8SsNvh5t7aNsBHB3I5d7EK5dym7uNtz94HE0hPC7ijzFhBfH8W5DRw7JMC8rLqmf+0srU3Z+c9UWzfHYXtN1QTNTY8Se6larLPVVKYUaeuAAKYWRoTlxZA/IYgYtb5Y2q+uqkKWmhxp6C/e4SfPf4a3W2D+IW68Ov3X8DQeGmWOlri9RV48803+clPfsLw8MI3YYVCgaGhIQcPHmTPnj03/b309HQqKysRBAFHR0d2797Nv/zLv2A8R2D+9V//laNHj1JSUqL+nebmZry9vSkqKiIqKuoL55ydnWV2ThAP4sK5ubnh9tv/QN/EmO+ERfHDmGTMDZY32t8xOsp/X77K6Tn7CTMDA76flMjj0ZHoa8C2YUom563MQt7IyGdaLn7Abw/15ydbUnG10pwxqlKl4kRhDX8+lUXPiCio9nOy5Ue7UkkN9FyRysvoxDTvni7go4vFzM55gMUHufPSnhRCvb88MFVTGJuY5sPjhRw8WcTUjGiy6eNuy1P3J94WDRhAX98YBz/N5/ipUmbmrsnB3pwH9sRy146IO9JhvrtrmBOfFnLmeAmjc/5lEqkOSakB3HVfDNFx3ms+mujLMDMloyiznuzzleReqmZ87u8HkOpKCI31Im59IPHpgbh6291xFUwttFgJdLUN8o9P/o2+zmEcXK3434+/tyyvPC3x+gr88pe/5J133qG2tvaG4/b29vziF7/gxRdfvOnvvfbaa3h4eODs7ExZWRk/+9nPiI+P59NPPwXg+eefp7W1lTNnzqh/Z2pqChMTE06ePMmOHTu+cM5/+7d/4xe/+MUXjj9+8H2u9otxM7ZGxvw0YR0PBoYiWeYHYm57O//v4mWq+8SqkaeVJf+Yvp6NPpqxh+gbm+APF7I4XFKpNkZ9PDGS76Zp1hh1RqZgf0Yxb5zPZ3xGJK5xPq78ePc6Qt1XZgJyYGSCN07kcvhqOYq5as/6SB9evDcZX9eVj3gZHZ/m4xNFHDxVpG5Berna8J37E9mY5L/qNhQAY2PTHD1ezKefFarNWM1MDbl7VxT33RONtfWdZ3Mgm1WQcbma44cLqShpUx93crFixz1RbLsrEqtvsD2DUqGkuriN3MvV5F6spr2x74b7Hd2siU8XSVhYvDf6Kzzdq4UWtwMNlZ383+++xVDfOC5etvzX289h52S5rHN+K4nXz3/+c371q1995WOqq6v59NNPl0S8Po+LFy+yadMmGhoa8PHxWRLx+rKK1+joKEUjg/x75iWaRkRvqzA7B/4tdSMxjsvz6FKqVHxSUclvr2UyOCVulikeHvx/G9ZrJH4IxPzHX5++SnbTnDGqkSHf25DIw7HhGjVgHZ2c4fULeXyYUYJsbgJya4QfP9iZgoedlcae53p09o/y+rEcTmRXoRIEdHRga1wA370nGXeHlXnO6zE2McOBk0UcOFmkFuG7O1vx5H2JbEkJXHUjVoDZWTlnzldy8JM8OuY0VXp6UrZuCuGhB+Jxd7szRe0tTX2cOFzE+VOl6mgiXV0JyesD2XlPNJGxXt/YKtg8utoGybtUTd7lGsrzmlDIler7DIz0iEjwITYtgNi0AJy+gcMJWnz7kHupmv/+8X5mpmR4Bjjyn28+q5FUiG8l8erv72dwzkj0y+Dt7c3777+/pFbj5zE5OYmpqSmnT59m27ZtS2o1fh6fXziZUsm7FcX8oSCLcZlY5bjHL4ifJ6bhZLq8N8r47Cx/zcnjrcIFe4i94WH8XUoyNibL138JgsDV+hZ+c+Yqjf0ieXS3tuT/bElha7Bmg6q7h8d4+XQ2R+cmIKUSHe5LCOW7WxOxt1iZ6kVz1yCvHs3mfEEdID7nzqRgnt2ViIud5nMnP4+JqVkOnizioxNFahsKFwdLntgTz/a04FWPIgLRCywrp4GPDuZSVd2lPp6U4MND98cTcYd6a83MyLl6vpLjhwupqVywZ3BysWL77ki23hX5jTJm/TJMT85SnNVA/uVq8q7UMNQ3fsP9Lp62RKf4EZ3qT1iCNyammo/30kKLlYJSoeT9P53n41cuIQgCUSl+/H9/2qex9/G3knjdKubF9QUFBcTExABw9uxZtm/f/pXi+s8jMzOT1NRUSktLCQ8PV4vru7u7sbe3B8T25E9/+lP6+vowuAWd1pctXP/UJL/JvcbBmjmPLl1dXoxK4PnIWAx1l9cKaBsZ4VeXr3KmXnRxN9HX56XEeL4TE60R/y+FUsUnRRX86WI2g5NihW2lBPh1XQP88WQGV6vEqBVDPV0eXRfJ0xvjMDdemU2ipq2PV45kklEmPqdUKuGe1FCevithxWOIACanZvnkTAkfHS9UG7E62Jix7544dm0MW/UwbhBJd0VlJx8dzCU7t0EtavfzdeDB++PYkBZ4xwnx59FY38OJw0VcPFPO1KRYBZNIdIhP9mPH3VHEf0MnIj8PQRBorumm4Got+VdrqS5uRalYmJKU6koIivQgKsWXqBQ//ENdtZOSWtyx6O8Z4Vc//pDKwhYAdj6SyIv/fPctZTDeKrTE62uwY8cOent7eeWVV9R2ErGxsWo7ic7OTjZt2sS7775LfHw8jY2N7N+/n507d2JjY0NZWRk//vGPcXV1VXt7zdtJODs78+tf/5qenh4ef/xxnn322UXbSXzZwpX39/DvGZfI7xG/lbuYmvHzpPXs8glYdiUhr72DX166QkXvnD2EuTn/sH4dOwM0Yw8xOSvjzcwC3sosVAvwtwT78uPNqXjZarZFV9jUwR+OZ1DSIurkzIwMeHpjLI+ui8JIf2U0K+WNXbx6NJucStH2Qk9Xyp60MJ7eGY+t5cprhqZn5Bw5X8r+owUMjohRRDaWJjyyO5Z7t4RjfJvCr9s7hjh0uIAz58qZnZuss7U15b67Y9i1MxIzszuzajIzI+faxSpOHS2+QQtmbWPKlp3hbN8d9Y30BfsyTI5PU5LdSHFWPUUZ9XS33dhdMDY1ICLBh8hkP6KSfbUifS3uCAiCwMXPinnlP48yMTqNkYkBf/f/7l+0OeqtQEu8vgZDQ0N8//vfv8FA9Y9//KPaQLWlpQUvLy8uXbpEeno67e3t7Nu3j4qKCiYnJ3Fzc2PPnj388z//8w0vcGtrKy+++CKXL1/GxMSEJ598kv/+7//WqIGqIAgcb6zlv7Kv0DUhtgLiHF3419QNhNktT1iuEgQ+q6rmf65mqP2/opyd+KcN64m6xUrg16FvbII/Xcrm06JKVIKArkTCg7FhvJSeoFEHfEEQuFLVxB9PZNLQI24SduYmfHdrAnsSQlckhBuguK6Dvx7JUscQGehJuT89gie3x2Fjobm/78swK1Nw/FIF73+WR++A+P6wMDPkoZ0x3L8tEvPb1B4aHZvm2PFiDh8rYmhIJIaGhnrs2BrGfffG4OpifVuu61bQ3jrA6aPFnDtZxshcviZAWJQ723ZFsW5j0B05ybmS6G4bVJOw0txGJkanb7jf2t6MiERfIhK8CUvwwcnNWkvEtFhV9HYM8fJ/HCXvUjUAfqGu/Pz3j65YooOWeK1RLGbhpuVyXivN56/FecwoFOgADwSG8tP4VOxNlldhmZbLeT2/gNfyFuwhdgb489O0dbhZaka/VN83wG/PZnClTmzRGevr8XRKDN9JjsHEQHObmFKl4mRRDX85nU3XkOhI72pjwfe2J7E9KmBFpgEFQSC/pp1XjmRR1ihqnQz0dXkwPYIntsdhbb7ywdNyhZIzV6t490geHT0jABgb6bNnSwR7d8VgY7nyJPBmkMkUXLxczcFP82lqFqdrdXQgKcGX++6NITrS447doBUKJTkZ9Zw+WkRBTiMqlfjxZ2SsT9rGYLbuiiA0wv2Ovf6VglKporGqi5KseoqzGqgsbEEuU9zwGDsnC8LivAmN8yIszhsXL9tv3eukxepgZkrGgdcucej1q8hlCnT1pOz7wRYeeDZtRdvhWuK1RrGUheueGOdXOVc5Ui+yemNdPb4XncAzETHL1n/1Tkzwu4xMPimvREC0h3gyOpIXExOwMNRM5SS3qZ3/OXtN7YBvY2LMSxsSeTBGs1UpmULBJ9kVvHY+l8HxOUd6Rxt+sDOF9BDN2Gl8HoIgkFPZyqtHs6hoEnMPDfV1eXBDBI9vWx0CplCquJhdy7uH82hqF7Mo9fWk3LUhlMfujsPZfuUHAW4GQRAoKm7l0OECcvIa1ce9PG25/95YNm8MxuAOtjLo7xvj7PESzp0spatjYVDH2dWKLTsj2LIzAnvH2/Pa3m7MzsipLm6lLLeRstwmasvab5iWBLCyNSU0zouQGC9CYj3xCnBaklu4FlrMQyZTcPrjPD5+9aJ6MCQi0YcX//UePHwdVvz5tcRrjWI5C1fU08W/Z16ipE/UNWlS/1Xd189/X75CZquodbE0NOT7yYk8GhmhEQNWlUrgdGUdvz+fSfvwKAAeNpb8eLPmJyCnZuV8cK2Yty8VMD7nSB/m7sgP70ohwc9dY89zPeaDuF/9LIuqFpFgGurr8tDGSB7fFouV2coTMJVKILOokXcP51FZL75HpBIdNiUH8vi98fi4a8ZKZCloax/k088KOXO2gplZ0ZDV3NyI3TsjuWd3FHa2d+5EoSAIVJS2cfZEKVcvVDE9JU4f6+hAZIwXW+6KICU98FvXirweM1MyqotbKS9opiK/mZqSti9UxIxMDAiO9iAkxpPgaE8Cwt2W7CCuxbcLCrmSs58U8NFfL9DfLe4fjq7WPPvzu0jeErJqlVUt8VqjWO7CCYLA0foafpV7Va3/inF05p+TNxDlsDyXdUEQuNrcwn9fuUr9gKiZ8rC05O/TUtmuoQBumULJwcJyXr6cw9CkqBkJd3Hk/2xJJcFbszE9Y1MzvHWpgA+uFTMztwkk+Lnx/R0pRHiujCO9IAhkljfz2tFsNQEzMtDjwQ0R7NsauyoVMEEQKK7q4N0jueSVtqqPp8Z4s++eeMIDl+cTtxyMj89w8nQph48V0dsrtoWlUglpqf7cd08MIcEud3R7anpaRsalas6dLKWkoEV93MhYn3Ubgti0I5zwKI9vfWVHNiunrqyD8oJmqgqaqSxqZXpy9obHSKQSvAIcCYr0ICjKnYAId5w9bO7o9ddidTE5Ps35w0UceTuDng7RssjGwZy9L25k2wNx6K3yRLeWeK1RzC9cYWsj0e7eSz7PtFzO30oL+GtxLtMKkVTc7RvIPySuw9Vsee0PhUrFofIKfp+RxcCcAWuUsxM/X59GjKtmNu3JWRlvZRbyVlYhUzKxApLq68GPt6QS7GSvkeeYx8DYJH87n8fB7DK1I31asBff255MkKtmn2seNyNghvq6PJAewb5tsdiugggfoKapl/eO5HE5t05t+RAe4Mzj98aTFHX7InSUShUZWfV8eqSAsooO9XE/Xwf23B3Npg3B6N8Gm4zFoKdrhPOnyzh3ovSGoG5bOzM2bgtj0/YwvFah/bEWoFSqaKntobKwhcqCZiqLWhicI97Xw9TCiIBwN/zD3cSfYa5Y3cHVUC00D0EQqCvv4NRHuVw+UcLstLg/WNma8tB3N7Bzb8JtS1vQEq81ivmF83rt//JYRBI/Dl+HteHSqyA9E+P8T14Gn9SKGi19qZRnw2N5MToeM/3l5T9OyGS8nlfAGwUFagH+Vj9ffpq2Di9rzdhDDExM8tfLuRwoKEehEknRXWEB/HBTMu7Wlhp5jnl0Do3y2rk8juZXopwTTW8O9+Wl7Un4Oq5MG04QBDLKmvnbsQUCZqAn5b714TyxPQ67VbChAGjtGmL/0XxOXalSk08vNxv23R0nuuHfRn+mhsZeDh8t4vzFKmRzlUlzcyN27Yjg7l1RONzhIdfzrcgLp8u5eqGKifEZ9X3efg5s2h7Ghi2h39iw7qWiv3uE6uJWqkvaqC5upam6+wvtSQBbRwv8Ql3xC3PFP9QFnxAXLO/AqCotloex4UmunS7n9IE8Gq4zOfbwc+CuRxLZcl/sbW9Na4nXGsX8wrm/9q9IjAwx1zfkR+Gp7POPRk+y9M2vor+X/8y6THZXOyDmP/44LoWHg8LQXeZUX+/EBH/IzOJQuWgPIdXRYW9EOD9MTtKIAz5A29AIf7yQxYlyMeZJVyLhodgwXlifgJ2ZZqtDrf3DvHImh5PFNQiCqNXZGRXIC9sSVyyGSBAEsitb+NvRHMqbRP2Vvq6Ue9aF8uSO+FUxYgXoH5rgwMlCDp8rY2ouD9LBxoyH74rh7s1ht80LDEQ7ipOnSvnseDG9fWI1RCLRISXJj3vvjiZqDUwTymYV5GXVc/50GXmZ9SjmDEnn9WCbtoeRsiEIE5PlfSn6JkIuU9BS10NtWTt1Ze3UlLbT0dTPzbYgW0cLfENc8AlyxjfEBe8gJ+ycLO/494cWN2J6cpbsC1VcOV5CYUad2sBXT1+X1O1h7NybQEiM5x2zrlritUYxv3Dn6sr537pcqofFAFtvc2v+KXojG118l/wmEwSB8y2N/Ff2FZpGxdaHn5UN/5S0nnR3r2W/eesGBvjN1QwuNTYBYKKnx3PxcTwVG42JvmY27KruPn53LoOMBlGbZKSny+OJUTydGouFBkO4ARp6BvjLqWwulIuO/lKJDrtjg3l+SzyuNpYafa55CIJAblUbfzuWTWmDaEOhK5WwOyWEJ3fE4Wq3Ms/7eYxPznD4XCkHThQxNDoXfm1iyJ6tETywPRJbq9tXUVAqVWTnNvDpZ0UUlyxo1Dzcbbh7VxRbN4diugaIy9joNFcvVnHxdBkVpe3q43r6UhKS/UjfGkpCsh8GhnfuZOftxtTELE3VXdRXdFBX0UF9eQedLQM3fayJmSGe/o54BjjiFeCEh58DHr4OmFmuvK5Si1uDIAh0tgxQeK2Ooow6irMabqhyegc5s/HuKDbvicHC+vbY4XwVtMRrjeL6hTMxNeVAYxm/LbnC4OxcmLWjJ/8cs4lAq6Vrj+RKJR9UlfL7/CxGZsW2R6qrB/+YtJ4Q2+VrmrLb2vjV5WtqB3xbY2N+mJLEg2Gas4fIbWrnf89nUNYhWjSYGxrwTGos+xKjMNawM31VRy8vn85WxxDpSiTcEx/Mc5sTcLZemX9cgiBQWNvO347lUFgrapykEh22JQTy9M4EPJ1Wx2x0Vqbg1NUqPjxWQHv3XPi1rpRt64J4ZHcsXq6317m9pXWAw0eLOHu+gpkZUethaKDHpo3B3Ls7Cl+ftaGh6u4a5tKZCi6cLqe9dYE4GBvrk7w+kPQtIUTHe9+xMUt3EiYnZmiu7qaxuouGyk4aqjppb+y7Ie7oeljZmeHh64C7rz1uPva4+9jj6m2Pla3pHVNJ+SZjqG+MysIWirPqKcyop+86PSSAs4cN6bsiSd8ViZvPymhuNQUt8VqjuNnCjclmeLkim7dq8pGpxDDrh30i+HFEGnZGS2f9o7MzvFyUy1tlRchUSnSA+wNC+El86rIDuFWCwMmaWn57LZP2UXG818vKip+sS2GbhiYgBUHgYk0Tv7+QSUOfOGVpa2rMC+sTeDAmDH0Nb1Jlrd28fDqbrFqxyqIrlXBfQijPbo7H0XLlWoEl9Z28cTyH7LkoIh0d2Bzjz9N3JeDnZrdiz3s9lCoVGQWN7D9WQHntQvh1crQ3j+6OJSrY9bZuUpOTs5y9UMnR48W0XEdcgoOcuWdXFOlpgXe8GB/E93RTfS+XzlZw+XwlfT2j6vvMzI1YtzGI9C0hhEVqJyMXA7lMQUdTP811PbTU9tBc201bQy99XSNf+jsmZoa4etvh6mmHs6cNzh62uHja4uxpqw0HXyKUShUdTX1UF7eJgxSFLV+IntLVkxIS40nMOn9i0wLw9HdcMwRYS7zWKL5q4drGh/nv4sucaqsBwFRPn5dCknk6KA4D6dI3lfaxEX6dm8GxBvG8hrq6PBMewwtRyxfgy5RKPiot409ZOQxPi/YQEU6O/Gx9GvFurss69zyUKhXHy2r486VsOoZF7Y+LpTnf35DI7oggjTvTFzd38vLpbHLrxfaQnlTKA0lhPLMpDnuLlWvBVTb38OaJXK6ULJiNpkX68PTOeEK9V8b+4mYor+1k/7ECruYvhF8HejvwyO5YNiT6o3sbCYEgCJRVdPDZsSKuZtShnBsUMDc3YsfWMHbfFYmL88ro9DQNlUqguqKDy2cruHKh6oaoImsbU9ZtDGb9pmCCw91u2/TpWsfUxCztjX20NvTQWt9LR1M/7U399HYMqVMJbgYLaxMc3axxcrPB0c0aR1crHFytsXOyxNbRQtseBibGpulo7qe1rofGqi4aqjppqu5mdq4yPQ8dHR28AhwJjfMiJtWf8ASf2y6SXyq0xGuN4lYWLq+vnf8sOE/ZkNhmczGx4B8i17PbM3hZ3wxKerv5ZfYV8rrF1paNoRE/iktmb1D4sluE47OzvJFfwBsFCwHZ6708+fu0dQTZa6ZqI1MoOVRUwV8v5zAwIbZmvW2t+cHGJLYG+2l8cypo6OAvp7MobBInbPR1RQL29MaVJWANHf28eTKPc/m1auITH+TOUzvjiQ10W7Vvh+3dw3x0opATlyqRza2pg60ZD+6I5u5NYZga316d1dDQBCdPl3HsZAl9/ePq4zFRHuy+K5KUJL8107pTKlSUFbdw+VwlGZerGR9bmIy0sTNj3YYg0jZqSZimIJuV09U6SHtjH50tA3S1DtDZMkhX6wAjgxNf+/sW1iZqEmZtb46NvRk29ubYOFhgZWuGpY0pFtYm6OqtjfffzaBUqhjqG6O3c5j+7hH6Okfoahugo2mAzpZ+Rocmb/p7hsb6+IW6EhorGuUGRbljYma0yle/MtASrzWKW104lSBwpLmC/ym5QveUuKlE2jrzzzGbiLFbeiVJEATONDfw65yragG+t4UV/5CYxjavpQv759E/McmfsnM4UCbaQ+gAu4MC+VFqMu6Wlss69zymZXLezy3hjYx8Ruec6YOc7PnhxiTW+y9/iOB6CIJAXkM7L5/OprhZbMHp60p5IDGMpzbG4bCCdhAtPUO8fTKPU7k16spOqLcj39kRT1qEz6ptwMNjUxw+W8qh08WMjIlVTWNDPXZtDOOhndG3LZJoHkqlipy8Ro4eLya/sFlNVq2sTNixNYy7dkTg7GR5W69xMZDLlRTlNXLlfBVZV2uZus541NrWlHXpQazbGERIhLu2HbkCmJyYoadtiJ72Ibo7BulpH6K3fYjerhH6u0eYmUsuuBWYWRpjaW2CuZUJ5pbGmFkZY25pgpmlMabmhhibijcTM0OMTQ0wNjHAwEgfA0M99A31NLK+giAglymYmZIxOyNncnyGidFpJsamGR+dZmJsitGhSUYGJhgenGC4f5yRwXEG+8ZRKW+um5uHjb05bj72+ASL06W+wS44e9ogWYF83DsBWuK1RrHYhZtWyHm9Oo9XKrOZUogl3J3ugfwsKh13s6W3VORKJR9Vl/H7/CwGZ8TNNMbRmX9KWk+M4/JNUluGh/ldRhYnakR7CD2JhL0R4XwvKQFbE81Mq4zPzPJ2ViFvZxWpTVgj3Zz4u03JJHprNhpIEARy69v565nVJ2Ddg2O8d6aAz66VMzuXh+ftbMN3dsSxNT5w1Vp/szIFZzOq+eh4Ic0dom5DoqNDWrwve++KISzA+bZrNbp7RjhxqoxTZ8sYuu4beWy0J7t2RpKS5LtmqmAgZtMV5jZy7WL1F0iYpZUJKemBpKYHEhHjuab+rrUKQRCYGJumv2uEvu4RhvrGGOydu83998jQBKNDk19LWm4Fevq66BvoItWVoqcnRVdfiq6udOFL19y/Nx0dUCkFFAolSoUSpVKFQq5CLpMzOy3/yrbqV0GqK8HO0RJ7F0vsnCxxcrPGxcsOVy87nD1sMTa986eLNQkt8VqjWOrC9U9P8NvSqxxsLEMlCOhLpDwREMP3Q5OxMFh6GXdcNstrJfn8rbSAmTkH/O1efvw0YR0+VsufrKvo6eV/rmWQ0SIKx4319Hg6NoZn4mIwM9DMP9rhyWlez8hnf14pM3MtsUQvN364KZkod2eNPMc8vqwCdl9CKE9vjMPRauVE+IOjk3x4voiDl0qZnBG/dTvbmrNvayx3p4ZgqOFpzy+DIAjklbXy0fFCcktb1MeDfBx5+K5oNiT6o3ebSYBCoSQrp4HjJ0spKLqxCrZ9Syh3bY/AxWVtaMHmIZMpKCloniNhNTe0I83MjUha509KeiAx8T7oG9z5gwbfZKhUKsZHphkZHGd4YILxkSnG5m4Tcz8nx2eYmpi54efMtEzt1L4S0NWTYmxqiJmFEabmRpiYG2JqboSFlQlWdmKL1MrODCsbM6wdzLC2M9dWVa+DlnitUSx34WqG+/hl0UWudYvWBxb6hvwgLIV9/tHLEuD3Tk7wu/xMDtRUqE1SHw4K50exSdibLL+ak93axm+uXqOsR7SgsDIy5LsJ8eyLjMBQTzOEoW98glev5HGwsBz53LfNdX6e/GBjEmEujhp5jnnME7C/nsmhaE4DpiuVsCc+hKc3xeFivXLtt/GpGQ5eKuXD80UMj4vVSiszIx7ZHM2DGyIwM169iaym9gE+PlHEmWtVyOaqcbZWpty/LZJ7NodhuQrZlF+HL6uCRYa7s3NHOGkp/hjcpgiSpUKhUF5HwmoZHZlS32dopEdcki/JaYHEJ/tiZv7N0Nd8WyAIArMzYqVqZlqGXKZAqVAilytRylXI5QoEQVB/mWDuvyVSHXR1pUh1pUilEnT1JOgZ6GFopI+BkR6GhnpItVXRZUFLvNYo5hfudH0R23yjlnyeK12N/FfRJWpH+gFwN7Xkp1Hp3OUeuKx2T93QAL/Oucb5VnGyzkhXl2cjYnk+Mm7ZE5CCIHCmrp7fZWTROCQGnjqYmvKD5ETuDw3RmAdY58gYf72cy5GShWigjYHefH9DEkEazoEUBIH8hg5ePZtDfqM4tKArkbA7NohnN8fjZmup0ee7HjOzcj7LrOD9M4V0D4rTnsYGetyfHs4jm6OxX8Hq2+cxNDrFkXOlHD5byuCISG709XTZti6Qh3ZG4+O+OrYYXwWFQkl2biMnTpWSV9Ck3rhMTQ3YvCGEndvD8VuD2YpKhYqK0jYyLteQdbWG/usyEKVSCeHRHiSnBZCUFoC9w+3V42mhxVqGlnitUcwvnP8HP2e9Zwg/Dd2Kn/nSyIBSpeJgYxm/K7tG37Q4iRNl68w/RW8i1n55Vg65Xe38d85VinvFeBtrQyN+EJPEoyHhy6qsgRjCfaSyij9mZdM1Jg4OeFpZ8qOUZHYGBiDRkE6obWiEly/ncKy0BtXc23hrsC/f25CEv4PmsxkLmzp49WwuOXVtgGiIujM6kGc3x+Nlv3KGqAqFkrP5tbxzOp/GTlF7pSuVsDMpiCe2xa2aGSuATK7gQnYdB04UUtvcpz4eHeLGQzujSYnx1rj9x1LQ1zfG6XPlnDxTRu91RMXP14Ed28LZvCEYM7O15+UkCAL1Nd1kXa0l62otLY19N9zv6+9IUloAyWkBePs53HZNnhZarCVoidcaxfzCBe//RwQjfSTo8IBnNN8P3ICt4dJaelMKGa9X5fFqVY5agL/NzZ+fRqbjY7F053H1BGTuNZpGxAqVq5k5P4lP5R6/oGUTpFmFgg9Ly3g5J5ehKbFlFmRnx4/XpbDBW3PTic0DQ/zlUg4nK2rV2YzbQ/x5KT0RX3vNO7OXtnTx6tlcMmpaAFGAvjXSn2c3xePvvDJh3CCuV2Z5M++cyqe4Xmx/6ujA+kgfHt8WR4SvZvVuX3ct5bVdfHyyiCu59Wri62xvwX3bItm1IRTzO8CkUqUSKCpu4eSZMjKy6pHPtUv19KSsS/Fn57ZwoiI91qyFQ2f7ENlXa8m6WkNlWTvXf5rbO1qQmOpPQoofEdGeWl2YFlp8DbTEa41ifuEqupp5rS2Xc93VABjr6vOsXypP+iRipLs0c7m+qQl+X3aNjxtL1TqtR/wi+WHYumU54CtUKg7WVPC7/Ez6psQ2UqCNHT9LWKeRDMgJmYy3C4p4Pb+ACZkoGo90cuIn61JI8tDcdGJ93wB/uZTDmcp6YC4cOzSAl9IT8bbTfFWosr2HV8/mcrmySX1sQ6gPz22OJ9Rds5qzz6OssYt3TuXfYMYa7uPME9tjV9WKAqBnYIxPTpdw9EI545OiINxAX5dt64J4cEfUHdGGBDGk+/zFSk6eLqOpuV993N7OjG1bQtm2OWzNCfKvx8jwJLmZ9WRdraUot5HZ2YWMPANDPaJivUhI9SM+2Q87+5XbVLTQYq1CS7zWKD6/cAUDrfym4gzlI+KEnKOROX8XtJHdbuFIdJbWkqkb6efXxZe50CmGPxvr6vF8cALPBiVgord0x+BpuZw3y4t4pTiPcZk41h7v5MrPEtdpxIJieHqav+Xl825RiXrCMsndjf+zLoUoZ81Va2p6+vnLpRzOV4uvj0RHh7vCAngxPQEvW80TsJrOPl4/n8e5snp1xSE5wIPntsQT460Zd/8vQ1PXIO+fLeBUTg1yhVjNcXewYt/WGO5KDsZAb/WqHDOzcs5mVHPodAkNrQvEJirYlfu3R5EW53tbXfHnIQgCdfU9nDpbzoVLVUxMLFg4hIW4sn1bGOnrAjC+zQayy8HMjJzi/CbyshrIzahj4DoDWgBvPwcSkv2IT/YlMNRVO9mmhRZoideaxc0WTiWoONlRwe+qLtA9LWa3BVk48g+h20iw81ryc+X0tvFfRRcpGxR1WraGJvwoPJWHfCPQkyxdyD48M81fi3J5u6IYmVLczDd7+vDT+FQCbJZfveibmOCvOXl8VFqGXCVOJ27w9uJHqSmEOGhOHF/d3cdfLuVwoUasCq00AWvuHeL1C3mcLKpRi/6jvJx5bnMCKYEeK6q3GRiZ4KMLxRy6XMbEnOmstZkxD22M5IENEViart7kmyAIlNZ0cuhUMVfy6tWvhb2NKfduieDuTeFYW9z+aUgQLRwys+s5c66C/MJmtR+SgYEuaakBbNscSuQaNzKdz4/MzawnN7OOmsrOG1qSZuZGxCR4E5fkS2yCD1Y2K+dZp4UWdzK0xGuN4qsWblYp573GXF6ru8aEQtwc0x38+T8hm/FdogBfEAROttXwm+LLtE6MAOBlZs0/RKWzzc1/WZt998Q4v8/P4mCtaEGhA+zxD+bHcSm4mS9/eqpzdIw/Z+fwaUUlyrm34XZ/P/4uJRk/W81ps6q6+3j5JgTshfUJK9KC7Bgc4a2LBRzJq0I+R1yDXO15dlM8m8J8V7QNODkj47NrFew/V0jPkFjlMNDX5e6UEB7dHI2bw+q20voGxzl8rpTPzpepXfH1dKVsSPTn/m0RhPrfflPWefQPjHP+QiWnzpbT3jGkPm5na8aWTSFs2RSCp8fKafhWC6MjU+RnN5Cf3UBBTsMNfmEAvgFOxCZ6E5vgQ1CYG3prOBZHCy0WAy3xWqO4lYUbmp3kLzWXOdhSiEJQIUGH+z2j+X5gOnaGS7MIkCmVfNhQzJ/KMhmcFT1/Im2d+VnUBhIdlqejahge5H9yMzjdLGqn9CQSHg2O4PsxidgZL9+lvnlomD9mZXG8uhYB1DFEP0hOwstac0ShsquXv1zK4VKtqMma14C9sD5hRUT4vSMTvHO5gEM55czIxNaqp70Vz2yMY2dMoMbsNW4GhULJ+cI63j1dQF272PabF+Lv2xpLhO/qEh6ZXMHF7DoOnS6mqqFHfdzXw477tkawdV0QxoZ3RrCuIAhU13Zz5lwFFy/f2Ir083Vg6+ZQNm0IwspSMwkNtxNKhYrqig41EWuo67nhfiNjfSKiPYlJ8CYmwQcXN+s7hihroYWmoSVeaxSLWbiWiQH+t/I857trADCS6vGUbzJP+SVjors0fcm4bJbXq3N5vTpPPQG5wdmHn0alE2S1vDZeaV83v8nNIKNDdKk30tXl6fAYno+Mw8Jg+RNsdf0D/CEzizP1ojZLqqPDvSHBfD8pETdLzfkTVXb18tfLueoKmI4ObAvx58X1CStiQzE8Mc3+a8XszyhhfK4N6Ghpxnc2xLAnIRSjFXSkFwSBgpp23j9bSGZ5s/p4iJcjj22JYWOM36rrrmqaejl8toSzGTXMzhFSEyN9dqwPZs/WSLxcNU+ClwqZTEF2bgNnz1eSm9+kztSUSHSIi/Viy8YQUpL8MDRcWwatX4bhwQkK85rIz26gKL+J0eGpG+63d7QgOs6b6HhvouK8sLC8M1rGWmihCWiJ1xrFUhaucLCV/6k4R+mwaNBpY2DC9wM3cL9HFLpL1Gr1T0/wh7IMPmooQTnfJvQO5cfhabiaLo/EZHW08avcq5T2id+OzfUNeCEqnu+ERWG8DHH/PCp7+/h9ZhaXGsXKlK5EwgOhIbyUlIizueZMQ6u7+/jrlVzOVTWoj20N9uWF9QkaN2IFmJiZ5WBWOe9eKWRwXNzQrEyN2JcWzcMp4Zgbraz9QlPXIPvPFXIyuxrZnBDf0dqMvZujuTc1FNNVFpOPTcxw6koln54tpb17WH08KtiVPVsjWB/vd9ujia7HyMgUl65Uc/ZCJTW13erjRkb6pKX6s2VjyJrXg10PlUqgqb6HwtwmCvMaqSxtV9txgPiFxcffiahYT6LivAiJcMfI6M6oWmqhxVKgJV5rFEtdOEEQONNVxe+qztM+KW5C3qa2/Ch4E5uclu5W3zQ2yG9LrnKyTayq6Uuk7POP5qXQZGwMl/5tVRAEzrY08D+5GdQPi6aetkbGfC86USMmrAAlXd38PjNLnQOpJ5XyUFgoLyTG42SmOQJW29PPX6/kcrZqYSpxQ4A3L6YnaDyKCGBWruCz/EreulhA55Bo7mlioM8DSWHsS4te0UBugKGxKQ5eKuHgpVJGJkTdlYmhPnenhvDwpihc7SxX9Pk/D5VKoKCilcNnS7mW36j2BLOyMGbXhlDu3hSGi8PqXtPXoa19kHMXKjl/sYqe3lH1cRtrUzasD2TThmAC/B2/UW256WkZFSVtFOU1UZTXRPPnzFulUgmBIS5ExHgSEeNJcKgrBt+QSqAW3w5oidcaxfzCtQ9042qz+E1bplLwcXMBr9ReZVgmVkWird34ScgWomyWrtUqHeji1yWXyeoRSYyJrj7PBcfzTFA8pnpLr3QoVSo+q6/m9wVZtI2JG5CzqRk/jEnigcBQdDXgYp7f0cHvMrLIaxcrgnpSKXvDw3ghMR4HU82RlPq+AV65ksepOSNWgFRfD15cn0C0x/LtND4PhVLFmZJa3riQT0PPgiP97pggvrMhFi+HlXWkn5HJOZVTzYfni2nqEp9/Xgf26JYYovxcVp049A2O89n5Mo5dLGdgeCF3MT7Cg3s3R5Aa443uHVQFU6kEKqs6OXehkivXahgbXxCquzhbsWlDEJvSg3F3v3Pap5rC0OAExfnNlBQ0U1zQTF/P6A336+lJCQx1ISLak4hoTwJDXLRETIs7GlritUYxv3BbTvwDz4TuZI9rCvqSxVd/xuUzvFGfybuN2cwoRR3MZqdAfhy8GS+zpemQBEHgWnczvym5QsWQ2Ca0MTDme2HJPOoXtawqlVyp5EBNBX8qzKZnUow38rSw5MdxKez2DdRITFB2Wxt/zMwmv0N0bdeXSnkkIpzvJsRhr0EC1jwwxGtX8zlWVq22Qoj3dOXF9AQSvNw0TkYEQSCjuoU3LuarA7l1dGBDiA9PbYwjwtNJo893s+fPrWpl/7kisipa1McD3O15ZHM0W+P80V9FPzAQhwMyCps4cr6UvNJW9XFbKxPu2hDK3ZvCcbK7s0xA5XIl+YXNXLhURVZ2AzOzcvV9fr4ObFgfxMb0IBy+gealgiDQ0zVCSWELJQXNlBW3Mvg57zA9PSkBIS6ERboTHuVBcJgbRsba1qQWdw60xGuNYn7hkj77AbomBjgZWvO87w422kcsacPunR7jLzWX+bS1GBWiW/39HtF8bxkTkKo5C4rfllyhZVxsa7qaWPCjiHXc6xmyrKy9GYWc9ytL+WtRLoMzYhsr0NqWH8ensNXTd9mkRRAEstva+UNmFoWdoimtga6URyIieD4+VqMErH1ohL9dy+dISRXyOVF1pJsTL6xPIM3Pc0WqQaUtXbx5sYBLFQuO9DHeLjy1MZbUQK8Vd6Rv7hrkwwvFnMiuUgvfbcyNuT89gvvXh2NjsfqTfJ29Ixy9UM7xSxUMj4pVYB0dSIz04u5NYaRE31lVMBDbcpnZDVy4VEV+YbNalA8QGuLCxvVBrF8XgLX1N9MzSxAEutqHKC1qpbSohdKiFoYGJm54jFQqwTfAkdAId0Ii3AkJd8PKeu1PimqxdqElXmsU8wv3cc0FPuzLZFAmaniCzN140XcXkVbeSzpvw1gfv6s6z6WeOkCcgHzCJ5Gn/VIw01uaKFuuUnKwsYw/lGWoQ7j9LWz5SeR6trj6LYtYTMplvFVWxKsl+WoX/DA7B/5PXIpGYogEQSCztY0/ZGZR3CUKnUUCFs7z8ZqtgHWPjvNGRgEHC8vVovQgJ3u+mxbH5iDfFQmFbuod5O1LhRwvrEYxt2n7ONrwZHoMO6MD0Ndd2QrUyMQ0R66Wc+BSCX3D4ntDVypha3wAezdFEey5spFIN4NcoeRqXgNHL5SRX96mPm5jacLO9BB2bwzF1fHOi/wZHZ3iSkYdFy9XUVa+kKcokegQEeZGelogaakBWH6DJwQFQaCrY5iy4lbKi1spK279QmsSwMXNmpBwN4LCXAkOc8PDy27N5mhqsfagJV5rFNcvnJ6JIR+3XuHDtstMK8WMwmTbYF7w3YmnicOSzl8w0MpvKxcmIC31jfiufxqPeMWhv8RW4bRCzju1hbxSmc2oTNSoRNg48dPIdFKcPJd0znmMzs7wemkBb5YVMikXWy9RDk78JD6VFBd3jRCwjJZW/piVfQMB2xsezvMJcRrVgPWNT/B2ZhEfF5QxJRP/Fm9ba55bF8td4Svjy9UzMs4HV4s5lF3O5Kz4HrI3N+HRtCgeTArHzGhlJxFFP7B6DlwspqxxYZIv3MeJhzZGsSnm9kwedvQMc/RCOScuV6qrYADRIW7cvSmM9fF+GOjfeaHQ/QPjXL5aw6Ur1VTXLLyeEokOURHupKcFsi7FH4s7xNl/JdHbPUJ5SRtVZe1UlLXT2tTH53cjE1MDgkJdCQxxITjMlYBgF8zMVy+FQYtvF7TEa43iZgs3NDvO283nONaVi3LOMPUu53ie8t6KrcHiF1cQBC501/D7qgs0TQwA4GRkwQ+DNrDLLRzpEjMgx2QzvFaVy5vV+UwrRWKR4ujJTyLTiLJdnrh8cHqKV4vzeLdyIacx3smVv49PJd55+XmG8xWwP2ZmU9QltiD1pVL2RoTxfHwcjhqcghyemub9nGLezylhbEas5rlYmvN0aiz3RYVguAJ6qPHpWQ5ml7H/ajF9Y6Lo3MRAn/sTQ9mXFo2jleb+vi9DZXMPH18s5mxerboKZ2thwgPpEexJC7stbUi5QklGQSPHLpaTW9qi3rjNTAzZnhbE3ZvC7piQ7s+jp2eUy9dquHy1htrrjEslEh2iIz1ITwskNcUfi28J0Rgfm6a6ooPKsnaqKzqoqexkZlr+hce5edgSFOpCYIgLAcEuePna33GtZi3WJrTEa43iqxaudbKP1xpPcq2/EgBDiR4Pu69nr8d6THQX3y5UqJQcaSvhLzWX6Z0Rhax+5vb8KGgT6Y5Ljwvqn57kLxWZfFhfgkw1l9Xo6sf/iUhbtglr3+QELxfnsb+yVH3uVFcPfhyXQozj8oOyBUEgq7WNP2XlUNC5IMJ/KDyU5+PjNeoDNjEzy4f5ZbyTVcTgpFh1sTU15omkaB6JC8fUUPPVKLlCycmiGt6+XEjj/CSkRMK2SH+eSI8hyFXz/mOfx8DoJJ9eKeOTK2UMjookUE9XypY4fx7aEEmo98oOA3wZegbGOHGpguMXK+gdXBB2B/k4smtDKJtTAjAzWVmvtKWis2uYK9dquXy1hvqGXvXx+UpYWmoAqcl+31hN2M2gVKhobuylqlwkYdUVHXS2D33hcXr6Unz8HAkIcsYvyBm/QCfcPWyR6n4z/NS0WD1oidcaxa0sXNlIM3+tP07lmKhTsdQz4UmvzdztkojeEiYgZ5Ry3m/M5fX6DMbkYqsw2tqNHwVvJtbWY8l/S8fEKH8sz+CTpnJ1VuMujyB+FLEOb/Pljcd3TYzx58JcDtSUo5gLyl7v5smP41KIdFj+xi0IAjlt7fwxa2EKUk8i4b7QEF5IiNeoE/6MXMEnRRW8kVFA96i44ZsZGvBofASPJ0ZhY6r5tpFKJZBZ08LblwvJb2hXH4/zdePJ9OhVEeLLFUouFNbx0YViKpoWKjbBng48tCGSLfEBGKzyNCSIFif5Za0cu1jBtfwGdXVOX0+X9AQ/dm0MJTrY7Y7VDnV2DnP5Wg1XrtXeQMJ0dCAsxJV1qQGkpfhj/w2cjvw6jI5MUVPZQXVFJ7VVndRWdTExPvOFxxkY6OLj74hfgBO+gU74+jvi7mWnzZ3U4iuhJV5rFLe6cIIgcKW/nNcaTtExLbYLnY2sedZ7OxsdIpAsoV04KpvmjfpM3m/KUVtQpDn48aPgTQRaLF0M3Tg6yO/KrnGitRoQo3zu9w7jB2Gpy3bBbx8b4c+FuRyqrVAHZW/08ObHccmE2S1fwC0IArntHfw5O4ectnb19d8bEsyLifF4WmlOjC1XKjlRVsPfrhXQNCB+MzfU0+X+6FCeSonBxXJl/iFXdfTy7uUizpTUqu0vvB2s2ZcWze7YoFUhPxVN3Ry4VMK5/DrkcwMIFqaG3Jsaxv3p4Tjbao7oLgbDY1OcuVrNsUvlNLcPqo872ZmzMz2Enemhd5wtxfXo7BzmakYtVzPqqKnrvuG+QH8n1qX6sy7FHzfXlfV8u1MxPz1ZW91FbXUX9TXdNNb1MD0l+8Jj9fSkeHjZ4RPgiI+fI95+Dnj7OmBqdmdWQbVYfWiJ19dgaGiIH/zgBxw7dgyJRML999/PH/7wB0y/REzd0tKCl5fXTe87cOAADz74IMBN23Mffvghe/fuvaXrWuzCKVRKTnTl8VbzWYZkc5OFZi684LuTWGv/W3rOz6Nveoy/1l7lUGuhmszc5RrKD4I24m6y9A/oqqFeflt6lYudYsSOvkTKXr9Ivh+ajJ3R8lograMj/Kkwm8N1Vepr3uzhw4/ikgm1W9ogwudR0NHJn7Nz1E74Eh0ddgUG8GJiAn62mjO4VKkELtQ08rdreZR3ihULXYmEu8IDeCY1Fj97zedBAnQPj/HBtRI+uU6Ib2VqxN6UCB5KjsDGbOUF28PjU3x2rYJDl0vpGRKrfzo6kBruzUMbIkkI9rgtlSZBEKhu7OHEpUrOZlQzOS1TX1t0iDt3pYeQnuCHocGda/DZ2zfGtTkSVlHVcYMQ3dPDlnUpfqQm++Pn6/CNcsxfLFQqgY62Qepruqmv6aKxrofG+t6bVsYAHBwt8PZzwMvXAU9vezx97HB1t9Hqxr5FGB2ZoiCnkYqyRn70sz1a4vVl2LFjB93d3bz66qvI5XKeeuop4uLi2L9//00fr1Qq6e/vv+HYa6+9xm9+8xu6u7vVhE1HR4e33nqL7du3qx9naWmJoeGtfStaKmOeUsxyoO0qH7ZdYVopCrZjrf34rs9OAsyXJj5vmRjkz9WXONlZAYCujoT7PaJ5MSANe6Olv6mK+jv4belVtQu+oVSXx/1j+G5I4rJiiACaR4b5U2E2R+qr1dExmz19+FGs5ghYSVc3f8nJVWdB6gDb/P14KTGBYAfNaaQEQSCnqZ2/Xcsnu2nB/mBDgDfPpMYSswJu+CBqzz7NqeCDa8V0D4vkR19Xyl0xQexLi8LPaWWI3/VQKFVklDVx4GIJedULf7ubvSX3rw9nV0oIlqa3RzQ+MyvnSl4Dxy9VUFixcG3GRvpsSvJnx/oQIgJX37V/MRganiQjq55rmbUUl7Td4BNmb2dGSpIfKcl+RIS5aQkEcwav3SM01vbQUNdDU30vTQ29N7W0ANDVleDqYYuHpy1unrZ4eNnh7mmLi7sN+nfgtKwWi8P0tIyaig6K8pspymuiobYbQQCFYoZLhf+lJV43Q3V1NcHBweTn5xMbGwvA6dOn2blzJx0dHTg735pIOyoqiujoaN544w31MR0dHQ4fPsy99967pGubJ14FHcXEuEQu+veHZRO823yezzpzUAhiy2ajfQTP+mzH1XhpG2bVSDe/r7pARp9YqTKQ6PKYdzzP+qdiqb90opTV08L/lFyheECcIjTW1eM7gXE8FxSPpcHyNtXG4SH+VJjN0YaaFSNgFb29vJydy9n6hZDsDd5evJiYQLTL8oX+16O8s4e/XcvnfHWDulIR5ebEs+viSPf3XpEqkEKp4nxZPe9eLqSifUErlOTvzr710aQEeK5K9amlZ4hDl0o5llWprjTp60rZEhfAA+nhhHo73TaS0903yskrlZy6UkVX38Im7OxgwY60YHasD8HZ/va0SW8V4+MzZOc2kJFVT35B8w2O+SYmBiTEeZOS5Ed8nDemJqsbhH6nY3xsmuaGXhrre2lp7KO5sY/W5v6btipBHHZwdLbCzcMGV3cbXD1scHO3wcXdBmsb0zuarH+bMTY6TWVZGxUlbZSXtFFf033DlxUAb18HQqOc+MHf36MlXjfDm2++yU9+8hOGh4fVxxQKBYaGhhw8eJA9e/Z87TkKCwuJjY0lMzOT5ORk9XEdHR2cnZ2ZnZ3F29ubF154gaeeeupL/0HNzs4yOzur/v+xsTHc3NzYc+4pkt3iedT9XpyNFq9V6poe5I2mM5zvKUFAQKojYbdzAk96bcZmCRYUAAUDLfy+6gJFQ6LWyVTXgO/4JvGkTxImS8xrFASBy12N/G/pNXUMkZmeAc8ExfFUYBzm+svTTzQMD/KnwhyO1lcz/0bVNAGr6x/g5ZxcTtbWqUlesrs7LyUlkODmqtEP0+aBId7MLOSzkmrkSpFY+9hZ83RKLLvCA9FfgeqEIAiUtHTx3pUiLpYvhFB72VvzWFoku2ODMdJf+Rbb9Kyc07nVHLxUSl37QvU5wN2eB9LD2Z4QhNFtavWpVAKlNZ2cvFzBpZw6pmYWyEtEkAs714ewIdEfU+M7m7jMzsopLG4lM7uerOwGRq7zONPVlRAZ7k5yoi9Jib44OtzZhPJ2QRAE+npGaW3up7W5n7aWAdpbBmht7mdyYvZLf8/QSA9nV2ucXa1xcbPG2cUKJ1crnJytsLU3RyrVTlmuBqanZDTUdVNb1UVddRe1VV10dw5/4XF2DuaER3kQk+BDVJwXNrZmWo3XV+GXv/wl77zzDrW1tTcct7e35xe/+AUvvvji157jpZde4vLly1RVVd1w/D/+4z/YuHEjxsbGnD17lv/7f/8vv/71r/nhD3940/P827/9G7/4xS++cPy+c0+ja6KHBAkbHVJ4wHUXVvqL/6CrH+/ktcbT5A7WAKIFxYPuaTzisR5T3cVXlQRB4GpvPb+vukDtmFgFsdI35jn/VPZ6xWEoXdrGJwgC5zrq+d/Sq9SOiJuqhb4hzwcn8GRALCZ6y8tkaxge5M+FOTdWwDx8+Lu4JI2I8AFahod5JTePI5XV6knLaGdnXkyMJ917+W7716NvfIL3sov5KL+MiXljVDMTnkiK5qHYMMxWwIoCoGNwlA8zSvg0p0KtAzM3MuCBpDD2pkSuih+YIAiUN3Vz6HIp5/Pr1GkAJkb63JUUzH3rw/F1Wfl26JdhekbOlbx6Tl2toqC8VV2h1NfTJS3Oh+1pwcRHeKJ7h2+kSqWK6pouMrMbyMqpp+1zVgzeXnYkJfiSnOhDYIDzHTvleadAEASGBifoaB2kvW2QjtYBOtoG6WgbpKdrBJXqy7dSXV0J9o6WODpb4uBogb2jBQ5Oltg7WmDnYI6NrZm2hblIzMzI6e4Yom2OFDc39NHc2EtXxxdJFoCrhw1hEe6ERXkQFumOg5PlFx7zrSReP//5z/nVr371lY+prq7m008/XRbxmp6exsnJiX/5l3/hJz/5yVc+9l//9V956623aG9vv+n9X1bxququ4djIBQqHywAwkOizy2kzu5y3YLwEwlQy3MgrDSepmrOgMNc15jHPDdznmoLBEsiSSlBxprOKP1ZfpHVS/EB2MDTjuwFp3OcRtaRgb/G8Yg7k70uv0TgmTpFZGxjx3ZAkHvePxkh3eRWNmxGwjR7e/CAmiSgN2FAAdI6O8bf8fA6UVSCbq0oF2dnxQmI82/39NBoRND4zy4GCct7JLqJ/XPTEMjXQ56HYMJ5IisbBfGV8myZmZvksr4oPrhXTMSi22KQSHTaH+/HoukgiPZ1XpW0yMjHNscxKPrlcSkf/Qqsv3MeZ+9aHsznWD8NVqMZ9GfoGxzl9rYpTV6po7VwgLlYWxmxODmB7WjCB3mtDzN7eMURWdj1ZuY1UVHbcQBQsLYyJj/MmIc6b+FgvTE21k36LgVyupLd7hM72QTrbh+hsH6K7c5ierhF6uoZRKFRfew5LKxNs7c2xtTPDxs4MaxtTrG1NsbYxxcbWDEtrEywtTdA3+HYQNKVCxeDAOH09o/T1jtLbM0pP5zBdHeLrO/C5EPbrYWtnhn+wMwFBzgQEu+AX6HRLiQffSuLV39/P4ODgVz7G29ub999/f1mtxvfee49nnnmGzs5O7Oy+2tX6xIkT7Nq1i5mZGQwMvr4K8fmFqxqr54PWT2mYaAbATNeU+113stlhHXqSxW0ogiBwrb+CvzWepnWqDwA7Awu+47WFHU6x6EoW36aaN2F9ufYKPdNirqSrsSUvBaazexku+EqViqMtVfyxPEMdxG1jaMwLwUk85h+1bALWODzEn4ty+Ow6Ef46N0/+LiaJWCfNiNb7JiZ4s6CQD0vK1HFHHpaWPJ8Qx73BQRhoMC9RplBwrKyGtzILaewXN/j5ScinU2Lxd1iZCpBSpeJKZRMfXC0mv7FDfTzY1Z7H0qLYFum/4rmQILb68mvaOHS5lKsljWpbDHNjA+5KDmZPWjjezpqbPF0sBEGgpqmX01erOJdZw8jYtPo+d2crtq0LZmtqIC4OlrftGheD0bFp8vKbyMppIL+gicnrNE0SiQ6hIa4kxnmTEO+Dl6ftmiCWdyqUSpFAdHcM09s9Qm/PKH09o/T2jNDXM0p/3xhymfKWz2dsYoCllQmWVsZYWBpjbmGMmYUR5hZGmJmLNxMTA0zNDDE1NcTY1BATEwP09KW3dR2VShUz0zLGx2YYG5tibHSa8dFpxkanGBmeZGhwkuHBCYbUt3FUyq+mJ6Zmhri62+DhbYe3rwNevvZ4+ThgscTc028l8bpVzIvrCwoKiImJAeDs2bNs3779lsT16enp2NracujQoa99rv/8z//kt7/9LUNDX3RMvhlutnCCIJA3VMyHbZ/RPSO29+wMbHjY7W5SbOMW7dmlUCk521PEm01n6ZsdAcDVyJZnfbaTbh+2JA+wWaWcgy1FvFp3lcFZsfLibWrL94LS2eYcvKRziteq4khzBX8sz6R9QrxWO0MTXgxN4lG/KAyWmC85j5bRYf5SlMvhuip1ezDZxZ0fxiaR6Oy2rHPPY2R6mveKS3insJiRGXEk3cHUlGfiYtgbHo6xBisyKpXAlbom3swspKC1U318na8nT6fGkODltmIfnrWd/ey/VsyJohp1+8/GzJgHk8J5KDkcW/PViQQaGJngs4xKjlwrp3twTH080s+F+9LC2Bhze6tgCoWS3LJWTl+t4lp+IzK5Qn1fWIAzW1OD2JTkj6X52shbVCiUVFR2kpPXSE5eI61tN375tbM1Iz7Om8R4b6IjPTC+w3Vuaw2CIDA2Os1A/xgDfWP0940zNDDO4MAEQwPjaiIyMjT5BUH4YiCR6mBkpI+RkT6GxvoYGuihb6Ar3vR10TfQQ09PilQqQaorEX9KJUhuUuEXBAGlUoVSoRJ/KlXI5Qpks+JtdlaOTKZkZlrG1NQsU5OzN41/+jpIpRLsHMxxcLTAztECRydLtYbOxc0acw1nmmqJ19dgx44d9Pb28sorr6jtJGJjY9V2Ep2dnWzatIl3332X+Ph49e81NDTg7+/PyZMnb7CMADh27Bi9vb0kJiZiaGjIuXPn+Pu//3v+/u///qY6rpvhqxZOoVJyuT+LQ+3HGZaLbRVPYzf2ut9DpGXIojfUWaWczzpzeK/lAqNykSz5mbnwnPd2EmwClrRBTylkfNicx+t1mYzKxW/1AeYO/CBoAxscl3ZOALlKySeN5fy5IovOSfFvdzAy5cXQJPb6Ri6bgLWPjfByUR6HaiuQzxGweCdXvh+TyDpXD42QlUmZjI9Ky3mzoIDeCfH1tjIy5InoKB6PisTSSLP2CKXt3byVVci5qgZ1VS/IyZ6nkqPZHuq/IqHcAEMTU3ySU8HHGSXqXEhdqYStEf48khpJuIfjqnxzVqpU5FS2cvhqGddKm26ogu1IDGJPWhi+rrc3h3FyapYreQ2cyaimsLxNvU5SqYT4cA+2pgaxLs4HY8PlaRxXE909I+TkNZGX30RxaSuzswvEUldXQliIK3ExXsTFeuHjba+thq0SBEFgYnyGkeFJRoYnGR6anKsaTTE+Ns3YqHibmJhhcnyGyclZJsZnmJr88oGA2wF9A13MzY3ESp25IWYWxlhaGmNta4qVjdhanW+vWtmYrupQgpZ4fQ2Ghob4/ve/f4OB6h//+Ee1H9e8YeqlS5dIT09X/94//dM/8f7779PS0vIFJn/69Gn+8R//kYaGBgRBwNfXlxdffJHnnnvupqz/ZriVhZtRznKy+wJHu84yrRQrKMHmfjzivgd/M+9FvxZTihk+brvKx21XmZrzAAu38OI5n+1EWC3+fADj8hnebczh7YYsJhViGyLM0pkfBG0kxd5nyR+2MqWSQ01l/KU8i64psZrhYGTKCyFJPOK3fALWOT7GqyV5fFRVrs6CjLB35PvRiWz2XPp1X49ZhYLDlVW8lpdP24hIIo319NgbEc5TsdE4aTCQG6BtaIS3s4o4XFzJzFx1xdHclH2JUTwYE4q50croceRKJRfKGvjgWjGlLQuu6SFuDjySGsn2qNVpQwL0DY9zNLOSI1fL1casAKHejtybGsbW+IDbTm4Ghic4l1nDuYwaapoW7DsM9HVJjfFmc0ogSVFe6N+GGKWlYnZWTmlZOzn5TeTmNdLVPXLD/VZWJsRGexIX40VMlMe3KktyrUCpVDEzI2dmSsb0tIzpKRnTU7PMziqQyeaqVDIFszNylEoVCoXyhmrWvBZQTRUEsXo2XxGTSiVIpBL09XXR09fFQF1B08XQUA8TU0OMTQwwMtbH2MTgjh4i0BKvNYrFLNyYfILPOk9zpucyckHcUOOsItjrfi+uxosXio/IJtnfeolPOzKRqcTzJdgE8Kz39iWbsI7IpnizPpMPmvKYVoql4mhrN34QtJEEu5snAdwKZpUKDjaW8deK7BUhYD0T47xWWsD+qlJmFOJrEWRjx/djEtnupRmBvEKl4nRtHa/m5VPdJ05y6kkk3BMcxHPxcfjYaDbGZXhymo/yy9ifV8LAhGgTYKyvx/3RoTyRFIWr1crZA1S29/BhRimnimrVNhhWpkbcnxjGQ0nhqzINCWIVLLeqlSPXKrhS0qhuvRgb6LE1PoB714UR4rU6FbmvQkvnIOczazibUUNHz4j6uKmxAevjfdmcEkhMqPsdPxn5eXR0DpFf0Ex+YTPFpW3MzNzYPvLxtic22pOYaE/CQ10xuIOTALTQ4vPQEq81iqUs3MDsEIfaj3O5PxsBAR10WG+XxINuu7A1WPzm3T8zyjst5znRlYdSEDemdPtwnvbeiqfJ0ryvBmYmeKM+g4+aC5idJ3W2nvwgaCPRNu5LOieIBOxQYxkvX0fA7I1MeSEkkUd8IzFcpgh/YGqS18sKea+iWC2Q97G05nvRCdztF4SuBgiYIAhca2nl1dw8cttFgboOsNnXh+cT4oi6RUPfW8WsXMHx8hreziqioU/U40h0dNga7MuTyTFEumlmuvNmGJqY4tOcCj7OKqV3RIy4kkp0SA/x4dF1kcT6aNb37KswODrJ8awqPssop613RH3cx8WGe9eFsSMx6La5489DjCrq5XxWDReyaukfmlDfZ2luxMZEfzanBBIe4LLm7BxkMgWVVZ0UFLWQX9h8Q6A3iNmIYSGuaiLm6+Ow5v5GLb5d0BKvNYr5hRscHsDacnFTWB1T3XzU/hn5QyUA6OnostVxPfe6bMdcb/EVhY6pAd5qPqs2YZWgwxbHaJ7y3oKz0dImxPqmx3it7hoHWgpRzJG6VHsfvhe4gQjrpVXV4MsJ2HeDE3jEb/lTkCMz07xVXsRbZUWMycR2rLu5BS9ExXN/QMiyK2zzKO7q4rXcfM41NKqPxbu58nx8LOu9NOsFJggCmQ2tvJVVSFbjQvRNpJsTTyRFsSXIb8UqKgqlisuVjXyYUUp+w4LVio+DNQ+nRLArNgjTFfIi+zwEQaC4vpMj18q5UFDHrFysyOnpSkmP9OHu1FDig901agOyFIgmrR2cz6zlYk4to9dlB9pZm7Ix0Z+NyQGE+DqtSYIyMjJFYXELBYXNFBS3MDAwccP95maGREa4ExXpQXSEB25u1re9MqmFFtdDS7zWKOYX7l/znuFun8eJskpForM4EXT9eDP72w5TNVYHgKHEgLucN7PLafOSPMCaJnp4vfE0GQOVAEh1JOxyjudxz03YG1ou+nwAXVMjvFp7lcNtJWoClubgx/cD0wm1Wrqdw6xSwSeN5fylMouuSZGA2Rqa8HxwAo/5R2Gsuzwdz7hslncrSnijtIChGXF4wMHElOciYnk0OBzjZRq9zqNhcJDX8wr4rKpaLfb3t7Xhubg47goKQF/Dwvi63gHeySriWFmNuhXoZGHGvoRIHlhBHRhAffcAH2WWcrygmmmZWFU0NtBjV0wQDyVH4O+8emaoY5MznM6t4ci18hvc8R2sTLkrOYTdycG4OVit2vV8GRQKJQUVbZzPrOVKXr06SgnAwcaMDUn+bEz0J8Tv9sUpLQeCINDWPkhhcSuFRS0Ul7YxPX1jDI+NtalIxCLciQx3x9nZck3+rVp8c6AlXmsU8wv3w4x7MDDVw8nQg+1OjxJoFrWoDxVBECgdreKjts9onhSrGWa6Jtzjsp1tDuvRly6eIFSNtvFG0xnyh0RCpy/R5V6XJB7z3IiV/tJEse2TQ7xSe5Wj7aUo595K6Q7+fD8onWDLpbfYZEolnzSV83JFFh1zU5DWBkY8F5zAPv9oTJcYcTSPKbmMj6rLea0kn55J8Zu5laERT4VF82RYFBYGmiEq3ePjvFNYxIel5UzKxI3H0cyUp2JieDgiDFN9zQrC+8cn+Si/lI/yyxiaFImlsb4ee6JC2JcYiafNypGO8elZjhVU8XFmGc19C/Yr0d4uPJwSweYwX/RWMbC5pq2PYxkVnMqpZmxqYbIr2t+Fu1NC2RTrf9siiq7HrExBbmkLF7JqySxsvCGuyMHWjA2Ja5uEgUg06+p7KCppo7iklYqqTmQyxQ2PsbM1IzLCXbyFu+PkaLFm/14t1ia0xGuNYn7hjtW/T970WWZUogjayySInU778DDxX9T5VIKK3KFiDrQdpWvOA8xa35IHXO8i3T4Z6SKraQAlw0283nSashHR1NVIqs/9rqk84rEeM72l+aK0TgzySu1VjrWXoZpLVdzoGMD3AtMJsly65kiuUnK4qYKXK7JonfMBs9Q35JmgeJ4IiFl2FuSsUsHh2ir+WpxH65h4flM9fR4LieCZiFjsjTXjXTU2M8P+0jLeKSymf1K0aDAzMODRyHCejI7C3lSz02CzctGQ9d3sIurndGA6OpDu780TSVEr6gcmCAL5DR18lFnCpYoFM1RrU2PuSwzlwaQwnKxW7kPt85iVK7ha0sjRjApyqhYigIwN9NgSF8DulBAifFfHqf/rMCuTk1PSwsXsui+SMBsz0hP92Zjkv2bbkfOY14eVlLVRUtpGVU3XF9zd54lYRJgbYaGuuLlqW5NarCy0xGuN4vqF0zXW4WLfYbIGTqMQxA/QEPM4tjk9gqPh4sw9lYKSq/05HGw/zqBMdIJ3MrTnQbfdJNnELNrgVBAE8ofqeL3pDDVjokbHRGrIQ+7reNB93ZJyIAFaJgZ4ueYKJzsq1ARsk1MgLwWsXxYBU6hUfNZSyZ/LM9VO+Ob6hnwnIIanAuOwNFieiFqhUnGysY6Xi3KoGRoAQF8q5cGAUL4bFYe7ueWyzj+PWYWCz6qqeT2/gKYh8e/Qk0q5NziIp2Nj8LPVrDu7IAhkN7XxbnYxV+qa1cf9HWx5PDGKXeGBGK6gvUHvyASf5JTzaU652hNMoqNDapAnDyWHkxLouaraq56hcU5kVXEss+KGiCI3e0vuSgrmruRgnGxWjxR+Fb6KhNlZm7I+3pf0BH/CA13W3HTk5zEzI6eyqpPi0jZKy9uoqe3+AhGzsjQmNMSV8FBXwsLc8PW21wZPa6FRaInXGsXNFm5ENsC53gMUDF1WTy1GW6Wx1fFhrPQXZwApU8k513uVIx2nGVOIfkbuxi487HY3MVbhi/5GKAgCGQOVvNl0lsYJ0avJTNeIvR7rud81BWPdpVWUmsb7+WutSMDm32CaIGBKlYrjrdX8uSKThlGxkmOiq8/jAdE8ExSPreHyKlSCIHCxtYk/F+VQ3Cu+HlIdHXb5BvJiVDyBNpox7FQJAhcaGvlbXgFFXV3q4xu8vXgmLpYEN81PBzYPDPFeTglHiiuZnvMDszQ25KGYMB6Jj8DRYuUsIeRKJZcrmvg4q5S8+gUxvpOVGfcnhrEnIQS7FcqlvBkEQaCkvpOjGZWcL6xjenaB1MQGurErKZiNMX633RtsHrMyObmlrVzMriOjsJGp6/RSlmZGrIvzJT3Bj5hQtzXlE/ZlmJmRU1ndSWlZG6Vl7VTXdiOX3xirY2ioR3CgM6EhLoSGuBIc6IyJidZVX4ulQ0u81ii+auF6Zzo42/MR5aO5AEh1dEmy2cpG+/sw1VucB9OMcoaT3Rc51nWOKaWo5fE19WSv+72EWQQu+rpVgoorfeW82XRWnQNpoWfCox7p7HFNxnAJmjKAxvF+Xqm9ysmO8hsI2IsB6wleBgFTCQKn22r5c0Um1cPi9RpKdXnUL4rnghNwNF4eiRAEgZyudl4uzuNae4v6+EYPb16KStBYHiRAUWcXb+QXcLa+Qf0ahTo48ExcDNv9/TTuUD82PcOhwgo+yCula0QcYJBKdNga7MfjiVFEuq2slqi5b4hPsss5klfJ2LSovdKVSEgP9ebBpHAS/NxXtY02NSPjYlEDJ7Iqya9ZIIVGBnpsjPbjruRgYgPc7pjW3qxMQUFFG5dz6rhW0MjYxMJ0pImRPsnR3qxP8CMx0vOOIY7LhUymoLa+h/KKDsoq2qmo7GTyc47sEokOXp52hAS7EBrsQkiwi1YnpsWioCVeaxS3snBtU/Wc7t5Pw0QFAPoSQ9LsdrHObhdG0sVVbCbkkxzrPsep7ovMqsRvwSHmATzsfjcBZj6Lvn6loOJCbwlvN52jY1psuVnrm/Kox0bucUnEQLo0MfLNCNhGxwBeCly/LBG+IAhc6GzgT+WZlA2KFSp9iZQHfMJ5ISQRN1PLJZ97HhX9vfy1OJeTjXXqa49zdOHF6Hg2uHtr7IO9ZXiYtwqK+KSiUm366mRmxpMxUTwcHobZLYS0LwZKlYqLNU28n1NMXstCQHaIsz37EiLZERqAwQpWT2ZkCs6V1XEwq4yS65zx3WwsuD8pjHviQrAxW928w+7BMU5kV3Eyu+oGbzAHazN2JgaxMzEIr9sY1v15KJQqSqo7uJxTx9X8RgaGFywc9PV0iQ93Jy3ej5QYb6zWSHbkrUClEmhpHaCisoOKqk4qKjvo7hn9wuOsrEwIDnQmOMiZoAAnAvwdtVmTWnwptMRrjWIxC1c/Xsap7v10TIueT8ZSUzbY7yHZdht6ksV9OIzIxjjSeZpzvVdRzLngR1qG8LDb3Xibeiz671ColJzrKeLt5vN0z4gTajb65uzz3MAu54QlE7AmNQFb0IClO/jzQmAa4VZL9wETBIFr3c38qTyTgn6RREh1dLjHK4SXQpLxsVj+Ztk8MsyrJXl8WluljiMKsLblu5Fx7PYN1Fhlamhqmv0lpbxbXMzQlFjNNNHX5+HwMJ6MjsLFQvMfCDU9/byXU8yJshpm5wKyrYyNeCg2jL1x4SvahgSo6xrgUHYZxwurmZgRv0DoSiVsCvPl/sRQ4n1XtwomCALlTd0cz6ribF4tE9ML1ZVAd3t2JgWzNT4AW4vVCQ6/FahUAlUN3VzJq+dSbj1dvQtERKKjQ1igM+tifUmL88HV8fZbamgaA4PjVFZ1UVnVSWV1J3X1PV/QienogKeHLYEBTgQGOBPo74i3lx26qzhtq8WdCy3xWqNY7MIJgkDFaC5nej6ib7YTAHNdKzY7Pkic9QakOourOAzMDvFJxwku92WjQvzQibOO5CG33bgbL749plApOdVdwLst5+mdGQHAzsCCfZ4bucs5Hn3J0ioiNyNgqfa+vBS4nkjrxQ0efB45vW38pSKTjO4WQHSR3+4eyPdCkwixdlzWuQF6Jyd4s6yQDypLmZCLJMHZ1IxnwmPZGxyGiYa8wGYVCo5UVfNmQSGNgyL5lerosD3An6djo4lw0rxD/fDkNAcLy/kov4zuUVFDKJXosDnIl0fjI4nzdFnR1s3UrJzTxbUcyimnoq1HfdzVxoL7EkK5Nz4EW/PVJTuzcgXXSps4kV1FVkWLOqZIKtEhIdiDHYlBpEf53hHWFPMQBIHGtgGu5NVzraCRuua+G+73crVhXawPqbE+BK/xCckvg0ymoLauh+qaLqpquqip7aa3b+wLj9PTk+Ln60CAnyP+/o4E+Dni7majFe5/C6ElXmsU8wvXP9yNreWtb/JKQUnR8FXO9RxgRC62+Gz0Hdjq+DARlimLnlrsme7jUMcJMgby1IL+ZJtYHnDbhbPR4mOD5CoFJ7vyebflAv2z4jdpewNLHvfcyE7nOPSWSMBaJgZ4tfYaxzvK1D5gSXbevBiwnljbxVfqrkfpQBd/qcjiXEe9+li6szffC00h1n7p1bV5jM7O8EFlKW+WFTIwLdqGWBgY8mRoJE+ERmGrISsKlSBwtbmZN/OLyGpbcKiPcXHm6dgYNvv6aHwyUKFUcbG2kQ9ySm5oQ/o72PJYQgS7woMw1l9ZolHT2ccnORWcuL4KJpGwPsSb+xJDSQ7wWHU3+pHxac7m13Iyp4qKpgViaGSgx4ZoX3YmBhEbeOdlMHb3j5FR0MDV/EZKqtrVFh8ANpYmJEd7kxrrTVyYB4Z3EIHUNAYHJ6iu7aKmtofaum5q6rqZmJj9wuMMDfXw83HA388Bfz9H/HwdtGTsWwAt8VqjmF+4vxTdRYrHdwixvBtdya1XQBQqObmD57nQ9wkTCpHgOBq6s81xL8HmsYuuNnRMdXGg/Ti5Q0UA6KBDml0iD7jehb3h4h3FZSoFJ7ryeK/lAgOzc+HWhpY87rmJHU6xSyZgrROD/K0ug6PtpWon/HhbT14ISCPBdnlROzXDfbxSmc2x1mpUc2/3BHt3XgxNIs1p+TE+MwoFn9ZV8lpJPi2jIwAYSHV5KDCUZyNi8bCwXNb5r0d1Xz9vFRRyrLpG7YjvZmHBE9FRPBAWonEdGIiu+PtzSzhaWq2ehjQ3NODeqGAeiY9YUVNWEKtg50rrOJRTTul1WjBHSzPujQ/h3vgQnK1X3wKirXeYUznVnMqpvsGawsbcmC1xAWxPCLwjArs/j7GJGXJKmrlW0EhOcfMNrvn6errEhbmTEuNNSow3dtarE35+uyAIAp1dw1TXdlNX30NdXQ91Db1fCP8GMDDQxdvLDj8fB3y87fHxtsfbyw4jo2/GAIMWWuK1ZjG/cP9TkIqRqS6muvbE2T5JgPm2RUUHzSqnyRw4xeW+z9QmrG5GPmxzegQ/08XbRjRPtnGg/RhFw+WAGBuUbpfCfa47lhTEPauUc7wrl/dbLjEoWyBg+zyWVwHrmBzm9foMPm0tVhOwKGs3XghII9Xed1mbWMv4EK9W5vJJU5matIRYOfBiaBLb3QKWXT1RqlScbW7glZI8SvvEaohER4ftXn48HxlHpIPmWoN9ExO8V1zChyVljMyIU20m+vo8GBbKE9GRuFtaauy55jE2PcOnxVV8mFdC29AC0Ujx8eCR+AjSA7xWvALV0DPAJ9kVHCuoUk9E6uhAkr8H9yWEkh7qjb7u6topCIJARVM3J3OqOZtfy+h1U4audhZsSwhke3zgHSXKn4dcoaSosp3MwkYyCpvo6b+xFefnYUdyjDfJ0d4E+zre9rzL1YBSqaK9Y4jauh7qG3qob+ilvrHvC5FHIL73nJ2s8PG2w9vLDi9PO3y87HFysvxGtm+/6dASrzWK+YXLbf2YavlBJhVi29BS350E26fxNk1bFHmYUkxwpf8oGQMnkavEjcbLJIjtjo/gZRq06OurH2/mYPsxSkerAJDqSNlkn8oel+1YGyy+cjGrlHOsK5cPriNg8y3IHc5xS9aAdU+N8kZ9JodaC9VC9lBLZ74bkMYGR/9Ft15vOPfkGG9U57G/voRppfjN1svMmu+GJLLHK3TZOYrzVhSvleRzqW3BtDTeyZXnI+PY6OGNRENVkGm5nM+qqnmrsEitA5Po6LDZ14fvxEQT56p5TZZKJZDR0ML+vFKu1jerneCdLMx4ODac+2NCsDVdWR3WrFzB+bIGDudV3OALZmliyK6YIPYkhOLntHoZkfNQKJRkV7ZyJq+Gy8UNzFwXi+PvZsfW+AC2xQfeMSat12NeF5ZZ2ERGYSNVDd1cvztYmhmREOlJUpQXiZGemJsuz7R4LUGlEujoHKKhsZeGxj4am/pobOpncGjipo83NNDD08MWT09bvOZ/etpha2N6x1VAtViAlnitUVy/cMamBpSPHKFocD+zKpGU2BkGkGj7LK7GMYv6BzguH+FS3xFyBs+qXfADzCLZ6rgXN+PF20bUjDVwsP0YFWO1AOjp6LLZIY17XbZhqb84TzG4eQVMEyL8/plx3qzP4kBLgZokBZg78HzAOrY6ByNdBgEbmpni3dpC3q4tYFQmVikcjc14JjCeR/wiNSKSrx3s57XSAo7WL4Rl+1ha81xELPf6B2OooeqMShDIaGnlrYJCrrW0qo8H29vzVEw0OwP9MViBSlD70AgfF5TzSVEFI1Pia6gnlbAtxJ9H4sKJcl/5KJ72gRGO5FXyWX4VfaMLG2GouyN74kPYHhWAmdHqWwhMz8q5UtLImdwasioXRPkAEb7ObIsPZFOMHzZ30GTk9RgemyKnpIWsoibySlsYv843S6KjQ6i/E8nR3iRGeeHnYfetJBQjI1M0NPbS1NJPc3M/jc39tLQOfMHsdR4mJgZ4uNuINzcbPDxscXezwcHeXKsfuwOgJV5rFDdbuFnlBKXDBygZOohCEDcnZ6NIEu2ew9EoeFHnH5ENcKH3E/KHLqFirhJkEc8Wh4dwMlq8GL1ytJYD7ceoGW8AQF+ixxaH9dztvBVL/cW/8eYJ2Aetl9QaMDsDCx712MAu5/gl21AMzU7yTmM2+5vymFSIJX8vUxue9Utll1s4epKlV6km5TI+rC/h9epceqfFjdtC35AnA2J4MiAWa8Pl+x/1TIzzVnkR+6tKGZ8Ly7Y1MubJsCj2hURiZai56kH9wCDvFhVzuLJK7Qdma2zMI5HhPBoRgd0KVKNm5QpOVdTyYX4ZZR0LovMAB1sejgvn7oggTAxWVgujVKnIqmnl09wKrlQ2oZgjuoZ6umwO9+Xe+FBifVxvSwtodGKai0X1nM6toaiuQ11JkujoEBvoxpY4fzZE+2F5h1aRFEoV5bVdZBU1kV3cTFP7wA3321iakBDpSWKkJ/HhHt+qatjnoVSq6OwcprlVJGHNLQM0t/TT0TmMSnXz7VZPT4qLsxVurta4uVrj6mKFq4s1Ls6WWFmZfCtJ7e2AlnitUXzVwk0phika+oCKkaOo5qpWnibJxNs+ja3h4qpWg7M9nOs9SPHwNfXUYrhlMlscHsTecHG2EYIgUD5azcH249RNNAEiAdvqsJ67XbZiobdUApbH/tZL6ilIG31zHvVI5+5lGLGOyqb5oCmXdxtzGJPPk1gLnvFL4T6PqCWfV7xmBUeaK3mlMludB2ko1eVh3wieDUrA1XTxlcDPY1w2y0dVZbxZVkT3pGjXYKiry4MBoTwTEYOnheaE6sPT03xcVs57RSX0ToiEUk8iYUeAP9+JiSbcafnWGjdDZVcv+/NKOVley8ycGN9YX4/d4YE8HBdOkJP9ijzv9Rgcn+J4YTWHcyto6h1SH3e2Nufu2GDuiQ/GxXr567kU9A2Pcza/jrN5NVS19KqPS6USEoLc2RIXQHqUD2bGywuAX0n0DIyRXdRMVlEThZVtzMwutFQlOjoE+TqSEOFBQoQnQb5Od9yU5+2ATKags2uYltYBWtsG524DdHQOf2mFDMDISB8XZ0tcnK1wcrTE2dkS57mf9nbaSpkmoSVeaxS3snDj8l4KBt+lZvQ0wpzXlq/ZRuJtv4Ol/uI8rHpn2jnXc5Cy0WwAdQ7kZocHsTFYnG2EIAiUjlRxsOMYDRMtABhI9NnqKFbAzPUWP+E0q5Rzqjuf91su0Tc7AohO+Hvd07nHNQmjJUYRTchn+LilgLcbshmcFcOXbQ1M+Y5vEg97xWKiu/TWklKl4kx7Ha9UZlM+JFZvpDo67PII5oWQRAKtlk8c5EolJxprea20gKoB0WNJB9ji5cvzEXHEOGquRSdXKjlb38A7hcU35EJGOTvxZHQU21YglghgdHqGz0qq+Di/nKaBBfIT7urI3rhwtof4Y7TClhSCIFDe1sOR3EpOl9SqbSkA4nzduDc+mE1hfhjfJguFjv4RzufXcTa/lrr2fvVxXamEpBBPtsT5kxbpg+ltaJXeKmRyBWU1nWQXN5NT2kJz++AN95uZGBAT6k58hCcJ4R442d8ewnunQqlU0dc/Rnv7EO2dQ7R3DNHZOUxH5zB9/WNfWiUDMSbJzs4MRwcLnBwscHS0wMHeAnt7cxzszLGzM0Nff+1nd64WtMRrjWIxCzcsayN/4G0axi8BoIOEQIvtxNo8gZne4khT13QL53oOUDmWD4AEKbHW6WxyuH/RQdyCIFAyUsGB9uM0TYp6IQOJAdsd09nlvAVzvcWHGctVCk53F/JeywV6ZsRqkoWeCXvd17PHNWnJYdwzSjmHWop4syGTnumxufMasc8ngce847HUX3qbUBAEsnpa+WtlNpk9LerjG5x9+G5IIvH2bssmR4IgkN3Zzmul+Vy+Togfae/Ec5GxbPPyQ1eDk2Rl3T28W1TMiZpatebMwdSERyMj2Bsejo2J5mNlBEEgv6WTj/JLOV/dgHxO62RuaMA9kcE8HBeGj93KT/xNy+RcLG/gs/wqcuvb1O0+EwN9tkb4cXd8MNFeK2sQ+1Vo6RnifH4d5wpqaexcIC/6ulKSQj3ZHOvPugjvO5qEAfQOjJFX1kpeaQt5ZW2MT87ccL+bkxXx4R7ER3gQFeyGqTbC50shkyno6Rmlo2uYru4RurpH6O4eoat7mO6e0a+slM3DytIYOztzbG1MsbMzw9bGDDtbM2ysTbC2NsXG2gQzMyPtFCZa4rVmsZSFG5hpIHfgTVonxaqVREePEItdxNjsw1h3cVYPbVP1nO35mLrxUkAM4k6w3sQGhz1Y6C1ucxMEgaKRcg61H6dpUjTuXCBgm5dUAVOolJztKeK9lgt0Toubi7muMQ+6p3KfaypmekvThshUCo61l/F6XQatk2J1xVhXn4c9Y/mObxJ2hsvzIyof7ObVqlxOtdWovcAibZ35bnAiW1z9NDJmXz80wOulhRyuW4gkcjEz56mwaB4KDMNcgx5d/ROTfFRWxv6SMvonxYqhnlTKzgB/noiOXBFXfICBiUk+LarkQEE5nSML1gUxHi48FBvGtmC/Fc2HnEfX0BjHCqr4LL+KjsEFawxXGwt2xwaxOzYYV5vbV5lp7BzgfIFYCWvtGVYf19eVkhjqyaYYP9IivO/odiSI1eOaxl5yS1vIL2uloq7rBvNWqURsS8aGehAX7k6InxP6q7D+3wSoVAJDwxP09IzS0ztGT+8oPT0j9PaP0d8/Tm/vGDOzX/QjuxmkUglWVsZYWZpgaWGMpaUxVpbGWFoYY25hhIW5EeZmRpibz93MDL8xMUtyuZLRsSlGRqbp6u5j/bowLfFaa5gnXlUdbxPg/BiSRUT+dE9XkNv/Bl3TJQDo6hgQZrWHKOu9GEoXtwk0T1RzpudjmiYr586lR6LNFjbY34uZ3uJ0RIIgUDRczsGO4zRfR8C2Oa5nt/OWJROw873FvNdykfYpscViIjXkPrcUHnRbh6X+0gTgSkHF2c4qXqu7Ru2YqJ/Rk0jZ4x7JM34puJks3rPserSMD/G3qjwONZapyZGnmRXPBSVwn3cohrrLb1n1T03yXkUx71eWMjQjZjWa6unzUFAYT4VF4WZuueznmIdMqeR0bR3vFBVT2r0gig93dODxqKgVm4ZUqQQyG1v5OL+MS7VNajJrYSRWwR6MCcPXfuWrYIIgUNTcyWd5VZwtrWPquo0q2tuFu2OD2RLhd1umIuevr7FzgHMFdZwvqLuBhOlKJSQEe7Axxo/1kT53rDD/ekxMzVJU2U5uaQt5pa10XhdEDmBooEt4oAsxIe7Ehrnj72X/rfAOWwkIgsD4+Ay9fWMMDIzTPzDOwOA4/f3ifw8NTzI0PMno6PSSzm9ooIepqQEmJgaYmhpiYqyPkZE+xsb6GM/9NDLUx8BQDwMDXQwN9DAw0ENfX4q+ni56elL1TVdXikSig1QqQTr3k/nK89xngyCI09tKpeqGm0KhQiZTiDe5AplMycysnOlpOTPTMqZnZExPy5mYnGViYka8Tc4yPj7D2Pj0DckFCsUMGRf/TUu81hrmidfhUj/srLzxsfohDibb0blF2wNBEOicKiJ34A16Z6oB0JMYE2H1ABFWD2IgXVybr2GignM9B2ienDuXjj5JtttIt7sHU73Fkbl5Anao4/oKmKgB2+28ZUkifKWg4nJvGe+2nKd5UiRKRlJ97nFJ4mH3NGwMlvbmFwSBq731vFZ3jeIh0edJgg47XEN5zi8Vf4vFxyZdj/7pSd6tLeC9uiK1FYWNoTFPBsTyuH80lgbL3wRnFHKO1FXzelkBDcMLHl3bvHx5JjxWozowENuQ7xWXcLymFrlSJJXWxkY8HB7GIxEROJuvjIt579gEhwor+KSoQp0PCRDj7syDsWFsC/HHcBWqIFOzYivyaMGNrUgDXSkbwnzZHRtEkr/HbROKC4JAY9cgFwrquFBYT1PXQjtSKtEhJsCNjTF+pEf53lHh3V+F7v4xCstbyS9vo6CijeHRqRvuNzU2ICrYlZhQd2JC3fBytdW2xDQMhULJ8BwJGx6ZYmRkiuGRKUZHpxganmRsfJqxsWnGxmYYG5tmYnKGbxprkEh0MDczwsgIPnz3h1ritdYwT7yOl8ehbyJuIqb6gfha/R22RutveaMUBIHWyRzyBt5kYFa0ejCQmBFp/RDhVvejJ7n1jV0QBBomyjnb8zGtU3UA6EkMSLbZxnr7uzHVXQIBGynnUPuJ6zRg+mxxSGP3Em0oVIKKjP5K3mm5QP24GBauL9Fll3MCj3isx8FwadN+giBQONjKa3UZZPQ1qI+nO/jznH8qUTbuSzrvPCblMg40lvJGdT6dk2LLykiqx0O+4TwTFI+bqeWyzg/i33ClvYU3ygq51t6iPh5h78jT4THs9PbXqDh+cGqKj8vK2V9SSs+4OA0p0dFhi68P+6IiSXRfvrbtZlCqVGQ0tHKwoJzLdU3qlpSoBQvigZgw/B1WxxS1Z2Sck4U1HC2oumEq0sbMmB1RAeyKDSLIxf62jvk3dw1yoaiei4X1NwjzdXQg0teFDdF+bIj2vSPNWm8GQRBoah+ksEIkYcWV7TfEGYFo4hoV4kb03M3TxVprtbDKUCpVTE7OMjk1y8SEWEUan5hhakrG1LSMqSkZ09MyJqdmmZ2RMzOrYHZW/DkzI0MmU6JQKJHLlcjkCuRyJQqFCpVKQKVaqGTdDDo6OujqSsXKmFSsjOlKpRgYiBU0fX1d9PV1MdDXFStuRvoYGeqpK3FmpoaYqm8GmJsZYmlhrNa4aTVeaxTzCzc43MWIcJjW0bdQCHPeUAaR+Fr9CGujhFs+nyCoaJq4Rt7AWwzLRJJjJLUkyvoRQizvRk9y6xoPQRCoGy/hbM/HtE83AqAvMSDZZjvr7e/GRHdxbzRBECgeqeBQ+3Ea5wiYno4eWxzXsdt5K9b6los63/w5cwZreLf5PJVjYlVNqiNhu1Msj3lswNV46Rtv1UgXf6vL4GxXFfNv+hgbd571SyXNwW9ZH+AKlYqTrdW8WpVL1bBYuZPo6LDDPZDnguKJsHVe8rmvR+1gP2+WFXG4vgrZXFXK0cSUx0MieSQ4HGsjzYnjFSoVFxoaebeomNz2haBsH2trHouKYE9I8IpkQ4JYBfukqIJPiirpuk4LFu7qyAMxoewMDVhxXzAQ349VHb0cy6/mVHEtw5MLbRkfRxt2xQSyMzoQJ6vbS27ae4e5WNTAxaJ6Kpt7brgvwN2eDVG+pEf54ONiu2aIikKpoq65l4KKNooq2ymr6bzBtgJEIhYZ5EpksCtRwa74uNtpK2JaLBla4rVG8fmFkymHaRl9nfax/ajmzFOtDRPxtfoRFoYRt3xelaCkfuwiBYPvMCoXK0LGUmuibR4jxGIX0kUEcQuCQPV4Eed6DtA5Pe/bZUiK7Q7S7HZjoru4ltL8FOShjpM0TIiTeXo6umy0T+Ful21LyoIU25oNvNtygeJhkSRK0GGjQwT7PDfhbbp0D6qWiQHerM/iSFuJOg/S39yeZ/xS2eESgu4yzFgFQSCjp4W/VeVyrfu6uCB7N54LTmCji69G4oIGpib5oKqU9ypKGJgW2zMGUl32+AfxVFg0ATaLm2T9OtT1D/B+SSmfVVYxKRd1UMZ6etwTHMRjkREE2mv2+eahVKnIamzjUGE5F2sWTFGN9fXYERrAAzGhRLiuThC1XKkks6aFE4U1XKpoRKZYmCiL8XbhrphAtkb4Y36bBe89Q+NcLqrnYlEDJfWdav0ciNmRG6J9WR/pS5iP05rST8kVSqoauimqaKeoqoOKui5mZTcSMTMTA8ICXIgMciEyyJUAbwf0viEicC1WHlritUbxZQs3q+ijeeRVOsYPIiBuXLbGG/C1/CFmBoG3fH6VoKR27AwFA+8yrhArKya6dsTa7CPQYgdSnVsXdwuCQPVYIed6D9A5LZIEfYkhqbY7WLdEAlY+Ws2hjhPUjotkSaojZYN9Mvc4b8PecGnVqvKRFt5vuUj2YLX6WKptCI97bSLIfHG+Z9ejb3qMdxtz+KilgKk5N3xnIwu+45vMfR5RGOsur6JSPdzH69W5HG2uUhM8H3Mbng6K4z4vzQjxZ5UKTjTU8mZZERUDC2acKS7uPBUeo9FcSIDx2VmOVFbzQUkpDYMLGqNYFxcei4pgm7/fsrMuvwwDE5McKa7ik6JKWgYXROa+9jbcHx3KPRFBWJmsjsB8fHqWc6X1nCiqoaCxXa150ZNKWRfkyV0xQaQFe63KhOZXYXh8iqulTVwuaiC3qvUGsmhtZkxapDfpUb7EBbnf9mtdLOQKJTWNPRRXdVBS3UFZTSdTMzdO8Rno6xLi50REoAsRQS6E+DljYrTylVIt1ia0xGuN4usWblreSdPIy3RNHIE581QHk+34WP4AE33vW34epSCnevQUhYPvqYO4zfQcibHeR4DFNqSLmKYUBIGqsQLO9R6k6zoCJlbAdi2pBVk5VscnHSeoGhM1ZVIdCWl2SdzrvA1Ho6UZkNaNd/JBy0Uu95UjzDULY6392OexkSgrnyVXPUZl03zUnM/7TblqM1ZLfSMe816+FxiIodzv1Bayv76Ycbk4QWNjYMw+/2j2BURja7h8IbQgCBT0dPJmWSFnmhvUVQ4Pc0ueDIvigYBQjdpRCIJAbnsHH5SUcq6+QV2JsjE25oGwEPaGh+NmuTJ2DIIgUNjayaGiCs5U1qvd8fWkEjYF+nBfdCjJPu6rVs3pGR7nZHENJwprqO9eiNIxMzRgU7gvO6MDiPN1u+3VpakZGVkVLVwpbuBaWTMT0wvTXEYGeiSGeLA+woeUcC+szDTv57bSUChVNLT2UzJHxEprOhgdv9FDTCrRwdfDjrAAF0L9nQgLcMHR1mzNtF+1WFloidcaxa0u3KSsmcaRP9E7eWruiAQn0914W76Esd6tC74VKhlVo8coHPyAaaVYBTDXcybW5nH8zbcg0bn16oOagPUcoGumBZgnYNvnWpCLfyNWjdXzaccJykdrANFZP9U2nntdtuNqvDSvqNbJPj5ovci5nmKUc5WkEHN3HvPcSLJtEJIlBmfPKOUcaSvhrfos2qfE19JIqsd9HlF8xycJF5PlxflMyGc50FDKGzX5dE2KuiV9iZT7vMN4JigOXwvNCMc7xkd5r6KED6vKGJOJm6uJnh73B4TwRGgUvlaatWnonZjgQFk5H5WW0TshElcdIM3Lk0cjI0j39lox0jE+M8vxsho+KaqgsqtPfdzR3JR7IoPZExWCh43lijz3zVDX1c+JwhpOFtfQO7IQ2G1rZszWSH92RAUS7rE6rdGvglyhpKiug8vFDVwpaaRveOFaJTo6hPs6sy7cm7QIbzyd1qaAXaUSaO0aorSmk9K5ilh3/9gXHmdrZUpYgDOh/k6E+jnh7+WAgdbt/VsJLfFao1jswo3Lamkc/hP9UxcA0EEXZ7P78LZ8AUPdWycmctUMlSNHKR76kGnlCAAWei7E2jyBn/mmRROwyrF8zvceuq4CJorw0+x3L3oKEqBuvInDHacoGikHRAIWbx3Ffa478DRZWruwe3qIj9qucKIrD5lKrHp4mTjwmMcGNjpELlmrpVApOddVzev1GVSPLkQGbXcJ4SnfFIItl2cuqlCpON1Ww9+q8ygb7FYfT3f25tmgBJIdPTSy0U3JZRyuq+bt8iLqhxfagmlunjwVFs16dy+NtiEVKhUXGxr5oKSMzNZW9XEnMzP2RoTxYFgo9qaLTz24VdT09PNpUQVHS2sYnV6odMR6uHB/dAhbQ/wxXuGIonmoVAJFTZ2cKq7hbGk9o1ML1+NqY8H2qAB2RAXg57Q6U5pfBUEQqGnt42ppI1dKGm+YkARRF7Yuwoe0CG+i/FzWtHFm3+A4ZbWdlNd2UV7XRX1z3w2GriD6o/l72RPq70ywryOh/s442ZmvSfKpxeKgJV5rFPML1z9QjK1N5C3/3uhsOY3Df2BwOhMAHfRwNX8YL4vnMNC99dacXDVNxfARioc/ZkYp2htY6rsRa/MEvmYbllQBO997UK0B05MYkGSzlfV2d2OmZ3nL55pH00QbhztPkTdUrD4WYxXOHpcd+Jl5Lfp8AEOz4xxsv8bhjiymlGKFx9HQikc90tnhFLfk4GxBEMjub+LN+kyy+pvUx5PtvHnaL4UkO+9lfRgLgkB+fwdvVudxtr1OPWkZaGnPs0Fx7PIMxkC6/G/egiCQ1dnGW+VFXGhpVD+Pp4Ulj4dE8WCgZtuQAC3Dw3xUWsah8kpGZkTSoSuRsMnXh0cjwknycNco6bseMoWCCzWNHC6qIqOxRa2/MtbXY3uoP/dFhRDtrlkPtK+CXKEku66Vk0W1XKpoZFq2oEPydbRRkzA3W8tVuZ6vQ8/gGFdLm7hW2khBbQfy63RhpkYGJIV4kBrhTUqoF5Zmd75p61dhZlZOdWMv5XWdVNR1U1HXxcjYFw1FLc2NCPF1ItjPiRA/RwK9HTE3vbNTA7RYPLTEa41ifuFKqpxwdtiLpfmP0dO99YrO8EwhjcN/YHhmLnNRxxA380fxtHgGfemtTwfKVdOUDX9KydABZlVied1K34NYmyfwMVu/aAJWPV7E+Z6DdMzZUOjp6JNos4X19vdgvkgnfIC2qU6OdJwma7BArdcKswhkj8sOgs39l7QpjsunOdKZxcG2a4zIxZaXtb4pD7it417XJEx1l75JVI1081ZDFqc7K1DO/ZMJtHDkKd9ktruEoLeMSUiA1vFh3qrJ52BjGVOKueELQxMe94/mUf8ojejAANrGRni3opiPqysYn2tDGuvqcV9AME+ERuFvrdkKzKxCwanaOj4sLaOwcyGg28PSkofDw7g/NGRF8iHn0T06zmclVRwurqRtaCEayN3akj1RwdwTGYyTxcoYw94MU7NyrlY1cbKohsyaVrVRLUCImwPbIv3ZFul/2+0p5jE5IyO3spVrpU1klDcxPL5ASiQ6OoR6O5Ea7kVKmBf+bnZrviokCAJdfaNU1oskrLK+h/qWPhQ38ZVycbAkyMeBIF9HAr0d8Pe0x0SbO7mmoSVeaxQLxMseMzMJoIe5yT4szf8OXemtuaULgsDQTA6Nw39kdLYEAKmOMW7m+/Cw+A760lsnOjLlJGUjhykdOsCsSjR0XQ4Bqx0v4XzvQdqm6gExiijeehPp9vdiqb947VDXdC9HOk+TMZCr1mv5m3lzn8sOIi1Dl/RBPqOUcaIrn4/aLtM7MwKIcUT3uCbxoFvqkt3wATonh3mnMYdPWouYVooEydHInCd8EnnAIxpTveV9Cx6dnebDhhLeqS2kZ0pcL32JlHu9QngqMI5Aq6UNJnwek3IZh+uqeKe8+IY2ZJKzG0+GRbHZ01ej4dwAtf397C8p40hVNZMycYpUTyJhi58veyPCSXR3W7EqmCAIFLR2cri4kjOV9UzNVZ10dCDRy509UcFsDvLFaJVakQBj0zNcLG/kVFENufXtN9g+RHg6sTXCn60R/jhYrlx7djFQqlRUNfdwrayZa6WN1HcM3HC/rYUJKWFeJId5khDk8Y0Jv56VKahv6aOyvpvK+m6qG3u/EHUE4nvJzcmKQG8HArwdCPR2wM/T/hvzOnwboCVeaxTzC9fbdwklLzM9ew0AHQwxN30KS7PvIZXeGkERBIHB6Ws0Dv+JMVkFAFIdE9wtnsDD/En0FpHfOKucoFxNwEQh7XIIWP1EGed7DtIyVTt3XbrEWm9gg/29WOsvnhz0zQxwtOssl/uykAuiXsvTxI09LtuJt45akmB+Pg9yf+tlWubiiPQlumx3imWv+/plmbGOyKb4qLmAD66bhDTTNeAhr1j2eSfgYLS8f7RylZJTrTW8UZN/gw4sxdGTpwJj2aAhPzBBEMjuaufd8mLOtixMQzqZmPFYSAR7g8KwNdZs/MyUTM6J2lo+Ki27IR9ytapgk7MyzlXVc7i4iryWBWNYEwN9toX4cW9kMLEeLqtavRkcn+JcWT1nS+oobOpQt0d1dCDKy4VtEf5sjvDFzvzOIGEgtiQzypvJqmghr6qVmes8taRSCRE+ziSHeZIa5rWmjFtvBWMT09Q09VLd0Et1Yw+1Tb30Do7f9LEuDpb4e9kT4GWPv5c9fp722FiujUinbxu0xGuN4vMLNz2TydDYfzMrKwBAR8cEC9PnsTD7LlLJrREnQRDon7pE48ifmJCJ04G6EjPczZ/E3eL/b+/Oo6K40v6Bf5t97QZkbQRkFwEFNeCOBiZBMVHjuCWjkHHMTCYmkxE1OjPRmMQTnBDnzeRnnJxEwffEhERft8Q1GhgTQ1CRTUBkk01pRKDZkYbn9wdS2rLYzdKgPJ9z6mjfulXcpy/V/VB169Yq6GqpfqlkoBOw/PqrOCv7P+Fh3FrQxiSLWZhjvQiW+uoPQq++K8f3N3/AD7Kf0NLecSlMamiLhdJnMd0yoE8D5tupHYmV1/Bl0Y/IlBfda6cIQdbj8aLTbHiKR6u9z04tba04VpKO2LxfUFjfceZIR6SF+aN9EeE2rd/PhCQiXKksw57sSzhdkiMkRmNMzRExdjJ+6zIexroDMy9RWV0tvspKw9dZ6cLDufW0tBHm5omV3n7wt7Eb8C/PLFkFvknP6HIWLMTdDcvG+2LaII4FA4DSajmOpmbjaGoWSqrvX4ocbS7Gggnj8LyfFxwtzAbt53enQl6PH9JycTo1B6k37ifdIhEwyWU0nvHzQIivGyzFw+fLu6VVgZTrZbiQUYgLGQUofuiMkI25Cab6jMEU7zEI8HKE2PjJGx9VJW/E9UIZrhXIkFMgQ05hBcq7uYsSACwkRkIS5upoCTcnKzjamT/WNy48CTjx6sX27dtx/PhxpKamQk9PDzU1NY/choiwdetWfP7556ipqcH06dOxe/duuLu7C3Wqqqrw+uuv47vvvoOWlhYWL16Mjz/+GCZq3InVXccREZqaf0RVbRTutnacudISSSAx/RMkJn+AlpZq+ydqR0XjWRRU/z/Ut9671KclgZMkAo7i30FHxf0A3SdgZnqOmDzqd3AzfVqtBAwACuqzcE52ELn19+9a9DefgTnWi2BjoP5di3Wt9ThZHo9Tt+LR0NYxM7uVvgWekz6DOVbToKetfrJBREivKcSXRfFIunNNKJ9s4Y4VjrMx2aLvjw1qp3b8tzwXMXm/4PKd+3f0TbNyQYTbNEy37vs8Y51K6+X435xkxOWlCvOBmerqY6nbBKzymAhH0/5Nd9GpWaHAifwc7LuagrSK+2ekvC2tsdLbDwvcvWCoO7CX5Ho6CzZaIsYSXx8s9vGGrengjcXqnBvscGoWTmfmoqHl/jMCJzpK8fwEL4T6eEBiqNmEoby6Dj+k5+J06nWkFyknYROd7fGbCe4I9nUfNpcjO5VW1ODC1UL8knEDl3NKlGaY7xgbZosp3mMw1dsJXmNsh+zB44NNXteE3BsVyCmsQE6BDLlFt1F8s6rbh0zr6mjDyd4Cro6WcHW0hLODJVwcLHmeMQ3ixKsXW7duhZmZGUpLS7Fnzx6VEq8dO3bggw8+wL59++Ds7Iy3334bGRkZyMrKgoFBx4fp3LlzcevWLXz22WdobW3Fyy+/jKeeegpfffWVym3rreOICA1Nx1FdG41WRcclOi0tC5iZvgaxcQS0tFS7vELUDlnDKRTUfIqG1nuD3bUkcJK8DAfx76Cjpfpfwi1t9cioPoS06oPCGDAzXQdMGvU7taehAICihhyclf0fcuo67loUQQQfSSCCbV6A1FD9uxYbFU34QXYex2+dhby1o30SXVPMtQvGszZBMOrjgPn8upv4qjgBP8rShLFl7qb2eNFxNoKsffv12KC0qlLE5v2CH25mo/3ejQPuYmuEu07F/NG+0OvnnYoNrXdxsCAdsdcu40Zdx3xjIgAho93x8tinMMXGccA+qNMqbuF/r6bi+7wctLR1fHma6unjt57e+J23H1zN1X8c1KNkV9xGXFo6jmZlo/7eWTAtkQhBLs5Y6uuDOa4uAz7+7EFNd1tx7lo+jqRkIbGgWDjLqKutjTmeznh+wjjMdB8DPQ2fnbhZVYszaddxJi0XV4uVn8foN8YOv5nggZDxbsNmYH6n5rutSLlehl+uFiLxahFulFcprTc10sdTXo6YMs4JU7ydILUcnIl3h4um5lYUlFQi90YFrhdWIK/4NgqKK7vMut/JyFAPzqNHwcVhFMaMHgXn0R3/2ozihGygceKlgtjYWLz55puPTLyICFKpFJGRkVi/fj0AQC6Xw8bGBrGxsVi+fDmys7Mxbtw4XLp0CZMnTwYAnDp1CvPmzUNpaSmkUtUecqxKxxG1oaHpGKprP0Kr4t6jdbSsYGb6OkxNVkJLpNpf1URtKG84iYKaT9HY2jndgxmcJL+Hg/hFtRKw+4PwDwh3QUp07e8lYCFqzYQPAKWN+fix4hCuyi8KZV7iSXja+gU4GXuota+O9t1F/O1f8N3NH3C7peOSnqG2AZ6xCcI8u2CY6fXtIClvqsa3JefxfVkSmtvvDZY3MMcyxyDMkz4Fwz6cWetU2lCNLwuScLDoivBIolH6xnjJJQDLxkyGuX7/LhW1E+G/N/MRe+0yzj/wXEhPMytEeE7GQmfvAXksEQBUNzfh4LWr+DIzDUW1NUL5NHtHrPT2Q8gYV+gO8KOCmlpbcep6Lr5Nz8Cl0jKh3NrYGC/4eOO3vt4YYz4wZ/l6UlFbj+/Tr+FoWjauy+4PJjczMsBcH088P8FLY8+KfNCt6lqcTc/DD2nXlS5HAoCPgw1CJrjjN+Pdh80UFQ8qv1OLxMwbSMwswqXsYtQ1tiitd7QxQ+A4JwSOc8JkT4cRMTi9vZ1QXlmL/OLbyCuqRGFJJQpK7qD4ZlW3d1QCgJGBLpzsR8HJ3gJOUguMGd3xr72tGT+fso848VKBqolXQUEBXF1dkZKSAj8/P6E8KCgIfn5++Pjjj7F3715ERkaiuvr+M+AUCgUMDAxw4MABLFq0qNt9t7S0oKXl/geHXC6Ho6MjSkpKHtlxRArUNx5FTd0uKNpKAAA6Ok4YbX0SIrWeudgGWcNp3JDvQWNrx2UuPS0LTBl9SK3LjwBwt70RWTXfI6P6EJrvnQGz1HPDQsf/6dOXi6ypBP+9/R2uypOEaSPmWC/C0zbdv5+PomhvQ1LVFRy/eRY3mzsGzOuKdLHJay1cTZz6tE8AkLc24HhZEo6UJaH23lQUYl1jfBHwF4h1+zfQu/ZuE46UpOHbwsuQNXe8p/pa2vjP1JfgY27fr313ypffwde5V3C0MFtIIM30DHFkbjhGDdBUFEBHsnehtAjfZGfgfMmN+4PxTUzw3W9XwUBncGb8LqyqwpHMbBzLzkb1A5OjrgmYjNemThmUn/mw67JKnEjPwcnMHNxpuD+tgqeNJb5cvXTIzj5U1NQjPjMfCVfzkVZ0S+ky1vSxTogOnz8k7VKFoq0dOUUyXM4pxaVrxcgqLFea0FRbS4T5072xbtnsoWvkEFIo2lAqk+NG6R0UlVWh6GYVisuqUCKrQVsPCZm2lgi2VmKsWTodMya7arjFj7fa2lo4ODigpqYGEskgnnmlx1hMTAxJJJJH1rtw4QIBoJs3byqVL1myhJYuXUpERNu3bycPD48u21pZWdGnn37a4763bt1KAHjhhRdeeOGFlydgyc/PVy8ZUdOweSDVpk2bsGPHjl7rZGdnY+zYsRpqkWo2b96MdevWCa9ramrg5OSE4uLiwc2Yh5nOvxRUOdP3JOG4Oe6RgOPmuEeCzitWFhYDP3b1QcMm8YqMjERERESvdVxcXPq0b1tbWwCATCaDnd39KQ5kMplw6dHW1hYVFRVK2ykUClRVVQnbd0dfXx/63TxuRSKRjKhf2E5isZjjHkE47pGF4x5ZRmrcWoN48w4wjBIvKysrWFlZDcq+nZ2dYWtri3PnzgmJVm1tLZKSkvDqq68CAKZOnYqamhokJydj0qRJAIAff/wR7e3tCAwMHJR2McYYY2xkeSwnTykuLkZqaiqKi4vR1taG1NRUpKamor6+XqgzduxYHD58GAAgEonw5ptv4v3338exY8eQkZGBVatWQSqVYuHChQAALy8vhIaGYs2aNbh48SIuXLiAtWvXYvny5Srf0cgYY4wx1pthc8ZLHVu2bMG+ffuE1/7+/gCA+Ph4zJ49GwCQk5MDufz+TNQbN25EQ0MDXnnlFdTU1GDGjBk4deqUMIcXAOzfvx9r165FcHCwMIHqv//9b7Xapq+vj61bt3Z7+fFJxnFz3CMBx81xjwQc9+DG/VhPJ8EYY4wx9jh5LC81MsYYY4w9jjjxYowxxhjTEE68GGOMMcY0hBMvxhhjjDEN4cRLTdu3b8e0adNgZGQEMzMzlbYhImzZsgV2dnYwNDRESEgIcnNzlepUVVXhpZdeglgshpmZGVavXq00PcZQU7d9N27cgEgk6nY5cOCAUK+79XFxcZoISSV96ZfZs2d3ielPf/qTUp3i4mKEhYXByMgI1tbW2LBhAxQKxWCGohZ1466qqsLrr78OT09PGBoawtHREW+88YbSncXA8OzvXbt2YcyYMTAwMEBgYCAuXrzYa/0DBw5g7NixMDAwgK+vL06cOKG0XpXjfThQJ+7PP/8cM2fOhLm5OczNzRESEtKlfkRERJe+DQ0NHeww1KZO3LGxsV1ievBOeODJ7O/uPsNEIhHCwsKEOsO9v8+fP4/nnnsOUqkUIpEIR44ceeQ2CQkJmDhxIvT19eHm5obY2NguddT9vOjWoD6Q6Am0ZcsW2rlzJ61bt06l50QSEUVFRZFEIqEjR45QWloaPf/88+Ts7ExNTU1CndDQUJowYQL9+uuv9NNPP5GbmxutWLFikKJQn7rtUygUdOvWLaVl27ZtZGJiQnV1dUI9ABQTE6NU78H3Zaj1pV+CgoJozZo1SjHJ5XJhvUKhIB8fHwoJCaGUlBQ6ceIEWVpa0ubNmwc7HJWpG3dGRga98MILdOzYMcrLy6Nz586Ru7s7LV68WKnecOvvuLg40tPTo71791JmZiatWbOGzMzMSCaTdVv/woULpK2tTf/85z8pKyuL/vGPf5Curi5lZGQIdVQ53oeaunG/+OKLtGvXLkpJSaHs7GyKiIggiURCpaWlQp3w8HAKDQ1V6tuqqipNhaQSdeOOiYkhsVisFFN5eblSnSexv+/cuaMU89WrV0lbW5tiYmKEOsO9v0+cOEF///vf6dChQwSADh8+3Gv9goICMjIyonXr1lFWVhZ98sknpK2tTadOnRLqqPs+9oQTrz5S9QHd7e3tZGtrSx9++KFQVlNTQ/r6+vT1118TEVFWVhYBoEuXLgl1Tp48SSKRiMrKyga87eoaqPb5+fnR73//e6UyVQ6IodLXuIOCgugvf/lLj+tPnDhBWlpaSh/gu3fvJrFYTC0tLQPS9v4YqP7+9ttvSU9Pj1pbW4Wy4dbfAQEB9Nprrwmv29raSCqV0gcffNBt/aVLl1JYWJhSWWBgIP3xj38kItWO9+FA3bgfplAoyNTUlPbt2yeUhYeH04IFCwa6qQNK3bgf9Tk/Uvr7X//6F5mamlJ9fb1Q9jj0dydVPnc2btxI3t7eSmXLli2jZ599Vnjd3/exE19qHGSFhYUoLy9HSEiIUCaRSBAYGIjExEQAQGJiIszMzDB58mShTkhICLS0tJCUlKTxNj9sINqXnJyM1NRUrF69usu61157DZaWlggICMDevXtBw2Rquf7EvX//flhaWsLHxwebN29GY2Oj0n59fX1hY2MjlD377LOora1FZmbmwAeipoH6fZTL5RCLxdDRUZ6nebj09927d5GcnKx0bGppaSEkJEQ4Nh+WmJioVB/o6LvO+qoc70OtL3E/rLGxEa2trV0eJpyQkABra2t4enri1VdfxZ07dwa07f3R17jr6+vh5OQEBwcHLFiwQOkYHSn9vWfPHixfvhzGxsZK5cO5v9X1qGN7IN7HTo/lzPWPk/LycgBQ+pLtfN25rry8HNbW1krrdXR0YGFhIdQZSgPRvj179sDLywvTpk1TKn/33Xfx9NNPw8jICGfOnMGf//xn1NfX44033hiw9vdVX+N+8cUX4eTkBKlUivT0dLz11lvIycnBoUOHhP129/vQuW6oDUR/V1ZW4r333sMrr7yiVD6c+ruyshJtbW3d9sW1a9e63aanvnvwWO4s66nOUOtL3A976623IJVKlb6EQkND8cILL8DZ2Rn5+fn429/+hrlz5yIxMRHa2toDGkNf9CVuT09P7N27F+PHj4dcLkd0dDSmTZuGzMxMjB49ekT098WLF3H16lXs2bNHqXy497e6ejq2a2tr0dTUhOrq6n4fN5048QKwadMm7Nixo9c62dnZGDt2rIZapBmqxt1fTU1N+Oqrr/D22293Wfdgmb+/PxoaGvDhhx8O6hfxYMf9YLLh6+sLOzs7BAcHIz8/H66urn3eb39pqr9ra2sRFhaGcePG4Z133lFaNxT9zQZWVFQU4uLikJCQoDTQfPny5cL/fX19MX78eLi6uiIhIQHBwcFD0dR+mzp1KqZOnSq8njZtGry8vPDZZ5/hvffeG8KWac6ePXvg6+uLgIAApfInsb81hRMvAJGRkYiIiOi1jouLS5/2bWtrCwCQyWSws7MTymUyGfz8/IQ6FRUVStspFApUVVUJ2w8GVePub/sOHjyIxsZGrFq16pF1AwMD8d5776GlpWXQnpelqbg7BQYGAgDy8vLg6uoKW1vbLnfCyGQyAHjs+7uurg6hoaEwNTXF4cOHoaur22t9TfR3TywtLaGtrS28951kMlmPcdra2vZaX5Xjfaj1Je5O0dHRiIqKwtmzZzF+/Phe67q4uMDS0hJ5eXnD4ou4P3F30tXVhb+/P/Ly8gA8+f3d0NCAuLg4vPvuu4/8OcOtv9XV07EtFothaGgIbW3tfv/+CNQaEcYE6g6uj46OFsrkcnm3g+svX74s1Dl9+vSwG1zf1/YFBQV1ubutJ++//z6Zm5v3ua0DaaD65eeffyYAlJaWRkT3B9c/eCfMZ599RmKxmJqbmwcugD7qa9xyuZymTJlCQUFB1NDQoNLPGur+DggIoLVr1wqv29rayN7evtfB9fPnz1cqmzp1apfB9b0d78OBunETEe3YsYPEYjElJiaq9DNKSkpIJBLR0aNH+93egdKXuB+kUCjI09OT/vrXvxLRk93fRB3fc/r6+lRZWfnInzEc+7sTVBxc7+Pjo1S2YsWKLoPr+/P7I7RHrdqMioqKKCUlRZgaISUlhVJSUpSmSPD09KRDhw4Jr6OiosjMzIyOHj1K6enptGDBgm6nk/D396ekpCT6+eefyd3dfdhNJ9Fb+0pLS8nT05OSkpKUtsvNzSWRSEQnT57sss9jx47R559/ThkZGZSbm0uffvopGRkZ0ZYtWwY9HlWpG3deXh69++67dPnyZSosLKSjR4+Si4sLzZo1S9imczqJZ555hlJTU+nUqVNkZWU17KaTUCduuVxOgYGB5OvrS3l5eUq3mCsUCiIanv0dFxdH+vr6FBsbS1lZWfTKK6+QmZmZcMfpypUradOmTUL9CxcukI6ODkVHR1N2djZt3bq12+kkHnW8DzV1446KiiI9PT06ePCgUt92fu7V1dXR+vXrKTExkQoLC+ns2bM0ceJEcnd3HxZ/THRSN+5t27bR6dOnKT8/n5KTk2n58uVkYGBAmZmZQp0nsb87zZgxg5YtW9al/HHo77q6OuH7GQDt3LmTUlJSqKioiIiINm3aRCtXrhTqd04nsWHDBsrOzqZdu3Z1O51Eb++jqjjxUlN4eDgB6LLEx8cLdXBvrqJO7e3t9Pbbb5ONjQ3p6+tTcHAw5eTkKO33zp07tGLFCjIxMSGxWEwvv/yyUjI31B7VvsLCwi7vAxHR5s2bycHBgdra2rrs8+TJk+Tn50cmJiZkbGxMEyZMoP/85z/d1h0q6sZdXFxMs2bNIgsLC9LX1yc3NzfasGGD0jxeREQ3btyguXPnkqGhIVlaWlJkZKTStAtDTd244+Pjuz0uAFBhYSERDd/+/uSTT8jR0ZH09PQoICCAfv31V2FdUFAQhYeHK9X/9ttvycPDg/T09Mjb25uOHz+utF6V4304UCduJyenbvt269atRETU2NhIzzzzDFlZWZGuri45OTnRmjVr1P5C0gR14n7zzTeFujY2NjRv3jy6cuWK0v6exP4mIrp27RoBoDNnznTZ1+PQ3z19JnXGGR4eTkFBQV228fPzIz09PXJxcVH6Hu/U2/uoKhHRMLl3nzHGGGPsCcfzeDHGGGOMaQgnXowxxhhjGsKJF2OMMcaYhnDixRhjjDGmIZx4McYYY4xpCCdejDHGGGMawokXY4wxxpiGcOLFGGOMMaYhnHgxxhhjbNg7f/48nnvuOUilUohEIhw5ckSt7d955x2IRKIui7Gx8eA0uAeceDHGWA+ICDt37oSzszOMjIywcOFCyOXyoW4WYyNSQ0MDJkyYgF27dvVp+/Xr1+PWrVtKy7hx47BkyZIBbmnvOPFijLEebNiwAbt378a+ffvw008/ITk5Ge+8885QN4uxEWnu3Ll4//33sWjRom7Xt7S0YP369bC3t4exsTECAwORkJAgrDcxMYGtra2wyGQyZGVlYfXq1RqKoAMnXowx1o2kpCTs3LkT33zzDWbNmoVJkyZhzZo1OHHixFA3jTHWjbVr1yIxMRFxcXFIT0/HkiVLEBoaitzc3G7rf/HFF/Dw8MDMmTM12k5OvBhjrBvR0dEIDg7GxIkThTIbGxtUVlYOYasYY90pLi5GTEwMDhw4gJkzZ8LV1RXr16/HjBkzEBMT06V+c3Mz9u/fr/GzXQCgo/GfyBhjw1xLSwuOHz+O6OhopfLm5mZIJJIhahVjrCcZGRloa2uDh4eHUnlLSwtGjRrVpf7hw4dRV1eH8PBwTTVRwIkXY4w95MqVK2hqakJkZCQ2btwolLe2tmLOnDkAgO+//x6RkZFob2/HW2+9hT/84Q9D1VzGRrz6+npoa2sjOTkZ2traSutMTEy61P/iiy8wf/582NjYaKqJAk68GGPsIdevX4exsTFSU1OVysPCwjB9+nQoFAqsW7cO8fHxkEgkmDRpEhYtWtTtX9aMscHn7++PtrY2VFRUPHLMVmFhIeLj43Hs2DENtU4ZJ16MMfaQ2tpaWFpaws3NTSgrKipCbm4uFi9ejIsXL8Lb2xv29vYAOu62OnPmDFasWDFUTWbsiVdfX4+8vDzhdWFhIVJTU2FhYQEPDw+89NJLWLVqFT766CP4+/vj9u3bOHfuHMaPH4+wsDBhu71798LOzg5z584dijB4cD1jjD3M0tIScrkcRCSUbd++HfPmzcO4ceNw8+ZNIekCAHt7e5SVlQ1FUxkbMS5fvgx/f3/4+/sDANatWwd/f39s2bIFABATE4NVq1YhMjISnp6eWLhwIS5dugRHR0dhH+3t7YiNjUVERESXS5Kawme8GGPsIU8//TSam5sRFRWF5cuXY//+/fjuu+9w8eLFoW4aYyPW7Nmzlf4Yepiuri62bduGbdu29VhHS0sLJSUlg9E8lfEZL8YYe4iNjQ1iY2Oxe/dueHt749dff8XPP/8MBwcHAIBUKlU6w1VWVgapVDpUzWWMPUZE1Fv6yBhjrAuFQgEvLy8kJCQIg+t/+eUXHlzPGHskvtTIGGNq0tHRwUcffYQ5c+agvb0dGzdu5KSLMaYSPuPFGGOMMaYhPMaLMcYYY0xDOPFijDHGGNMQTrwYY4wxxjSEEy/GGGOMMQ3hxIsxxhhjTEM48WKMMcYY0xBOvBhjjDHGNIQTL8YYY4wxDeHEizHGGGNMQzjxYowxxhjTEE68GGOMMcY0hBMvxhhjjDEN+f9P9UaeZ7pZtQAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"contour_plot(X_scaled[:, [0, 2, 3]], y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"Teraz możemy użyć większej długości kroku $\\alpha$, dzięki czemu algorytm szybciej znajdzie rozwiązanie."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Liczba kroków: 82456\n",
|
||
"Koszt: 10324856880.491594\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"theta_start = np.zeros((n + 1, 1))\n",
|
||
"theta_best, history = gradient_descent(\n",
|
||
" J, dJ, theta_start, X_scaled, y, alpha=0.01, eps=0.1\n",
|
||
")\n",
|
||
"print(f\"Liczba kroków: {len(history)}\")\n",
|
||
"print(f\"Koszt: {history[-1][0]}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 25,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAz4AAAH+CAYAAABdvNtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABG50lEQVR4nO3deXhU9d3//9fJTDLZN7KQkEDYd5Bd6i4oWqRaW2+ltGJpa7W4tbZ39b6/Vv15U7S1fr1b/VqXCva+FW6XG627KAJlNayyyL6FJYQtmayTycz5/ZFkmIEACWTmzEyej+s6V86c85mT9yRHrrz8LMcwTdMUAAAAAESxGKsLAAAAAIBgI/gAAAAAiHoEHwAAAABRj+ADAAAAIOoRfAAAAABEPYIPAAAAgKhH8AEAAAAQ9Qg+AAAAAKIewQcAAABA1CP4AAAAAIh6URt8Fi9erEmTJik/P1+GYejdd99t0/vr6up0xx13aPDgwbLb7brppptabLdw4UINHz5cDodDvXr10uzZsy+4dgAAAADtK2qDT3V1tYYOHarnn3/+vN7v8XiUkJCg++67T+PHj2+xze7duzVx4kRdddVVWrdunR544AH99Kc/1aeffnohpQMAAABoZ4ZpmqbVRQSbYRiaN29eQK+Ny+XSv//7v2vOnDkqLy/XoEGD9NRTT+nKK6887f133HGHysvLT+s1+u1vf6sPP/xQGzdu9B277bbbVF5erk8++SRInwYAAABAW0Vtj8+53HPPPVq+fLnmzp2rr7/+Wrfccouuu+46bd++vdXXWL58+Wm9QRMmTNDy5cvbu1wAAAAAF6BDBp99+/Zp1qxZeuutt3TZZZepZ8+e+vWvf61LL71Us2bNavV1SktLlZubG3AsNzdXTqdTtbW17V02AAAAgPNkt7oAK2zYsEEej0d9+vQJOO5yudSpUyeLqgIAAAAQLB0y+FRVVclms2n16tWy2WwB55KTk1t9nc6dO+vw4cMBxw4fPqzU1FQlJCS0S60AAAAALlyHDD7Dhg2Tx+NRWVmZLrvssvO+ztixY/XRRx8FHJs/f77Gjh17oSUCAAAAaEdRG3yqqqq0Y8cO3+vdu3dr3bp1yszMVJ8+fTRlyhTdfvvt+tOf/qRhw4bpyJEj+uKLLzRkyBBNnDhRkrR582bV19fr+PHjqqys1Lp16yRJF110kSTprrvu0nPPPad//dd/1bRp07RgwQK9+eab+vDDD0P9cQEAAACcRdQuZ71w4UJdddVVpx2fOnWqZs+eLbfbrf/4j//Q3//+dx04cEBZWVm6+OKL9fjjj2vw4MGSpKKiIu3du/e0a/j/yBYuXKhf/vKX2rx5swoKCvTII4/ojjvuCNrnAgAAANB2URt8AAAAAKBZh1zOGgAAAEDHQvABAAAAEPWianEDr9ergwcPKiUlRYZhWF0OAAAAgCAyTVOVlZXKz89XTMzZ+3SiKvgcPHhQhYWFVpcBAAAAIIRKSkpUUFBw1jZRFXxSUlIkNX7w1NRUi6sBAAAAEExOp1OFhYW+HHA2URV8moe3paamEnwAAACADqI101xY3AAAAABA1CP4AAAAAIh6BB8AAAAAUY/gAwAAACDqEXwAAAAARD2CDwAAAICoR/ABAAAAEPUIPgAAAACiHsEHAAAAQNQj+AAAAACIegQfAAAAAFGP4AMAAAAg6hF8AAAAAEQ9gg8AAACAqEfwCRKv19TB8lpVuRqsLgUAAADo8Ag+QTD3q30a8Ogn+taTC/TlljKrywEAAAA6PIJPEKQlxKrO7ZUk7TlabXE1AAAAAAg+QVCUleTb332M4AMAAABYjeATBEWdTgYfenwAAAAA6xF8giAhzqa8tHhJ0m6CDwAAAGA5gk+QNPf6nKhxq6LGbXE1AAAAQMdG8AmS7tnM8wEAAADCBcEnSLr7zfPZfbTKwkoAAAAAEHyCJGBlt6M1FlYCAAAAgOATJN2zEn37rOwGAAAAWIvgEySFmYmKMRr39zDHBwAAALAUwSdIHHabumQkSJJ2H6mWaZoWVwQAAAB0XASfIGpe0rrS1aBj1fUWVwMAAAB0XASfIOrut8AB83wAAAAA6xB8gsg/+Owi+AAAAACWIfgEURE9PgAAAEBYIPgEkf9DTFnZDQAAALAOwSeICjISZG9a05qHmAIAAADWIfgEkd0Wo66ZjQ8y3XOUJa0BAAAAqxB8gqx5nk+t26PDTpfF1QAAAAAdE8EnyIr85vnsZoEDAAAAwBIEnyDrnk3wAQAAAKxG8AkyVnYDAAAArEfwCbKirETfPj0+AAAAgDUIPkGWn5agOHvjj5mHmAIAAADWIPgEWUyMoaJOjb0+e4/VyONlSWsAAAAg1MIq+Hg8Hj3yyCPq3r27EhIS1LNnTz3xxBMR//yb5pXd6j1eHSyvtbgaAAAAoOOxW12Av6eeekovvPCCXnvtNQ0cOFCrVq3Sj3/8Y6Wlpem+++6zurzz1j0rcIGDwszEs7QGAAAA0N7CKvgsW7ZMN954oyZOnChJKioq0pw5c/TVV19ZXNmFKcoKXNL6st7ZFlYDAAAAdDxhNdTtW9/6lr744gtt27ZNkrR+/XotWbJE119/fYvtXS6XnE5nwBaOumfxLB8AAADASmHV4/PQQw/J6XSqX79+stls8ng8mjFjhqZMmdJi+5kzZ+rxxx8PcZVt18Mv+Ow6QvABAAAAQi2senzefPNNvf7663rjjTe0Zs0avfbaa3r66af12muvtdj+4YcfVkVFhW8rKSkJccWtk53iUIqjMWPuPFJlcTUAAABAxxNWPT6/+c1v9NBDD+m2226TJA0ePFh79+7VzJkzNXXq1NPaOxwOORyOUJfZZoZhqEdOstaXlOtAea1q6z1KiLNZXRYAAADQYYRVj09NTY1iYgJLstls8nq9FlXUfnpmNw53M03m+QAAAAChFlY9PpMmTdKMGTPUtWtXDRw4UGvXrtUzzzyjadOmWV3aBeuZnezb33GkSgPyUy2sBgAAAOhYwir4/OUvf9EjjzyiX/ziFyorK1N+fr5+/vOf63e/+53VpV2wXjkng8/OMub5AAAAAKEUVsEnJSVFzz77rJ599lmrS2l3/j0+LHAAAAAAhFZYzfGJZt06JcoeY0iSdrKkNQAAABBSBJ8QibXFqGunREnSriNV8npNiysCAAAAOg6CTwj1ahru5mrw6kB5rcXVAAAAAB0HwSeEeuYEruwGAAAAIDQIPiEUsMABK7sBAAAAIUPwCaHmh5hKLHAAAAAAhBLBJ4R68iwfAAAAwBIEnxBKjY9VTopDEs/yAQAAAEKJ4BNizfN8jlXX60R1vcXVAAAAAB0DwSfEeuacnOez6yi9PgAAAEAoEHxCzH9ltx3M8wEAAABCguATYr38FzhgZTcAAAAgJAg+IcazfAAAAIDQI/iEWOfUeCXG2SSxshsAAAAQKgSfEIuJMdSj6UGm+47XqM7tsbgiAAAAIPoRfCzQq2m4m9eU9h6rsbgaAAAAIPoRfCwQMM+H4W4AAABA0BF8LNAzhwUOAAAAgFAi+Fgg4Fk+9PgAAAAAQUfwsUBRVqJijMZ9HmIKAAAABB/BxwIOu03dOjWu7LbzSJW8XtPiigAAAIDoRvCxSO+meT51bq9KTrCyGwAAABBMBB+L9O2c4tvfWlppYSUAAABA9CP4WKR37sngs515PgAAAEBQEXws0jeXHh8AAAAgVAg+FumelSR709Ju2w4TfAAAAIBgIvhYJM4eo6KsxpXddh2pVoPHa3FFAAAAQPQi+FioebhbvcerPcdY2Q0AAAAIFoKPhXrnJvv2Ge4GAAAABA/Bx0L+CxwQfAAAAIDgIfhYqDfBBwAAAAgJgo+FijolKs7W+CvYdphn+QAAAADBQvCxkN0Wox7ZjSu77TlaLVeDx+KKAAAAgOhE8LFY386Nw90avKZ2H622uBoAAAAgOhF8LNYnYJ4Pw90AAACAYCD4WKx3jt+S1qUscAAAAAAEA8HHYs1D3SRWdgMAAACCheBjscKMRMXHNq/sRvABAAAAgoHgY7GYGEO9cxp7ffYer1Gdm5XdAAAAgPZG8AkDvXMb5/mYprSjjAUOAAAAgPZG8AkDfXOZ5wMAAAAEE8EnDPgvab2V4AMAAAC0O4JPGOjjt7Lbdp7lAwAAALS7sAo+RUVFMgzjtG369OlWlxZU+WnxSnbYJUlbeZYPAAAA0O7CKvgUFxfr0KFDvm3+/PmSpFtuucXiyoLLMAzfAgcHymtVWee2uCIAAAAguoRV8MnOzlbnzp192wcffKCePXvqiiuusLq0oOvnN9yNXh8AAACgfYVV8PFXX1+v//7v/9a0adNkGIbV5QRd/7xU3/43BB8AAACgXdmtLuBM3n33XZWXl+uOO+44YxuXyyWXy+V77XQ6Q1BZcAQEn0OR+zkAAACAcBS2PT5/+9vfdP311ys/P/+MbWbOnKm0tDTfVlhYGMIK25f/UDeCDwAAANC+wjL47N27V59//rl++tOfnrXdww8/rIqKCt9WUlISogrbX0p8rAozEyQ1zvHxek2LKwIAAACiR1gOdZs1a5ZycnI0ceLEs7ZzOBxyOBwhqir4+ndOVcnxWtXUe7T3eI26ZyVZXRIAAAAQFcKux8fr9WrWrFmaOnWq7PawzGVBwzwfAAAAIDjCLvh8/vnn2rdvn6ZNm2Z1KSFH8AEAAACCI+y6VK699lqZZsec39I/jwUOAAAAgGAIux6fjqwwI1FJcTZJ0jeHeJYPAAAA0F4IPmEkJsZQv6bhbgfKa1VR67a4IgAAACA6EHzCjP9wty0MdwMAAADaBcEnzLDAAQAAAND+CD5hJjD4MM8HAAAAaA8EnzDTr3OKDKNx/5tSenwAAACA9kDwCTOJcXYVdUqSJG0trVSDx2txRQAAAEDkI/iEoeYFDlwNXu05Vm1xNQAAAEDkI/iEof6dT87z2cw8HwAAAOCCEXzCkP8CByxpDQAAAFw4gk8Y6p/PktYAAABAeyL4hKH8tHilxtslsaQ1AAAA0B4IPmHIMAzfcLdSZ51OVNdbXBEAAAAQ2Qg+Ycp/ns9mhrsBAAAAF4TgE6YG+s3z2XigwsJKAAAAgMhH8AlTgwvSfPsbCD4AAADABSH4hKle2cly2Bt/PfT4AAAAABeG4BOm7LYY3zyfPcdq5KxzW1wRAAAAELkIPmFscJeTw902HWCBAwAAAOB8EXzCmH/wYbgbAAAAcP4IPmFsYBe/ld0OEnwAAACA80XwCWN9clMUZ2v8FbGyGwAAAHD+CD5hLNYWo355KZKk3UerVeVqsLgiAAAAIDIRfMLcoKZ5PqYpbaLXBwAAADgvBJ8wF7DAwUFWdgMAAADOB8EnzA3KZ2U3AAAA4EIRfMJcn87JirUZkljgAAAAADhfBJ8w57Db1Ldz4wIHO49UqaaeBQ4AAACAtiL4RIDm4W6mKW1mng8AAADQZgSfCDDIb4EDhrsBAAAAbUfwiQABK7sdoMcHAAAAaCuCTwTo2zlF9pjGBQ5Y2Q0AAABoO4JPBIiPtal3buMCB9vLKlVb77G4IgAAACCyEHwixKD8VEmS15S+KWW4GwAAANAWBJ8IMbjAb4GD/Qx3AwAAANqC4BMhhhSk+/bXl5RbVgcAAAAQiQg+EaJ/XoribI2/rnUEHwAAAKBNCD4RwmG3qX/TPJ9dR6tVUeO2uCIAAAAgchB8IsiwwnTf/vr95ZbVAQAAAEQagk8EGVp4coEDhrsBAAAArUfwiSAXFWb49lngAAAAAGg9gk8EKeqUqPTEWEmNPT6maVpcEQAAABAZCD4RxDAMDW1a1vpYdb32n6i1tiAAAAAgQhB8IsxQvwUOmOcDAAAAtE7YBZ8DBw7ohz/8oTp16qSEhAQNHjxYq1atsrqssDGM4AMAAAC0md3qAvydOHFCl1xyia666ip9/PHHys7O1vbt25WRkXHuN3cQ9PgAAAAAbRdWweepp55SYWGhZs2a5TvWvXt3CysKP5lJceqamah9x2u08UCF3B6vYm1h13EHAAAAhJWw+ov5H//4h0aOHKlbbrlFOTk5GjZsmF5++eUztne5XHI6nQFbR3BRU6+Pq8GrraWV1hYDAAAARICwCj67du3SCy+8oN69e+vTTz/V3Xffrfvuu0+vvfZai+1nzpyptLQ031ZYWBjiiq1xkd9wt7UMdwMAAADOyTDD6GEwcXFxGjlypJYtW+Y7dt9996m4uFjLly8/rb3L5ZLL5fK9djqdKiwsVEVFhVJTU0NSsxXW7Duhm/9f48/o+yMK9PQtQy2uCAAAAAg9p9OptLS0Vv39H1Y9Pnl5eRowYEDAsf79+2vfvn0ttnc4HEpNTQ3YOoIBeamKtRmSWOAAAAAAaI2wCj6XXHKJtm7dGnBs27Zt6tatm0UVhaf4WJv65zWGvJ1HquSsc1tcEQAAABDewir4/PKXv9SKFSv0+9//Xjt27NAbb7yhl156SdOnT7e6tLDTPM/HNKUN+yusLQYAAAAIc2EVfEaNGqV58+Zpzpw5GjRokJ544gk9++yzmjJlitWlhZ2hBem+fYa7AQAAAGcXVs/xkaQbbrhBN9xwg9VlhL2Luqb79tfsPWFdIQAAAEAECKseH7Rej6wkZSTGSpJW7zshrzdsFucDAAAAwg7BJ0IZhqER3TIkSeU1bu06WmVxRQAAAED4IvhEsBHdMn37q/Yw3A0AAAA4E4JPBBtZlOHbX8U8HwAAAOCMCD4RbHCXNMXZGn+Fqwk+AAAAwBkRfCJYfKxNgwvSJEm7j1braJXL4ooAAACA8ETwiXAju50c7kavDwAAANAygk+EG0HwAQAAAM6J4BPh/IPPqj3HLawEAAAACF8EnwjXKdmhHllJkqSNB5yqc3ssrggAAAAIPwSfKNDc61Pv8WrDgQqLqwEAAADCD8EnCgQ8z4cHmQIAAACnIfhEgRHdMn37q/cyzwcAAAA4FcEnCvTMTlJGYqykxpXdTNO0uCIAAAAgvBB8ooBhGL55Pidq3Np5pNriigAAAIDwQvCJEgx3AwAAAM6M4BMlWOAAAAAAODOCT5QY3CVNcbbGX2cxDzIFAAAAAhB8okR8rE1DC9MkSXuO1ai0os7iigAAAIDwQfCJIhf36OTbX7n7mIWVAAAAAOGF4BNF/IPPil0EHwAAAKAZwSeKDO+aoVibIUlasYt5PgAAAEAzgk8USYiz6aLCdEnS7qPVOuxkng8AAAAgEXyizpjuDHcDAAAATkXwiTKB83wY7gYAAABIBJ+oM7xbum+ez0p6fAAAAABJBJ+okxhn19CCdEnSLub5AAAAAJIIPlFpTI9M3z7zfAAAAACCT1QKfJAp83wAAAAAgk8UGtEtQ/aY5uf50OMDAAAAEHyiUGKcXUObnuez60i1ypjnAwAAgA6O4BOlxnT3m+fDcDcAAAB0cASfKBX4PB+GuwEAAKBjI/hEKf95PjzPBwAAAB0dwSdKJTnsGlKQJknaeaRapRXM8wEAAEDHRfCJYpf0yvLtL91x1MJKAAAAAGsRfKLYpX7BZwnBBwAAAB0YwSeKDeuaocQ4m6TG4GOapsUVAQAAANYg+ESxOHuMb1nrI5UubT1caXFFAAAAgDUIPlHu0t7Zvv0l2xnuBgAAgI7pgoKP2+1WSUmJtm7dquPHeUhmOLqs98l5Pv8k+AAAAKCDanPwqays1AsvvKArrrhCqampKioqUv/+/ZWdna1u3brpZz/7mYqLi4NRK85D75xk5aY6JElf7T4uV4PH4ooAAACA0GtT8HnmmWdUVFSkWbNmafz48Xr33Xe1bt06bdu2TcuXL9ejjz6qhoYGXXvttbruuuu0ffv2YNWNVjIMw7esda3bozV7y60tCAAAALBAm4JPcXGxFi9erK+++kqPPPKIJkyYoMGDB6tXr14aPXq0pk2bplmzZqm0tFQ33XST/vnPf7apmMcee0yGYQRs/fr1a9M1cLrAZa2PWFgJAAAAYA17WxrPmTOnVe0cDofuuuuu8ypo4MCB+vzzz32v7fY2lYgWBASf7Uf1mwkWFgMAAABYIOxShd1uV+fOna0uI6rkpMarb26Kth6u1NcHKlReU6/0xDirywIAAABCpk1D3SorK/Xggw/6FjPo1auXvv3tb2vGjBnasmVLuxS0fft25efnq0ePHpoyZYr27dt3xrYul0tOpzNgQ8subVrdzTSl5TuPWVwNAAAAEFptCj6333673nrrLf3gBz/QjBkzdO+992rBggX6r//6Lw0cOFA33nijDh48eN7FjBkzRrNnz9Ynn3yiF154Qbt379Zll12mysqWH7w5c+ZMpaWl+bbCwsLz/t7R7lL/Za13sKw1AAAAOhbDNE2ztY2TkpK0ZMkSDRs2zHcsJSVF69evl81m04wZM/Thhx9qyZIl6t69+wUXV15erm7duumZZ57RT37yk9POu1wuuVwu32un06nCwkJVVFQoNTX1gr9/NKmpb9DQxz+T22Oqa2aiFv/rVVaXBAAAAFwQp9OptLS0Vv3936Yen9zcXNXU1LR4rlu3bnrppZd099136/7772/LZc8oPT1dffr00Y4dO1o873A4lJqaGrChZYlxdg3vmiFJ2ne8RnuPVVtcEQAAABA6bQo+99xzj6ZNm6b169efsc0Pf/hDLViw4IILk6Sqqirt3LlTeXl57XK9ju7yPtm+/UXbWNYaAAAAHUebgs+vfvUrTZo0ScOHD9d1112nv/71r/J6vTIMw9dm7ty5ysrKOstVzuzXv/61Fi1apD179mjZsmX67ne/K5vNpsmTJ5/X9RDoyr4ng8+XW8osrAQAAAAIrTYvZ/3000/rlltu0dNPP60HH3xQtbW1Gjp0qLKyslRRUaG6ujrNnj37vIrZv3+/Jk+erGPHjik7O1uXXnqpVqxYoezs7HO/Gec0IC9VuakOHXa6tGznMdXWe5QQZ7O6LAAAACDo2rS4wanq6+u1Zs0abdu2TU6nU1lZWbr66quVk5PTnjW2WlsmN3VUD73zteYWl0iSZt0xSlf1s+Z3BQAAAFyotvz936Yen3379qlr166+13Fxcbr44ot18cUXt9j+wIED6tKlS1u+BYLsyr45vuCzYEsZwQcAAAAdQpvm+IwaNUo///nPVVxcfMY2FRUVevnllzVo0CC98847F1wg2telvbMUa2uck/Xl1jJdQIcfAAAAEDHa1OOzefNmzZgxQ9dcc43i4+M1YsQI5efnKz4+XidOnNDmzZu1adMmDR8+XH/4wx/07W9/O1h14zwlO+wa3T1TS3cc0/4Ttdp5pEq9clKsLgsAAAAIqjb1+HTq1EnPPPOMDh06pOeee069e/fW0aNHtX37dknSlClTtHr1ai1fvpzQE8au6ntyeNsCVncDAABAB3BBixuEGxY3aJ2dR6o07k+LJElje3TSnDtbnqMFAAAAhLO2/P3fph4fSZo+fbr+9re/ac2aNXK73eddJKzTIytJXTMTJUnFe46rso7fIwAAAKJbm5/js2rVKs2ePVu1tbWKjY3VgAEDNGzYMN920UUXKTk5ORi1op0YhqGr++Vo9rI9avCaWrL9qK4fnGd1WQAAAEDQtLnHZ+XKlaqsrNTGjRv16quvaty4cdq7d68ee+wxXX755UpPT1e/fv10zz33aOvWrcGoGe3gyr4nHwr75Vbm+QAAACC6tescn71792rt2rVavXq1PvnkE23atEmfffaZLr300vb6FmfFHJ/Wq3N7dNH/95nq3F5lpzj01b+Nk2EYVpcFAAAAtFpb/v4P6uIGTzzxhD755BMtXbo0WN8iAMGnbX4yu1hfNK3q9sG9l2pQlzSLKwIAAABaL6iLG7TF7bffrvXr1wfzW+ACXNnv5LLWn39z2MJKAAAAgOAKavDp1q2bVqxYEcxvgQswzi/4fLaJ4AMAAIDoFdTgI0mDBg0K9rfAecpPT9CQgsbhbZsPOVVyvMbiigAAAIDgCHrwQXibMLCzb3/+Znp9AAAAEJ0IPh3ctQNyffufbiq1sBIAAAAgeAg+HVyvnGR1z0qSJBXvOa7j1fUWVwQAAAC0P4JPB2cYhq/Xx2tKX7C6GwAAAKIQwQe61m+ez2fM8wEAAEAUIvhAwwrTlZXskCT9c/sR1dZ7LK4IAAAAaF8EHygmxtA1TcPd6txeLdp2xOKKAAAAgPZF8IEkacLAk6u7fbaZ1d0AAAAQXQg+kCSN7dlJyQ67JOmLb8rU4PFaXBEAAADQfgg+kCQ57DZd2TdbklRR69ZXe45bXBEAAADQfgg+8PFf3e3TjQx3AwAAQPQg+MDnqr7ZirM33hIfbSyVx2taXBEAAADQPgg+8EmJj9UVfRqHux2pdOmr3Qx3AwAAQHQg+CDADUPyfPsfbjhoYSUAAABA+yH4IMD4/rlyNA13+3hDKau7AQAAICoQfBAgyWHX1f1yJEnHquu1kuFuAAAAiAIEH5zmhiH5vv0Pvma4GwAAACIfwQenuapfthJibZKkjzeWys1wNwAAAEQ4gg9Okxhn17j+jcPdymvcWrbzmMUVAQAAABeG4IMWBQx3W89wNwAAAEQ2gg9adGXfbCXFNQ53+3RTqeobGO4GAACAyEXwQYviY226ZkCuJMlZ16AlO45YXBEAAABw/gg+OKPA4W6HLKwEAAAAuDAEH5zRZX2ylBJvl9Q43K2mvsHiigAAAIDzQ/DBGTnsNk0cnCdJqq736LNNhy2uCAAAADg/BB+c1c3DC3z7/7v2gIWVAAAAAOeP4IOzGtktQwUZCZKkJduPqMxZZ3FFAAAAQNsRfHBWMTGGbh7WRZLkNaX31vFMHwAAAEQegg/O6bt+w93eWbPfwkoAAACA80PwwTl1z0rSsK7pkqQtpZXafNBpbUEAAABAGxF80Cr+ixzMW0uvDwAAACJL2AafJ598UoZh6IEHHrC6FEiaNCRPsTZDkvTuuoNq8HgtrggAAABovbAMPsXFxXrxxRc1ZMgQq0tBk/TEOF3dL0eSdKTSpaU7j1lcEQAAANB6YRd8qqqqNGXKFL388svKyMiwuhz4CXimD4scAAAAIIKEXfCZPn26Jk6cqPHjx5+zrcvlktPpDNgQPFf1zVF6Yqwk6dNNpXLWuS2uCAAAAGidsAo+c+fO1Zo1azRz5sxWtZ85c6bS0tJ8W2FhYZAr7Nji7DG6cWi+JKnO7eWZPgAAAIgYYRN8SkpKdP/99+v1119XfHx8q97z8MMPq6KiwreVlJQEuUrcOqqrb3/uV/ssrAQAAABovbAJPqtXr1ZZWZmGDx8uu90uu92uRYsW6c9//rPsdrs8Hs9p73E4HEpNTQ3YEFwD8lM1tCBNkrTpoFMb9ldYXBEAAABwbmETfMaNG6cNGzZo3bp1vm3kyJGaMmWK1q1bJ5vNZnWJaDJ59Mlenzfo9QEAAEAECJvgk5KSokGDBgVsSUlJ6tSpkwYNGmR1efAzaWi+kuIag+g/1h1QtavB4ooAAACAswub4IPIkeSw6zsXNS5yUF3v0Qdfs8gBAAAAwltYB5+FCxfq2WeftboMtOA2v0UO5nzFohIAAAAIb2EdfBC+hhSkqX9e42IS60rKtaWUZygBAAAgfBF8cF4Mw9Dk0SefmzSXXh8AAACEMYIPztuNF3VRfGzjLfS/a/arzn36kuMAAABAOCD44LylJcTq24PzJEnOugb9Yz2LHAAAACA8EXxwQX54cTff/mvL9sg0TQurAQAAAFpG8MEFGVaYriEFaZKkTQedWr33hMUVAQAAAKcj+OCCGIahqWOLfK9nL9tjWS0AAADAmRB8cMFuGJqnTklxkqRPNpbqsLPO4ooAAACAQAQfXDCH3abJoxsfaNrgNfX6ir0WVwQAAAAEIvigXUy5uKtsMYYk6Y2v9snVwNLWAAAACB8EH7SLvLQEXTewsyTpaFW9PtpwyOKKAAAAgJMIPmg3U79V5NufvYzhbgAAAAgfBB+0m1FFGeqflypJWl9SrrX7WNoaAAAA4YHgg3ZjGIZ+7Nfr88o/d1tXDAAAAOCH4IN29Z2L8pWV7JAkfbzxkPYcrba4IgAAAIDgg3YWH2vTjy8pkiR5TemVJbusLQgAAAAQwQdB8MMx3ZQYZ5MkvbVqv45VuSyuCAAAAB0dwQftLi0x1vdAU1eDV68tZ4U3AAAAWIvgg6CYdml32ZseaPr35XtUU99gcUUAAADoyAg+CIou6Qn6ztB8SVJ5jVtvFpdYXBEAAAA6MoIPguZnl/fw7b+yZLcaPF4LqwEAAEBHRvBB0PTPS9UVfbIlSftP1OrDDYcsrggAAAAdFcEHQfXzK072+jz/5Q55vaaF1QAAAKCjIvggqMb26KRhXdMlSdsOV+mTTaXWFgQAAIAOieCDoDIMQ/eP6+17/ecvttPrAwAAgJAj+CDoruiTraGF6ZKkLaWV+mwzvT4AAAAILYIPgs4wDD3g1+vzn18w1wcAAAChRfBBSFzZN1tDCtIkSd8ccuqzzYctrggAAAAdCcEHIdHSXB/TpNcHAAAAoUHwQchc3S9Hg7s09vpsPuTUfHp9AAAAECIEH4SMYRi6z6/X5/9+zgpvAAAACA2CD0JqfP+TvT7fHHLq/a8PWlwRAAAAOgKCD0LKMAz963V9fa//9Nk21Td4LawIAAAAHQHBByF3We9sXdKrkyRp3/Eazflqn8UVAQAAINoRfGCJ317Xz7f/lwXbVeVqsLAaAAAARDuCDywxpCBdE4fkSZKOVtXrlX/usrgiAAAARDOCDyzz62v7yh5jSJJeXrxLR6tcFlcEAACAaEXwgWW6ZyXpttGFkqTqeo+eW7DD4ooAAAAQrQg+sNR943orIdYmSXp95V7tOlJlcUUAAACIRgQfWConJV4/u7yHJMntMfUfH35jcUUAAACIRgQfWO6uK3ooLy1ekrRgS5m+3FpmcUUAAACINgQfWC4xzq6Hrj+5vPUTH2yW28NDTQEAANB+CD4IC98Zmq+R3TIkSbuOVOvvy/daXBEAAACiSVgFnxdeeEFDhgxRamqqUlNTNXbsWH388cdWl4UQMAxDj04aKKNxdWs9+/k2HWN5awAAALSTsAo+BQUFevLJJ7V69WqtWrVKV199tW688UZt2rTJ6tIQAoML0nTLiAJJUmVdg57+bJvFFQEAACBaGKZpmlYXcTaZmZn64x//qJ/85CfnbOt0OpWWlqaKigqlpqaGoDq0t7LKOl399CJVuRpkGNK7v7hEQwvTrS4LAAAAYagtf/+HVY+PP4/Ho7lz56q6ulpjx45tsY3L5ZLT6QzYENlyUuJ137hekiTTlP5t3gY1sNABAAAALlDYBZ8NGzYoOTlZDodDd911l+bNm6cBAwa02HbmzJlKS0vzbYWFhSGuFsHw40u6q1/nFEnSpoNOzV62x9qCAAAAEPHCbqhbfX299u3bp4qKCr399tt65ZVXtGjRohbDj8vlkst1cgK80+lUYWEhQ92iwOq9J/T9vy6TaUqJcTbN/9UV6pKeYHVZAAAACCNtGeoWdsHnVOPHj1fPnj314osvnrMtc3yiy/95d4P+e8U+SdL4/jl6+faRMpqXfQMAAECHFxVzfJp5vd6AXh10HL+Z0E/ZKQ5J0ufflOnTTYctrggAAACRKqyCz8MPP6zFixdrz5492rBhgx5++GEtXLhQU6ZMsbo0WCAtIVaPTjo5xPGxf2xSZZ3bwooAAAAQqcIq+JSVlen2229X3759NW7cOBUXF+vTTz/VNddcY3VpsMjEwXm6sm+2JKnUWafff7TF4ooAAAAQicJ+jk9bMMcnOpUcr9GEZxerpt4jSXpt2mhd0Sfb4qoAAABgtaia4wMUZibq377d3/f6t29/rYpahrwBAACg9Qg+iAhTxnTVpb2yJDUOeXvig80WVwQAAIBIQvBBRDAMQ099f4hSHHZJ0tur9+uLb1jlDQAAAK1D8EHE6JKeoEduOLnK20P/u0HlNfUWVgQAAIBIQfBBRLllZIGualrl7UilSw//7wZF0focAAAACBKCDyKKYRh68ntDlJYQK0n6eGOp5haXWFwVAAAAwh3BBxEnNzVeT31viO/14+9v0vbDlRZWBAAAgHBH8EFEum5QZ/3w4q6SpDq3V/fOWas6t8fiqgAAABCuCD6IWP9n4gD1zU2RJG0prdSMD7+xuCIAAACEK4IPIlZ8rE1/+cEwxcc23sb/tWKvPtlYanFVAAAACEcEH0S0Prkp+t0NA32vf/PWeu0+Wm1hRQAAAAhHBB9EvMmjCzVxSJ4kqdLVoLv+a7Vq6hssrgoAAADhhOCDiGcYhp763hD1ykmWJG09XKnfvsPzfQAAAHASwQdRIdlh14s/GqFkh12S9P76g3p16R5riwIAAEDYIPggavTMTtbTtwz1vf79R99oxa5jFlYEAACAcEHwQVS5blBn3X1lT0mSx2tq+utrVHK8xuKqAAAAYDWCD6LOr6/tq8t6Z0mSjlXXa9rsYjnr3BZXBQAAACsRfBB1bDGGnps8XD2ykiRJ28uqNP31NWrweC2uDAAAAFYh+CAqpSXG6tU7Rik9MVaS9M/tR/XY+5tY6Q0AAKCDIvggahVlJenFH45QrM2QJP33in2axUpvAAAAHRLBB1FtTI9OmnnzEN/rJz7crI82HLKwIgAAAFiB4IOo9/0RBZp+VeNKb6YpPTB3nZbuOGpxVQAAAAglgg86hF9f21ffH1EgSar3eHXn31dpw/4Ki6sCAABAqBB80CEYhqEnbx6s8f1zJEnV9R7dMesr7TpSZXFlAAAACAWCDzoMuy1Gz/1guEYVZUhqfMbPj/72lQ6W11pcGQAAAIKN4IMOJT7WplemjlK/zimSpAPltZr88godqiD8AAAARDOCDzqctIRY/X3aaBV1SpQk7T1Wox+8vFKHnXUWVwYAAIBgIfigQ8pJjdecOy9Wt6bws/totSa/tEJlhB8AAICoRPBBh5WXlqA5P7tYhZkJkqRdR6t128uEHwAAgGhE8EGHlp/eGH4KMprCz5Fq3fLicpUcr7G4MgAAALQngg86vIKMRM352cXqkt4YfvYeq9Etf12uHWWVFlcGAACA9kLwASQVZibq7bvHqmd2kiSp1Fmnf3lxBQ85BQAAiBIEH6BJXlqC3vz5WA3qkipJOl5dr8kvr9CKXccsrgwAAAAXiuAD+OmU7NAbP7tYo4syJUlVrgbd/rev9N66AxZXBgAAgAtB8AFOkRofq9emjdZVfbMlSfUer+6fu07PLdgu0zQtrg4AAADng+ADtCAhzqaXbx+pyaO7+o49/dk2/fadr+X2eC2sDAAAAOeD4AOcgd0Wo99/d5Aeur6f79ibq/Zr6qtf6UR1vYWVAQAAoK0IPsBZGIahu67oqb9MHqY4e+N/Lst2HtOk55Zo80GnxdUBAACgtQg+QCtMGpqvN346RlnJDknS/hO1uvmFpXp//UGLKwMAAEBrEHyAVhpZlKn3771EQwrSJEl1bq/unbNWMz/6Rg3M+wEAAAhrBB+gDZqf9fO94QW+Yy8u3qXbXlqhg+W1FlYGAACAsyH4AG0UH2vT07cM0WOTBsgeY0iSVu09oW//+Z9asOWwxdUBAACgJQQf4DwYhqE7LumuN+8aqy7pCZKk8hq3ps1epd9/9I3qGxj6BgAAEE4IPsAFGN41Qx/ed6muGZDrO/bS4l268fml2lLKqm8AAADhIqyCz8yZMzVq1CilpKQoJydHN910k7Zu3Wp1WcBZpSfG6aUfjdDvbhigWFvj0LdvDjn1nb8s1YuLdsrjNS2uEAAAAGEVfBYtWqTp06drxYoVmj9/vtxut6699lpVV1dbXRpwVoZhaNql3fXu9EvUNzdFklTv8Wrmx1s0+aUV2nOUexgAAMBKhmmaYfu/o48cOaKcnBwtWrRIl19++TnbO51OpaWlqaKiQqmpqSGoEDhdndujZ+Zv08v/3KXm/7oc9hg9ML6PfnpZd8Xawur/NwAAAESstvz9H9Z/gVVUVEiSMjMzWzzvcrnkdDoDNsBq8bE2/du3+2vOzy5WQUbjwgeuBq+e+mSLbnxuqTbsr7C4QgAAgI4nbHt8vF6vvvOd76i8vFxLlixpsc1jjz2mxx9//LTj9PggXFS7GvSnz7Zp9rLdap7qE2NIt48t0i/H91FaYqy1BQIAAESwtvT4hG3wufvuu/Xxxx9ryZIlKigoaLGNy+WSy+XyvXY6nSosLCT4IOysKynXQ+98rS2llb5jmUlx+vW1fXXrqELZmp4HBAAAgNaL+OBzzz336L333tPixYvVvXv3Vr+POT4IZ26PVy8t3qXnFuxQrdvjOz4wP1WPf2egRha1PKQTAAAALYvY4GOapu69917NmzdPCxcuVO/evdv0foIPIsHB8lrN/HiL3l9/MOD4jRfl69fX9lVhZqJFlQEAAESWiA0+v/jFL/TGG2/ovffeU9++fX3H09LSlJCQcM73E3wQSVbuOqZH/7EpYPhbrM3QD0Z31T1X91Z2isPC6gAAAMJfxAYfw2h5nsOsWbN0xx13nPP9BB9EmgaPV3OKS/Snz7aqvMbtO54Qa9NPLu2un13eQ2kJLIAAAADQkogNPheK4INI5axz6+XFu/S3JbtVU39y/k9aQqzuvLyHfjS2m1LjCUAAAAD+CD4EH0SoI5UuPf/lDr2+cq/cnpP/aaY47Lr9W93040u6KyuZIXAAAAASwYfgg4hXcrxGz36+XfPW7vc9/0eS4mNjdNuorrrz8h7KTz/3vDcAAIBoRvAh+CBK7Dlarb8u2ql31uwP6AGyxxiaOCRPd3yrSMO6ZlhYIQAAgHUIPgQfRJlDFbV6efFuvfHVXtW5vQHnLipM148vKdL1g/IUZ4+xqEIAAIDQI/gQfBCljlW5NGvpHr2+cq9O+K0CJ0k5KQ5NHt1V/zKqUF0YBgcAADoAgg/BB1Guzu3RP9Yd1KtLdwc8B0iSDEO6vHe2bhtVqHH9c+kFAgAAUYvgQ/BBB2GaplbuPq7ZS/fos82lAQshSFKnpDjdPLyLbh5eoP55/DcBAACiC8GH4IMO6FBFrd5etV//s6pE+0/Unna+b26KvnNRvr4zNF+FmYkWVAgAANC+CD4EH3RgXq+pZTuPaW7xPn226bDqPd7T2ozolqFJQ/I0YVBn5aUxHwgAAEQmgg/BB5AkHa+u14cbDum9tQe0au+JFtsMKUjThIGdde2AXPXKSZZhGCGuEgAA4PwQfAg+wGlKjtfo/a8P6r21B7X1cGWLbXpkJemagbm6pn+uLipMl93GwggAACB8EXwIPsBZbS2t1KebSvXpplJtOuhssU1KvF2X9srS5X2ydXmfbJbIBgAAYYfgQ/ABWq3keI3mbz6sTzeVqnjP8dNWhmvWMztJl/fJ1mW9szSyKFOp8bGhLRQAAOAUBB+CD3BejlfX64tvDmvhtiNasv2oKmrdLbaLMaQB+akaXdRJY3pkanRRpjKS4kJcLQAA6OgIPgQf4IJ5vKa+3l+uxduOavH2I1q778QZe4OkxuWyR3XP0EWFGRrWNV3dOyUpJoaFEgAAQPAQfAg+QLurqHVr2Y6jWrn7uFbsOqYtpS0vkNAsNd6uoYXpGlaYrou6pmtoQbo6JTtCVC0AAOgICD4EHyDoymvqVbznhFbuOqaVu49r08GKs/YISVJuqkMD8lI1ID9VA/PTNCAvVV0zE+kZAgAA54XgQ/ABQq6yzq2v91doXUm51u4r17qSch2tcp3zfUlxNvXPS1X/vFT1yU1Wz5xk9c5JUVZyHM8UAgAAZ0XwIfgAljNNUwfKa30haNPBCm0+6JSzrqFV709LiFXvnGT18tt6ZCUrPz2e5wsBAABJBB+CDxCmmsPQ5oNObT7k1OaDTm066NSB8tpWX8MeY6hLRoK6dUpSt8xEdeuUqK6ZiSrKSlLXzETFx9qC+AkAAEA4IfgQfICIUlHj1pZSp3YcqdKOspPboYq6Nl8rN9WhLukJym/e0uJP7qcnKCMxliF0AABECYIPwQeICpV1bu08Uu0LQnuPVWvPsRrtO1at6nrPeV0zPjamKRAlKCfFoWy/LSclXjmpjfspDjsBCQCAMEfwIfgAUc00TR2rrtfeYzXae6xae4/VaN/xGu05Vq2S4zU6WlV/wd8jPjZGOSnxTYHIocykOGUmxSkjselrUpwyE+OUkRSrzKQ4JcTaCEoAAIRYW/7+t4eoJgBoN4ZhKCvZoaxkh0Z0yzjtfJ3bo9KKOh0sr9WB8lodato/2Py1vFY15+gxqnN7te94Y6BqDYc9JiAYpSfGKjUhVqnxsUpNsDd9jVVqvF2pCbFK8zvnsDMvCQCAYCP4AIg68bE2FWUlqSgrqcXzpmnKWdegI5V1Kqt06UilS2VOl45UuVTm9DtW6VJFrbtV39PV4NWhirrzmpfksMf4QlFyfKySHTYlxtmVFGdTosOuZIddiXE2JcXZleSwK8nvfMBrR+MxVr0DAOB0BB8AHY5hGEpr6nXplZNy1rZ1bo+OVrl0otqt4zX1OlFdr+PV9TpRc8pXv/MN53qS6ylcDV4daQpb7SHWZijebpMj1qaEuBjF222Kj7UpPjZG8bE2OeyN+wmxgccbzzXu+5+Ls8co1tb4Nc4W+DrWZshhsynWbijOFiNbjMGQPwBAWCL4AMBZxMfaVJCRqILTR9S1yDRNVboaVF7tlrOuaattaPrqlrOuoelr4PHKpuOVrtY95+hs3B5Tbk9Du1yrrQxDjeGohYAUZ7c1hSfDd65xM2SLiZE9xmjcbIbsMY0hKuCcrfn8ybY22+nv829j8z/e9H5b82YYimn6aos5uR9j6OR+QFspxjh5HAAQWQg+ANCODMNonLsTH3te7/d6TdW6Paqub1CNy6MqV4Nq6htfV7sajzXvV9d7VONqUJXLo5r6xtfVrgbV1ntU1+CRy+1VndujWrdHdW6P2tgRdV5Ms7EHy9XgldqnAyts+Qei5jAU0xyiDEM2v+PNx2IM+Z0/83HDaAxZRnMQMwwZUsDrmBjJ0Mm2zcd1ymvDaG7TfNzv+moMef7XMNT01ThZm3HK6+ZrBNTTWGDAa6P5e/gFR/9jTeX6avTtS77PJ7/jzfU1t5UR+LM56/WajklNn0f+P+fmto0X9a/dv61xyvHm761Tr+f3PjX97M94Pb/P4/9zBdD+CD4AEEZiYoymeTt26eyj8NrENE25PabqGhpDUHMoqnN7fcGozu1RXYO36XzjuTq3R/Ueb+PW4JXb99VUfUNLxxtDj7vpPe4Gs+mrV66mNtHC4zXlkSmd38rqwDmdNUjpLEHvlCCllsKVTgYs/xDtHxZPDXonA5v/+VPDqH/7099/Msi2HAB12nsCXyugztOvoRa/78nXOqXeU69xxuv7/bxOP97K65/28zn9Gme8/rl+Pq25/pl+Pme9/un/Y8D/++alxWtQl7Tzur+tQPABgA7AMAzF2RuHmJ1vb1R7ME1TDV7TF5TqPV55vKYaPI3HGzxeNXhNeZraNH5teu31ytPczut/zutr43+NhqZzDb7jje9ze0yZZmN7j2nK6zXlMRt72/yPec2Wj5883xh+vKddy5TXe/Kc77zfe/zbRs9DJdDeTFPyBNwg3CwILzcP66Jnbr3I6jJajeADAAgZw2ictxNri1FinNXVhAfTDAxR3qbX5ilfvU0hKeC1GoOZ2fS6+Zh/G69XMuXf5gzXOuV1wLW8J98r+bdpPH/qtXXa9zpZa8D3U/PXk8eafyaN1wxso+bv6XesuW7T730tXk/+31dN5wJ/Pr7ryTzluievqYDz8vs5NV7v1GOBdZ18n9n0cwy43ik16tS6z3S9Uz67f92t/jmc+nnPcL0z1e3fBghXBB8AACxkGIZsRuMcHyBanC04nQxiZwlPZzlnqjmAnuEarbn+GcNuG2o8YwBvRY065TO2pcamdqfVd7brt3AN+dfbQlhv+fMH/nz65LbjmOwQIPgAAACgXTXPO2l6ZWUpgA9PuQMAAAAQ9Qg+AAAAAKIewQcAAABA1CP4AAAAAIh6BB8AAAAAUY/gAwAAACDqEXwAAAAARD2CDwAAAICoR/ABAAAAEPUIPgAAAACiXlgFn8WLF2vSpEnKz8+XYRh69913rS4JAAAAQBQIq+BTXV2toUOH6vnnn7e6FAAAAABRxG51Af6uv/56XX/99VaXAQAAACDKhFXwaSuXyyWXy+V77XQ6LawGAAAAQLgKq6FubTVz5kylpaX5tsLCQqtLAgAAABCGIjr4PPzww6qoqPBtJSUlVpcEAAAAIAxF9FA3h8Mhh8Phe22apiSGvAEAAAAdQfPf/c054GwiOvicqrKyUpIY8gYAAAB0IJWVlUpLSztrm7AKPlVVVdqxY4fv9e7du7Vu3TplZmaqa9eu53x/fn6+SkpKlJKSIsMwglnqOTmdThUWFqqkpESpqamW1oLwx/2CtuB+QVtwv6AtuF/QFuFwv5imqcrKSuXn55+zbVgFn1WrVumqq67yvf7Vr34lSZo6dapmz559zvfHxMSooKAgWOWdl9TUVP7hQKtxv6AtuF/QFtwvaAvuF7SF1ffLuXp6moVV8LnyyitbNT4PAAAAANoiold1AwAAAIDWIPgEicPh0KOPPhqw6hxwJtwvaAvuF7QF9wvagvsFbRFp94thMrYMAAAAQJSjxwcAAABA1CP4AAAAAIh6BB8AAAAAUY/gAwAAACDqEXyC5Pnnn1dRUZHi4+M1ZswYffXVV1aXhBBbvHixJk2apPz8fBmGoXfffTfgvGma+t3vfqe8vDwlJCRo/Pjx2r59e0Cb48ePa8qUKUpNTVV6erp+8pOfqKqqKoSfAqEyc+ZMjRo1SikpKcrJydFNN92krVu3BrSpq6vT9OnT1alTJyUnJ+t73/ueDh8+HNBm3759mjhxohITE5WTk6Pf/OY3amhoCOVHQQi88MILGjJkiO+hgWPHjtXHH3/sO8+9gjN58sknZRiGHnjgAd8x7hf4e+yxx2QYRsDWr18/3/lIvl8IPkHwP//zP/rVr36lRx99VGvWrNHQoUM1YcIElZWVWV0aQqi6ulpDhw7V888/3+L5P/zhD/rzn/+sv/71r1q5cqWSkpI0YcIE1dXV+dpMmTJFmzZt0vz58/XBBx9o8eLFuvPOO0P1ERBCixYt0vTp07VixQrNnz9fbrdb1157raqrq31tfvnLX+r999/XW2+9pUWLFungwYO6+eabfec9Ho8mTpyo+vp6LVu2TK+99ppmz56t3/3ud1Z8JARRQUGBnnzySa1evVqrVq3S1VdfrRtvvFGbNm2SxL2ClhUXF+vFF1/UkCFDAo5zv+BUAwcO1KFDh3zbkiVLfOci+n4x0e5Gjx5tTp8+3ffa4/GY+fn55syZMy2sClaSZM6bN8/32uv1mp07dzb/+Mc/+o6Vl5ebDofDnDNnjmmaprl582ZTkllcXOxr8/HHH5uGYZgHDhwIWe2wRllZmSnJXLRokWmajfdHbGys+dZbb/nafPPNN6Ykc/ny5aZpmuZHH31kxsTEmKWlpb42L7zwgpmammq6XK7QfgCEXEZGhvnKK69wr6BFlZWVZu/evc358+ebV1xxhXn//febpsm/LTjdo48+ag4dOrTFc5F+v9Dj087q6+u1evVqjR8/3ncsJiZG48eP1/Llyy2sDOFk9+7dKi0tDbhP0tLSNGbMGN99snz5cqWnp2vkyJG+NuPHj1dMTIxWrlwZ8poRWhUVFZKkzMxMSdLq1avldrsD7pl+/fqpa9euAffM4MGDlZub62szYcIEOZ1OX08Aoo/H49HcuXNVXV2tsWPHcq+gRdOnT9fEiRMD7guJf1vQsu3btys/P189evTQlClTtG/fPkmRf7/YLf3uUejo0aPyeDwBv2xJys3N1ZYtWyyqCuGmtLRUklq8T5rPlZaWKicnJ+C83W5XZmamrw2ik9fr1QMPPKBLLrlEgwYNktR4P8TFxSk9PT2g7an3TEv3VPM5RJcNGzZo7NixqqurU3JysubNm6cBAwZo3bp13CsIMHfuXK1Zs0bFxcWnnePfFpxqzJgxmj17tvr27atDhw7p8ccf12WXXaaNGzdG/P1C8AGAMDN9+nRt3LgxYEw1cKq+fftq3bp1qqio0Ntvv62pU6dq0aJFVpeFMFNSUqL7779f8+fPV3x8vNXlIAJcf/31vv0hQ4ZozJgx6tatm958800lJCRYWNmFY6hbO8vKypLNZjttdYvDhw+rc+fOFlWFcNN8L5ztPuncufNpC2I0NDTo+PHj3EtR7J577tEHH3ygL7/8UgUFBb7jnTt3Vn19vcrLywPan3rPtHRPNZ9DdImLi1OvXr00YsQIzZw5U0OHDtV//ud/cq8gwOrVq1VWVqbhw4fLbrfLbrdr0aJF+vOf/yy73a7c3FzuF5xVenq6+vTpox07dkT8vy8En3YWFxenESNG6IsvvvAd83q9+uKLLzR27FgLK0M46d69uzp37hxwnzidTq1cudJ3n4wdO1bl5eVavXq1r82CBQvk9Xo1ZsyYkNeM4DJNU/fcc4/mzZunBQsWqHv37gHnR4wYodjY2IB7ZuvWrdq3b1/APbNhw4aAwDx//nylpqZqwIABofkgsIzX65XL5eJeQYBx48Zpw4YNWrdunW8bOXKkpkyZ4tvnfsHZVFVVaefOncrLy4v8f18sXVohSs2dO9d0OBzm7Nmzzc2bN5t33nmnmZ6eHrC6BaJfZWWluXbtWnPt2rWmJPOZZ54x165da+7du9c0TdN88sknzfT0dPO9994zv/76a/PGG280u3fvbtbW1vqucd1115nDhg0zV65caS5ZssTs3bu3OXnyZKs+EoLo7rvvNtPS0syFCxeahw4d8m01NTW+NnfddZfZtWtXc8GCBeaqVavMsWPHmmPHjvWdb2hoMAcNGmRee+215rp168xPPvnEzM7ONh9++GErPhKC6KGHHjIXLVpk7t692/z666/Nhx56yDQMw/zss89M0+Rewdn5r+pmmtwvCPTggw+aCxcuNHfv3m0uXbrUHD9+vJmVlWWWlZWZphnZ9wvBJ0j+8pe/mF27djXj4uLM0aNHmytWrLC6JITYl19+aUo6bZs6dappmo1LWj/yyCNmbm6u6XA4zHHjxplbt24NuMaxY8fMyZMnm8nJyWZqaqr54x//2KysrLTg0yDYWrpXJJmzZs3ytamtrTV/8YtfmBkZGWZiYqL53e9+1zx06FDAdfbs2WNef/31ZkJCgpmVlWU++OCDptvtDvGnQbBNmzbN7NatmxkXF2dmZ2eb48aN84Ue0+RewdmdGny4X+Dv1ltvNfPy8sy4uDizS5cu5q233mru2LHDdz6S7xfDNE3Tmr4mAAAAAAgN5vgAAAAAiHoEHwAAAABRj+ADAAAAIOoRfAAAAABEPYIPAAAAgKhH8AEAAAAQ9Qg+AAAAAKIewQcAEFauvPJKPfDAA+16zTvuuEM33XRTu14TABBZCD4AAAAAoh7BBwAQserr660uAQAQIQg+AICw9uGHHyotLU2vv/66b8jajBkzlJ+fr759+0qSNmzYoKuvvloJCQnq1KmT7rzzTlVVVZ3xmsXFxcrOztZTTz0Vqo8BALAYwQcAELbeeOMNTZ48Wa+//rqmTJkiSfriiy+0detWzZ8/Xx988IGqq6s1YcIEZWRkqLi4WG+99ZY+//xz3XPPPS1ec8GCBbrmmms0Y8YM/fa3vw3lxwEAWMhudQEAALTk+eef17//+7/r/fff1xVXXOE7npSUpFdeeUVxcXGSpJdffll1dXX6+9//rqSkJEnSc889p0mTJumpp55Sbm6u773z5s3T7bffrldeeUW33npraD8QAMBSBB8AQNh5++23VVZWpqVLl2rUqFEB5wYPHuwLPZL0zTffaOjQob7QI0mXXHKJvF6vtm7d6gs+K1eu1AcffKC3336bFd4AoANiqBsAIOwMGzZM2dnZevXVV2WaZsA5/4DTFj179lS/fv306quvyu12t0eZAIAIQvABAISdnj176ssvv9R7772ne++996xt+/fvr/Xr16u6utp3bOnSpYqJifEtfiBJWVlZWrBggXbs2KF/+Zd/IfwAQAdD8AEAhKU+ffroyy+/1DvvvHPWB5pOmTJF8fHxmjp1qjZu3Kgvv/xS9957r370ox8FzO+RpJycHC1YsEBbtmzR5MmT1dDQEORPAQAIFwQfAEDY6tu3rxYsWKA5c+bowQcfbLFNYmKiPv30Ux0/flyjRo3S97//fY0bN07PPfdci+07d+6sBQsWaMOGDZoyZYo8Hk8wPwIAIEwY5qmDpwEAAAAgytDjAwAAACDqEXwAAAAARD2CDwAAAICoR/ABAAAAEPUIPgAAAACiHsEHAAAAQNQj+AAAAACIegQfAAAAAFGP4AMAAAAg6hF8AAAAAEQ9gg8AAACAqEfwAQAAABD1/n9AXUnldcZ9QAAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 960x540 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"costchangeplot(history)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"source": [
|
||
"### Normalizacja średniej"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "fragment"
|
||
}
|
||
},
|
||
"source": [
|
||
"Będziemy dążyć do tego, żeby dodatkowo średnia wartość każdej z cech była w okolicach $0$.\n",
|
||
"\n",
|
||
"W tym celu oprócz przeskalowania odejmiemy wartość średniej od wartości każdej z cech:\n",
|
||
"\n",
|
||
"$$ \\hat{x_i}^{(j)} := \\frac{x_i^{(j)} - \\mu_i}{\\max_j x_i^{(j)}} $$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 26,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle 0.00 \\leq x_0 \\leq 0.00$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle -0.10 \\leq x_1 \\leq 0.62$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle -0.17 \\leq x_2 \\leq 0.83$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/latex": [
|
||
"$\\displaystyle -0.24 \\leq x_3 \\leq 0.70$"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Math object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"X_normalized = (X - np.mean(X, axis=0)) / np.amax(X, axis=0)\n",
|
||
"\n",
|
||
"show_mins_and_maxs(X_normalized)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHDCAYAAAD1MRSGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXhT5/uH7yR1dzdatFhxd4a7uzNgg2FjG9tgY0O2AWMwYAx3d3d3KBSn0JZS6u5t9Pz+yODHlJM0LWPf3NeVi4s2z3veJM05z3nk80gEQRAwYsSIESNGjBgxUuxI3/YGjBgxYsSIESNG/lcwOl5GjBgxYsSIESMlhNHxMmLEiBEjRowYKSGMjpcRI0aMGDFixEgJYXS8jBgxYsSIESNGSgij42XEiBEjRowYMVJCGB0vI0aMGDFixIiREsLoeBkxYsSIESNGjJQQRsfLiBEjRowYMWKkhDA6XkaMGDFixIgRIyWE0fEqRs6fP0/Hjh3x8vJCIpGwd+9eney//vprJBLJnx7W1tbFs2EjRowYMWLESLFidLyKkby8PKpWrcqSJUv0sv/4449JSEj43SM4OJiePXsaeKdGjBgxYsSIkZLA6HgVI23btmXmzJl07dr1L38vl8v5+OOP8fb2xtramjp16nD27NlXv7exscHDw+PVIykpiYcPHzJ8+PASegVGjBgxYsSIEUNidLzeImPHjuXKlSts3bqVu3fv0rNnT9q0acPTp0//8vkrV66kbNmyNGrUqIR3asSIESNGjBgxBEbH6y0RExPDmjVr2LFjB40aNSIoKIiPP/6Yhg0bsmbNmj89v7CwkE2bNhmjXUaMGDFixMg7jMnb3sD/Kvfu3UOtVlO2bNnf/Vwul+Ps7Pyn5+/Zs4ecnBwGDx5cUls0YsSIESNGjBgYo+P1lsjNzUUmkxEaGopMJvvd72xsbP70/JUrV9KhQwfc3d1LaotGjBgxYsSIEQNjdLzeEtWqVUOtVpOcnPzGmq1nz55x5swZ9u/fX0K7M2LEiBEjRowUB0bHqxjJzc0lIiLi1f+fPXtGWFgYTk5OlC1blv79+zNo0CDmz59PtWrVSElJ4dSpU1SpUoX27du/slu9ejWenp60bdv2bbwMI0aMGDFixIiBkAiCILztTfxXOXv2LM2aNfvTzwcPHszatWtRKpXMnDmT9evXExcXh4uLC3Xr1mXGjBlUrlwZAI1Gg7+/P4MGDWLWrFkl/RKMGDFixIgRIwbknXW8zp8/z9y5cwkNDSUhIYE9e/bQpUuXf7Q5e/YskyZN4sGDB/j6+vLll18yZMiQ3z1nyZIlzJ07l8TERKpWrcrPP/9M7dq1i++FGDFixIgRI0b+Z3hn5SR0VYV/9uwZ7du3p1mzZoSFhTFhwgRGjBjBsWPHXj1n27ZtTJo0ia+++opbt25RtWpVWrduTXJycnG9DCNGjBgxYsTI/xDvbMTrdSQSyRsjXp9++imHDh3i/v37r37Wp08fMjMzOXr0KAB16tShVq1aLF68GNCm+Xx9fRk3bhyfffZZsb4GI0aMGDFixMh/n/+Z4vorV67QsmXL3/2sdevWTJgwAQCFQkFoaChTp0599XupVErLli25cuXK364rl8uRy+Wv/q/RaEhPT8fZ2RmJRGLYF2HEiBEjRowYKRYEQSAnJwcvLy+k0uJLCP7POF6JiYl/0sByd3cnOzubgoICMjIyUKvVf/mcx48f/+26c+bMYcaMGcWyZyNGjBgxYsRIyfLixQt8fHyKbf3/GceruJg6dSqTJk169f+srCz8/Px48eIFdnZ2f2t3IXk9oen7sDZxYlCpnzCXWb/xWLczQlnzbDkSJEws+wkBNoGi9ng17T7fP9qABAlfVRxBVcfSouwAjsff4+u7+wCYW703DdzKiLYFuJsWz9Az21Bq1IyoUIePKus3Z/KXW9dYcvsaEuC7pq1pH1ROr3UA5CoVUw4d4/yzaExkMn5o14rmQeLeyzeRnJ3L5G2HeJyYiqlMxqdtG9O5WrBB1v4rnsanMmfHKR7HpQJQq7QPn/RoireTfbEdUyyFCiUXbkVy6NJD7jyJf/Vze1sLmtcqQ8ta5ahQyt0YGf6Xk5CaxYlrTzh25RHxKdmvfl4x0INOTSrRpHppzM3e/qUkX65k8cFL7L32AIBS7k581aclZb1di+2Y92ITmbj1IFkFcgJcHPm5b0c8HGwNsnZUejrDtu8hs7CQGt5eLOnSEQtT/d/nx2kpDDi4g0KVikGVQvikTmO91jkR+4TJl/cjAZY36Ukdd3+d7OPy0hl4eTmFahWTK7Shu39N0bYphRmMu/Ujco2CD0r34D2PWqLsclW5fPtgGgXqfHr79aeBy1+/9uzsbHx9fbG1Ncxn+He8/W9LCeHh4UFSUtLvfpaUlISdnR2WlpbIZDJkMtlfPsfDw+Nv1zU3N8fc3PxPP7ezs/tbxyux4CkPFUewsDGhs+9EXG0937j/bGU2+6J2YWZjRluPjlTxCnmjDUCqPJPl8QcxsTanl28LGvlXF2UHEJWTzLxnp5FZmTOydBPalq4h2hYgIT+bybePobYwpbVPRT6v3w6pHhfZDQ/C+OXxHaSWFsxo2Jy+lcS/hj8iV6kYv2c/FxMSsbSxZmmXTjQJDNB7vdd5GJ/EB5sOkpyTh4ujI4v6daRGgLdB1v4jSrWalceus/L4dVQaDQ729kzp1oROtYPfuiOTmJbNzlN32HfuHlm5hQCYmltSt7I/nRpXolG1IExNZG9Yxci/BTs7O8oF+vJB7+bcfBTD7jN3OXcrksexmTzedJEV+0Pp3rwqPVqG4GRn9fb2Ccwc2olWtSvx9eYTxGTkM2r5QcZ1aMCgZjWQSg3/vWgQbMfWcUMYsWYXL7JzGb3tCCuHdCPQ1anIa4fY2bF+UD/6b93J7bR0pp27wJIuHTHRMwVW286OBe268uGJA2yMfEw1v1J0L1dR53W6B9fkVm4yWyLCmHb/DId9R+BkIf5zt7OzY3L1Tnz34BC/xl7ivaBq+Fg5irYdXrELy6P2sSXlFC0C6uBg9udJL3+yw44eZXuz7cUmTmYfpYlfM6xM/j7YUdzn0He2q1FX6tWrx6lTp373sxMnTlCvXj0AzMzMqFGjxu+eo9FoOHXq1KvnGAKNoOZYwiIENJS3a0xp27qi7DbHrCdXlYO3pQ8dvDqLPJaGuY83k6PKp6ytL4MCxAuw5qsUTA7dSoFaQR2XQMaUay7aFqBQpWT0+V2kFOZRzsGV+fU66uV0HX8WwVcXtZ/J+Br1GFxEp+uDvQe48Ow5lqYmrOzexWBO16lHkQxcsZ3knDyC3JzYOrpPsTld0UnpDF6wjWVHr6LSaGhRtTR7Ph9E5zoV35rTJQgCtx7H8unP++kyeRXrD90gK7cQD2dbRnWrz775I/hpcjea1yprdLreUaRSCbUr+vPd2I4c+HEEo7s3wMPZloycAlbuu0qnSSuYvfoE0fHpb3WfjSsGsvOzgTSrEoRKrWHBvgt8tHwfmXkFxXK8QFcnNr3fh0BXJxKzchi0cjsP4w3TCV/Jw53l3TpjJpNxKiKKb06eoSj9cO2DyjGuuvaa8/n5EzxI1W+fX1Z/j9J2ziQX5PL59cM676l3QG1qOAVQoFbw7d19Otl38WlMKWsvclT5rHl2ULRdE9fmeFh4kqPK4UiieLvi4J11vHJzcwkLCyMsLAz4f1X4mJgYQJsCHDRo0Kvnjx49mqioKD755BMeP37M0qVL2b59OxMnTnz1nEmTJrFixQrWrVvHo0ePGDNmDHl5eQwdOtRg+76Vvp+kwgjMpTa08BgtyuZm+nVuZdxAipShpd7HVGoqym5P7DnCMp9gLjXj0/IDMZWKD3DOuX+QqNwUXM1tmVOtJzKJ+D8VQRD44voR7qUn4GhuyfLGPbEx/XNU8E2EJSXw0amDaASBvhWqMKFmfZ3XeIlCrWbsvoOci4rGwsSEFd27UM/fT+/1XmfD5Vt8tHk/BUoVDUr7s/n9Pvg6ORhk7dcRBIGt58Po/cMmHsQkYWtpzneD2/Hj8I642r/5rq84UGs0nLgWzuCvNzN6znbO3IxAIwjUCvbjh486sWfecIZ3rou7c/GG7o2ULC4ONgzrVIfdc4cz+8MOVAz0QKFUs/fcPXpNXcuUhft4HJ305oWKCSdbKxYM78i03i0wM5Fx4eEzen2/kbCo+Dcb64Gngy0bRvQi2MuN9LwChq7eye0Ywxyrjp8PP3VshwTYHHaX5ddvFmm9ibUa0NwvELlaxZjj+8iSF+q8hqWJKT816IKpVMrx2Cdsj7qjk71UIuXrql0wl5pwNTWSfbG3RdvKJDLGlekBwNHEqzzKjhZlZyI1oYdPHwBOJR0nVZ6i054NyTsrJ/EmVfghQ4YQHR3N2bNnf2czceJEHj58iI+PD9OmTfuTgOrixYtfCaiGhISwaNEi6tSpI3pf2dnZ2Nvbk5WV9adUY7YyhVUR76MUCmnt+RFVHd8cgcpRZvP1g8/JUeXQ3rMznb27idrHs9x4xt2aj1JQM75ML9p5iXdaDsSG8WXYLqRIWFFvKDWdS4m2BVj1+Dqzbp1EJpGwrllf6nsE6GQPEJOdSdfdm0grLKCJbwCr2nbTO8SuVKsZt+8QJyMiMTeRsaJ7F+obwOnSaATmHbvA2kuhAPSqVZkvOjTDVGb4iE5yVi5fbTrO5cfPAahbzo9v+rfG3eHtOFyFCiUHLzxk05GbxKVkAWBuZkK7BsH0ahlCkI/LW9mXkbeDIAjceRrPxiM3uXA7kpdXlQZVSzGsUx0ql/Z6a3sLj0vh49UHiUnJRCaV8FHHhsWWeswplDNmw15uPY/H0syUZQO7UKuUYYq014Xe5ttTZwH4sUNbOgWX13utzMICOuzaQGxONu8FlGZ56856RcuXP7zKd2GnsTIx5WDb4QTY6pZiXRd5kR8fHcPW1IK9TT7CxUL8Ddq8x5s4kXSD0jY+LKo+SVRwQBAEFjz5gcc5D6ntVJcRgWN+9/t/un4bknfW8fq38k8f3O4X3xCRcwVvy2D6BcxFIuIPZUXUUm6kX8PL0ocvK8zARETUSqlR8dGtH4nKi6eOU0VmVBoh+ksVnZtKnwu/UKBW8EHZ5owq+2fn9p+4khTNoNNbUAsC02u8x5By4oofXyezsIBuezYTlZVBRRc3tnXqg42Zmc7rAKg0GsbvP8SxJxGYyWT82q0zjUrpVgz6VyhUar7YfYxDd8MBmPheA0Y0rlUsqb7zD6KYtvEYmXmFmJvKmNCpEX0ahRTLheNNFMiV7DgZxuajoaRn5wNgb2NBz5Yh9GpZDQdbyxLfk5F/F8/i01h74DrHrjxG89vlpU5Ff0Z3r0/FoDfXsxYHeYUKvtl6kqO3tN/XppUCmTWwDTaWukfi30SBQsm4Tfu5HBmDhakJvwzsQp1AX4OsPev0OdbcvIWpVMraXt2p46e/U3c3OZEee7eg0Kj5rE5jRlfTfUKLWqNh4OnNXE2OIcTZi+3vDdLpBlmlUTPw0nIeZsXT2qsSP1TvLdo2Q5HD8OuzyFMXMr5sb9p5iisJepH/nJkPv0JA4LPy0wm0CXr1u5JyvN7ZVOO7xtOcq0TkXEGKjNaeH4lyuu5mhnEj/RpSpAwJGCHK6QLY/Pw4UXnx2JlYM6Fcb9HOgEKt4rPbOyhQK6jpXIoRZZqIsntJYn4OH13ai1oQ6FaqMoPLiu9WeYlcreL9Y/uIysrA28aW1W276e10aQSBTw8f49iTCExlMn7p2tEgTleeXMGYDXs5dDccE6mU77q3ZmST2gZ3upQqNT/uPc+4X/eRmVdIeR83tk7pT78m1Urc6SqUK9l05CZdJq9k8fYLpGfn4+lix+QBzdj/40je71rf6HQZAaCUlzMzRrVl+3dD6NioIjKZlGsPnjP0my18tvgAzxMzSnxP1hZmfDe4LV/+lno8ez+KgT9uJTrZ8HuxNDNlyYDONCwTQKFSxQcb9nLjWaxB1p7arDFtypVBqdHwwd79RKXpX09Xxc2Drxpqa3fnXr/AzYQ4ndeQSaXMrdcRW1NzwtLiWfn4mk72JlIZ06t0RoqEY/H3uZwSIdrW0cyWgb/VLa99dog8lbgaPl8rf+o5NwBgV+y2ItXM6YvR8SoBFJpCTiX+AkAt5+64WLz54l+oLmDT83UAtHRvQ4C1uHRfeHYMW2NOAvBR2Z44mYn32heHn+RRVjwOplbMDumhU12XUqNm3MU9pBXmU8HBjW9rtdHZEREEgannjnM9IRZbMzNWt+uGu7V+qTRBEJhx8gz7Hj7GRCrl507taRKoW8r0r0jPy2fo6p1ciYzB0syUXwZ2oVMxyEXEpWUxdOF21p3WpjH7NQlhw8TeBHo4G/xY/0ShQsmWY7foMmUVC7eeJyOnAB83e6aPbM2uH4bR+71qWJqLqzk08r+Fn4cj00a0Zuf3Q+nQsCISCZy+8ZQ+U9fy3dqTpGbmluh+JBIJPRtUYc34XrjZ2xCVlM6A+Vu49DDa4McyNzXh534daVgmgAKlitHr93DTAM6XVCJhXrs2hHh5klUoZ+SufWQW6F6j9ZJ+FarQuXQF1ILAuJMHSS/I13kNb2t7vqyuFSf/6e55nmbpVjtVwd6LfqW0Bf+z7x2gUK0UbdvRqyE+lm5kKXPZEnNCtF0n726YSkx5mhvO/ay7Ou3XEBgdrxLgcsomspXJ2Jm6Ud+1ryibvXG7yFCm42LuSkevLqJsFBol88I3oUFDU9dqNHIN0WGPEayLugTA11W74G6pW5j1u9unCU2NxdbUnCWNumFpovvFeOnt6+x+8hCZRMKS9zpRzkl//Z0FFy+z6fYdJMDcdq1pWSbojTZvIiEzhwErtnM/LglHK0vWDOtBgzJFj6D9kdN3I+j9wybuPU/E1tKcBSM68mn3ZpgVQcNHV9QaDQfO36fHp2tYsPks6VnaCNe04a3YPmcIHRpWxERmPH0YeTPerlpHffPMQTQMCUStEdh95i7dpqxm+Z7LFMrFX2gNQSV/D7ZM6UdIKU9yCuR8+Ose1py8YfDIx0vnq0FpfwqUKkZt2EtotO5RpT9iYWrCr1074W1nx/PMTD7afxClWq3XWhKJhFmN3yPQ3pGEvBwmnznyKj2sCz0Cq9DUKwiFRs2UKwdRaTQ62X9QrgVuFna8yE9ndcR50XYmUhnvB2m7/PfGniO+IFWUnZOZM83c3gNgT9wONIJu+y0qxjNnMZMmj+Fm2h4AWnqMwVRq8UabqNxIziRro1YD/IZgLhNXh7D+2RFi8pNwMrPjw9+6PsSQLs9jWtguAHr716aZRwXRtgCHYx6xJvwGAPPrddS5wBK0shFzr18A4OuGLWjsG6DzGi9ZdSOUpVeuAzDjveZ0LEIR6kti0jIZsGIb0akZeNrbsnFkL6r4/L2+mz6oNRoW7r/IxJUHyCmQU9nfg22f9Kd5FfGCt0VFEASu3H3GwGkb+XbVcZLTc3F3suXzoS3Z9f1QOjauhIlRDsKIHgT5uPDjxC4sm9qLSkGeFCpUrNx7lZ6freX0jSclmvJxsbNmxdgedKtXCUGAn/Zf5IsNR1EoVQY9jrmpCT/370T9ID8KFEpGb9jL/bjEIq/rbG3Fr906YWVqyuXnL5h9Rryz8kdszMxY0qoT5jITzsQ8Y/XdUJ3XkEgkzK7dDltTc+6mJ+iccrQ2MeeTYG3acHXkBZ7npom2re0UTA3HcigFNSuj9ou2a+vZHkuZFbEFL7iRrtt+i4qxuN7AvF6cZ2try/aYL3ied5sgmzp09/v6jfZqQc2sh18TWxBDXef6DCs1StRxH2VHM+n2QjQIzKg4groulUTZCYLAhJubOZv0mEAbV7Y0GoOFTHy0Kio7jS5H15CrUjA6uB6fhOhWjA8Qnp5Ctz2byVMqGVgxhG8btXyz0d+w5/5Dphw+BsDkxg0YU1f3gtE/EpmcxrA1u0jJySPAxZFVQ7rjaSB16pdk5hXw6drDXA3XyqEMaFqNCZ0bFUuH5N/xNCaFhVvPcf2Bdg921uYM6VCHni1D/hXK5CWJIAjkFyjIyMonIzOPzKwC8vLl5BcoyC9Qkl8gp6BQiVqt0T40Amq1BkEQkEmlmJhIMTGRYfrbv9ZW5lhbmWFjbY61lTk21hY4OVjh7GiDlZV+NYzvMoIgcOrGUxZtPUdiWg4AtSv6MXlAM0p5lVw6XRAEtl+8y/e7zqDWCNQs7cOCER2xs3rzDbIuFCiUfLBhH9eevcDByoINI3oR5Fb013niaSRj9midjTlt3qNnFXHn/b9iw4Mwpl04iZlUxr7uA6jgrHvGYUfkHT69dggzqYzD7UYQaCf+NQqCwIfXN3Ap5SkNXMuwpPZA8U1heQmMufkDGgTmh3xEJXtxk0gOxe9nX/wu3MzdmVFpDnk5ecauxneR1x2vRO6xN3YmMokpw4KW4Wj25pbq44lH2Bm7FWuZNd9U+g5b0zd/+AqNig9D5xKTn0QLt5p8UmGA6P3ujgllxt29mEplbGo4inJ24ruO5GoV3Y6t5VFmMrXdfNnYvL/Okg8ZhQV02rWRFzlZ1PPyZX37Hno7G2cioxi9ez9qQWBYzepMbda4yAXvjxNSGLF2F+l5BZR1d2Hl0G642Lx5vJMuPHqRzKRVB4hPz8bCzISv+7aibQ39RyLpSlZuAct3X2bX6btoBAFTExm9WoYwtFMd7KwNewH6tyAIAilpubyISychOYvE5GySkrNISM4mOTWb9Mx8FArDRj/+DksLU5wcrXF2tMHTzQ4vTwe83B3w8nDAy8MeJwfrtz6NoLgolCtZf+gG6w/fQKFUI5NJ6de6OiO71MOiBGsHLz96zserD5InVxDo7sTi0V3wdjbs2K08uYJhq3dyLy4JDzsbNozsjbdj0S/uP1+6ysJLVzCVydjStychXvp1jgqCwMijezn5PJKyjs7s7z4ACx1LRgRBYMiZrVxIfEYtV1+2tBygk3D289w0up//GaVGzYKafWnuIb5+duGTbRxOuEI5Wz8WVpso6jtTqC7ki3sfk6PKYZD/MKqYVzM6Xu8iLx2v1IwkdqRMIVuZTD2XPjRyG/xG2zR5Kl89mIpCo2BwwPC/nSf1R9Y9O8zmmOM4mtqyvNZn2JmKcwxi89LpeX4J+WoFEyu0ZkhQQ1F2L5l24yibnt7C2dyKg22H426lWxRIqVYz+PAuLsfF4Gtrz/7uA3C00K8zLiw+gQFbd1KoUtGlYgV+aNdaL6X817kXm8jItbvJLpRTydud5YO74mBl2M69QzceMWPrCeRKNT7O9iwY0bFYZ8u9jlqjYe/Ze/yy8xLZedoC3ea1yjCud2O8Xd/+rEdDkZmVT3hkEk+jknkem8bz2DRiYtPJL1C80dbSwhRHBysc7KywsTbHytIMK0szLC3NsLIww8RUilQqRSaVIpNKkMokqNUalCoNKqUapUqNUqkmr0BBXp6cvHw5uflycnILSc/Io6DwzfVNtjYWlPJzIdDf5bd/XSlTyu0/FSmLS85kweZznL8dCYCXqz2fDW5B3coBJbaH8LgUxi7bS3JWLs62Viwe1YVgP3eDHiMjr4CBK7cTlZKOv7MDG0f2xtmmaGOWNILAh3sPcOJpJO421uwZ1A83G/2aklIL8mizfR2pBfkMqVSdrxvqNrEEIDY3kzaHV5CvUvJNrdYMKKPbqLnFj0+yIuIcXpYO7G46DkuZuL/zdEU2w67PokAtZ2qFQTR1Ezfl5ETiUXbEbsHJzJkpfl/g4uhidLzeNV46XscilxNWuBtbE1eGl16OmYjarsVPF3A3K4wyNuX4uNxUUR77s9x4Prw1D7Wg4cvgoTRyrSpqnxpBw4grawhNj6a6kz8r6w3TqYvx6IvHfHBhNwBrm/ahsZfuQ6ZnXDrNmnu3sDY1ZXfXfnoX0z/PyKTHxq1kFBTQuFQAv3brVOQU3b3YRIav2UWuXEE1P0+WDeqKrYXhNH80GoGlhy+z4ri2Fq1hcABzBrU1eIrj73gQmcD3607x+Ll2ZEiQjzOTBzSjZgXDqPm/LeRyJY+eJnL/cRyPIxIJj0gi6bXBzq8jk0q0USVPBzxc7fBws8fDzR53V1ucHW1wdLAq9qhLfoGCtIw80jJySUvLJSE5i/jELOISM0lIyiQ5NQeN5s+naKlUQoCvM8FlvQgu50lwWU8CfF3eirabIblwO5If1p8mKV2bfuzQsCIT+jUpschrUkYOY3/dy5P4VCzNTJk/vAMNKgQY9BiJWdomnfjMbIK93Fg3vCfW5kVzonPlCnps3EJEWjo1fbzY0LsImYOYKIYe1p7b17fvoVe97brwG8wIPYGNiRnHO4zCQ4eb8gK1gi5nFpFYmMWYss0ZrYOW5Obnx1kXfRh3CydW1vocMxESTAqNgi/vTSFTmUknx250LN3F6Hi9a7x0vGZdb4eJtYaO3p9Rwf7Nelh3Mm+zJOInZBIZ04Nn4mn55rSkWtAw8fZPhOfE0MClCtMrDhO9z41Rl5n78AiWMjN2NhkrekgpQHxeNu2PrCRLUcj7FeryWTXd74r2PX3E+FOHAPi1dWdalyqj8xoAGQUF9Ny4leiMTCq6u7G5b0+s9dT9esmDuCSGr9lFdqGcmgHe/DKwS5FPjK9ToFAybeMxToQ9BWBoy5qM69AAmZ7K/LqQV6Dgl10X2XEyDEEAWytz3u9Wn+7Nq76TXYp5+XLuPIjlzsNY7j6IJTwyEZXqzx1Kvl6OlA1yp5SfC/6+zvh7O+Ht6Yip6b+7UUCuUPEiLp2o56lEPU8h6nkqkdEppPxWF/U6drYWhFTypVplP6pX9iPA1/mdTFHmFShYtusS20/eRhDA2d6az4a0oEn1kmkyyS2QM3n1Qa6Gx2AikzJnUFtaVStr0GNEp2YwYMU20vMKqBfkxy8Du2BWxKaV6PQMuqzfTK5CwcjaNfi0qbiMyV8x/cJJ1j8Iw93KhmO9BuOgYyZCIwj0PL6e22lxtPMrz+KG4iauvORY/D0+ubUdC5kp+5tOEN1lX6hWMPT6TNIV2XxQujudvRuJsjubfIrNMeuxlFuxqOEyo+P1rvHS8ZpxrSWl3ULo6//DG09+Co2Cr+9/TqoihTYe7enm00vUsfbFnWdpxG6sZBasrDUVZ3Nx6aHo3BR6nV+KXKPiy8qd6OkvXl1erdHQ79QmbqS8oIqTJztaDcJUqtsJIzw9hS67N1GgUjG2el0+rq1bivMlcpWKQdt2ERoXj5edLTsH9NE7xP6Sh/HJDFuzk+wCOdX9vPh1cFeDOl0pWbmMX7GfBzFJmMikTO/Tks51Khps/X/iwu1Ivl9/iuR0rX5S2/oVGN+3CU52RUt1lCQqtYbwiERu3I7m5p1oHjyOR/2HiJCzozVVgn2oUNaTckHulAl0x8ba8Arlb5PU9FwePUng4ZMEHobH8zgi8U9pS0d7K2pVC6BejUBqVy+Frc27Va9392k8M1cdJzpBKxLaoWFFJg1oWixq839EqVLz5cZjHL0VjlQiYVrvFnSrX9mgx7gfl8jgVTspUCjpUi2YWd1aFdlRPvbkKR/u1Q6AXta1k94yOgVKJe13ricqK4OOpcvzc8sOOq/xKCOJTkdXoxYEVjftTVMv8XsRBIEhl1cSlhFDR58QZoZ0F217MP4SPz/dgYOpDWvrTMNShCqAUqPky3ufkJSRyLpmW42O17vG647XqMq/4G755ru0A/F7OBC/F0dTJ2ZUmoOF7M0nyOTCDN6/+R0FajnjyvSkg1cDUftTadQMubySe5mx1HMtzS+1B+n0ZV907wI/3buAjYkZB9oOx99WfKQMIFsup/PujTzLyqCRjz9r23XXK9KjEQQmHjjMocdPsDU3Z1v/XpR1Kdp8wMcJKQxdvZOsgkJCfD1ZMaSbQZ2u8LgUxv26l6TMXOytLFgwoiM1Shtmjts/kZqZx7yNpzl9Qxth83a1Z+rQltSuaHgNsuIgv0DBtVvPuHD1KVdDo8jNk//u9z5ejoRU9KVKsDdVgn3wdLd/JyM9RUGlUhMemcStuzHcvhfDvUdxyF9rDpBJJVSq4E39mkE0rlcGb0/dvrdvC7lCxYq9V9hw+AaCAJ4udnw1sg3Vyxf/90at0TB7x2l2XroHwKQujRncXLd6pTdx/skzPty4D7VG4MPmdfmwubixN//EzFNnWRt6Gztzc/YP6Y+PvX71mmFJCXTfuxm1ILD0vY60C9K94WfWrZOsenwdX2sHjrUfqVOx/v3MWPpf/BWATQ1HUclB3Geu0qgZcWMOCYWpDA5oRz//VqLsziafYu3DlUbH613kpeO18/F3dC/36RufnypP4av7U1EKSt4P/ICaTm8eyC0IAl8/WMnVtAdUtCvFvJBxSEXWZ62JuMBPj49ja2LBriZjcbcU/6W8lRJL75MbUAsCP9brRJdSurUuC4LAmOP7OfrsKd42thzoPhAnS/2iLT9euMTSK9cxlUpZ3bMb9fyLNgstMjmNwat2kJ5XQBUfD1YO6YaNAWu6roXHMHHlAfLkCkq5O/Hz+53xdXUw2Pp/x4lr4Xy/7hTZeYXIpBL6t63JiM51S7RjTB9ycgs5f/UpF64+5WZYNArl/wtE2libU7OqP7WqBVCzagCe7v+dRgBDoVCqeBiewJXQKK7ciCT6xe91kcqX8aB5w/I0a1AOd9fiu8AYirAncXy9/CjxKVlIJDC4Q23e71Kv2DXlBEHgp/0XWXvqJgAftKvH+63rGNSx337jLl/vOwXA9z3a0DFENx3FP6JQq+m7eTt3EhKp6unB1n699K73mnf9IotvXcXF0ooTvYfq3PyUq5TT+tByEvJzGFepIROr6Jb+/OL2Tg7G3aG6kz+r6w0X/b6fTgrl+8cbsJZZsK7OdGxN33ydUWqUXIg5T4tSLY2O17vGS8crPi0aT6c3RxR+ifiZ25k3KWdbgUllPxX1h3Up9S7fPFiNiUTG0hpT8LcWJ+QZnZtKz/NLUGhUzKjalS6+4ro+APKUCtofWUlMbiadAyqyoH5n0bYvWXU3lG8vn8FUKmVH576EuOvX9rz/4WMmHTwCwA/tWtGtUtFSdbHpWQxYsY3knDyCvdxYPbQ7dpaGS8scCQ3ny41HUak1xaYT9EeycguYu/40x69phwKX9XNl+ojWlPV3K9bjFgW5XMmlG5GcPP+Iq6FRv6vV8vZwoFHdMjSqW5rgsl7I3sF6tLdJfFImV25GcfHqU27ff/G7gv3KFbxp1TSYFo0q/KtTsnkFCn7cfIYD5x8AUDHQg1kftMerBDpwVxy7xuJDlwEY/l4txnVoYFDna/6xC6y6cBNTmYw1w7pT3d+7SOvFZWXTce1GsuXyItV7ydUqOuzcwNOMNLqVDebH5u10XuNwzCPGXtyDmVTGsfbv65QlSSrIouOZn5BrVPxUs59ocW+NoGFM6Fyi8xLo59eKwaXE7bukhmQbHS8Do8sH9zD7AT89+QEpUqZV/BZvyzeHUgvUckbcmEOqPJM+fu8xtFR7UfvSCBqGX1nNrfTn1HctzVIdU4yfXzvM1sgwvKzsONxuBHZmujkOoYlx9N6/DZVGw4yGzRlcSbzT9zp3EhLpu3k7CrWaUXVqMaWJfvVhL0nJyWXAiu28SM+itJsz60f0NKhkxIYzt5i35xwArULKMGtgm2If/XP5zjNmrj5OamYeMqmEwR1qM7xzXUz/hYrzgiAQdv8Fh0/d58LVp7+TeAj0d6Fp/XI0qluGQH+X/7n0YXGRnpnHuctPOHXhMXcf/v/8QHMzE5rUL0v7lpWpWtH3X9shefrGE2avOUF2nhxbK3Omj2xdIoX360+HMn+vViF+RKvajG1f32B/kxqNwIStBzn5MAJHK0u2ju6Dr5NDkdZ8vd5rVY+uNAkM0Gud27+lHDWCwJq23Wjmr1sHuyAIDDy9hctJ0TT3Ks3KpuJqmF/y8+MTrIw4j7+1M7uajBNdU3wx5Q7fPlyDpcycdXWmYW/65vpfo+P1jiL2g1NpVHz7cBoJhfE0d3uPPn7iRE9XRu5nR+xpPC2c+bXmp5iL1DjZHn2dWfcPYCkzY3eTcXhZOYiyAzgV95SR53YgATa16E9dd91qgzILC2i3cz3xuTm0DyrH4pYd9DphJebk0m39ZpLz8mgeFMiybp2KpNWVVVDI4JU7eJKUiq+jPRtG9sLNrmjF+S/RpigusPbU/w+5ntK1abFezAoVShZtPc/OU3cA8Pd05OuRbagYpF9ksTjJyMzjyOn7HDh+l7iEzFc/93Czo2XjCrRsXIFA/5LRM/tfJjk1h1MXHnH45H2ex/5/OtLLw57OrUPo0KrKv7IoPyE1my+WHuR+pHb8Tv82NfiwZ8NiTz1uOnebH3adBeD91nX4sH19g62dr1AyaOV2HsYnE+TmxNZRfYtcY/r1idNsvH0HJytLDg8diIu1fuLPMy+fYeXdUDytbTneewi2ZrpFRiOzUml3ZCVKjYYVjXvSwkd8F3uuspAOZ34iQ5HH55U60DvgzeU4oD0Hj701n4jcWHr6NGdEUKc32hgdr3cUsR/c6aQTbH2xEWsTG2ZW+gFrkzd/IZ7nJTIm9AfUgoZvK71PbWdxqr5JBdl0PbeIPJWcTyu2fzUJXgwZ8nzaHFpBSmEew8vX5ovquo3zEQSB94/t40R0BKXsHTnQfSA2esg9yFUq+m3ZwZ2ERMq6OLO9fx9sinBSKlAoGbl2N7di4nGxsWLT+72LfIf5ErVGwzdbT7L3qjYlMr5jQ4a2rFmsEZtn8Wl8sfQQES+0Q2L7tKrGBz0bYmH276nlEgSBOw9i2XP4NheuPX2VSrSyNKNF4/K0aVaRiuW8/7WRlv8ygiDw6EkCh07d49T5x68ijxbmprRuFkz3DjUI8C25UT5iUKrULNlxkc1HtTc3IWW9mf1he1wcDHPz9HdsPHOLub9Fscd1aMCIVkUfS/aS5Oxcev2ymeScPFoGl+anPh2K9H2Qq1R037CFxympNAsqxfJunfU6DxUolbTZsY7n2ZkMqVSNrxu20HmN726fZvmjq/jbOHK0/UjMZeIj/9uirzH7/kGczKw51HwiVibiHL9raQ+Yfn8F5lIz1teZhoPZP+uJlZTjZSyUeAvkqXLZH68dnN3Fu4cop0sQBJZG7EItaKjrXEm00wXw3YOD5KnkVHHwpXeAbieJr24eJ6Uwj9J2znxctalOtgAbH4RxIjoCM6mMn9/roJfTJQgC046f4k5CIg4WFizr1qlITpdSrWbytkPcionHzsKclUO6G8zpUqrVTF1/hL1XHyCVSJjRrxXD3qtVbE6XIAgcOH+fwV9tIuJFKk52Viz6uBuT+jf71zhdCqWKI6fvM2Liej76YitnLoWjUmmoUMaTT8e1Yc/aMUz5oDWVK/gYna63hEQiIbicF1M+aM3edR/w6bg2BAW4UihXsu/oHQaNXc3HX+/gZlh0iQ6z/idMTWRM6NuE78d1xNrCjLAncQz6ahMPIhOK9bgDmlVnYmetPtTPBy+x/rTuQ6X/Djc7Gxb264ipTMbJhxGsOH+jSOuZm5jwY4e2mMpknIl8xra79/Vax9LUlFmN3wNg3f3b3E7S/T0eW6kBrhbWPM/NYMMT3d6zbn418bVyIl2Rx6ZnV0Tb1XYKpqytL3KNgp0vzui65WLD6Hi9BQ7G7yNfnYeXpQ+NXN4srgpwPiWMsMynmElNGRPUVfSxTiU85HTiI0wkUqZX6aSTOv3hmEccfP4QmUTC3HoddbpDAXiUlsK3V84C8GndxlRy0W/8xrrQ2+y+/xCpRMLCTu3wc3DQax34rSN03ynOhj/D3ETGkgGdKetRNBmKl8iVKiavOsixW08wkUmZO7Q9XeoWn0ZXboGc6b8e4dtVxylUqKhd0Y+N3w4s0TEr/0RmVj5rtl6i5/BfmbPwCE+fJWNuZkLH1lVYtWAQv84bQPuWlbG0+O+MvvkvYGFuSvuWlVn902AWzuxNwzqlkUjg+u1oJn21g9FTNnHh2tO/VNR/GzSrWYa1M/pTysuZ1Mw8Rs3ZzuFLD4v1mENa1GRMW630w/y959l24Y7B1q7q68m0jlq19kWnLnH+ybMirVfW1YXJjbRyQ7NPnyM6I1OvdRr6+NOtbDACMPXcMZRq9RttXsfG1JzJv928/3z/ImmFeaJtTaUyPiinFepeF3mJLEW+KDuJRMIA/zYA7I+/SKYiV6c9FxdGx6uESSpM5EyKtnW4l09fUTIQhWo5y6P2AdDbtwUeluJC/rnKQubc1xZXDg1qRBk7cd2PAKmFeUy/cRSAMcH1qer8ZiX93+1ZpeSjkwdRqNU09wtkWGX9iulvvIhlzhltQetnTRvTIKBo2lNLTl9lzy1tNOrHPu2pEVC07qGXFCiUfLR8H+fuR2FuKmPhyE60DNFPjV8MUXFpDJ2xmWNXHiOTSvigR0MWfdwdFwfDDvDWh9T0XBavOk2vkctZs+UyGVn5uDrb8P7AxuxcNZopH7SmTKBhZ+AZMTwSiYRqlf2Y/XlXtiwbSff21TE3M+HR0wS+mL2XYRPWcvriY9TqP08KKGn8PRxZPb0vjasHoVCq+Xr5URZtO49aU3x7G9WmDsNaasWnZ+84zZHQcIOt3aNmZXrVqowgwCfbj/AiPbNI6w2rVZ06vj7kK5VMOXRU7/fly3pNcbSw5HF6Kmvu3dLZvnupylR0dCdHKWfRvYs62bbxqkwZW3dyVIWsjRRv+3rUa3fsWR13XDwYHa8SZnfsDjSCmkp2VQi2F6eDtS3mFKnyTNwtnOjpK348z+LwU6TIc/CzcmJEGXGRtZd8deMY6fICyju4MbaS7p2Ds6+c42lGGq5W1sxt1kavVFtKbh7j9x9GLQh0qlCeoTWr6bzG6+y99YClZ64CML1Tc5qV10/V+Y/kyxWMXbaXq+ExWJqZsmR0VxoGlzLI2n/F6RtPGPbNZp4nZODmZMOvn/dmSMfabz1Nl5icxY/LTtDn/eVs3x9KoVxJ+dIefPVxR7Ytf58BPepgb2fYIeNGSgYvDwfGv9+C7SveZ2CPulhZmhH1PJWv5x5g+MR1XL4R+dZTkNaWZvwwrhPDOmmLrzcevsmniw6QX/jmYej6IJFI+KhjA/o0DgHgy41HuRr+3GDrf96+KVV9PckulDNhyyHkStWbjf4GqUTCD+1aY21mxu34BFbf0N1pAnCytGJqXa00xcLQyyTm/nl01T8hk0pf1QlvibhNVHbaGyz+H6lEythy2tqyLdHXSJOLi15JJBL6+mnTpAfiL5KnKtBpz8WB0fEqQSJynnA78yYSJHT37S3KJqEglR0vTgPwfmBn0V2Mj7Li2RZ9DYDPK3fEQia+3ufoi8ccefFYm2Ks2wEzHcX3Tj2PZP2DMADmN2uLsx4iqSqNhvEHDpOcl0cZF2dmtm5ZpDqpa1EvmL7vJAAjGtWkV60qeq/1OvlyBR8u28vNiFiszc345YOu1CpTNDHXv0Ol1rB4+wU+W3yQ/EIlNSr4sn7GAKqU0S0aaWhS0nKYt/Q4fUevZO+RMBRKNZUreDPvqx78Om8ALRqVL/ZuMyMlg6ODNSMHNmLHylEM7VsfG2tzop6n8tnM3Yz7fAv3HsW91f1JpRJGd2/AN6PbYmYq4/ztSEbN3k5qZvGkmCQSCZ90a0KrkDKo1BomrjzAoxfJBlnbzMSEH3u3x9HKkkcJycw8WLQaJW97O75orr0BX3DxMk9TxTs9r9OjXCWquXuSp1Qy6+o5ne3ruvvT3Ks0KkHDD2G6vaYm7uWpaO9NgVqhU9SrrnMl/Kw8yFcXcjD+kq5bNjhGx6uEEASBnbHbAGjg0liUZhfAiqj9KAUVIQ5laeAizlnQCBpm3juABoE2XpWp5ype4yZLUcBXN44BMCq4HhWdxKcnAVIL8vjkjDZFObxKDb0m24NWmf76i1isTU1Z0rkDVkUoFI9MTuOjzQdQqTW0qVSWCe8VTfvrJflyJWOX7eVWZBy2lub8OrY71QINk7r8I5k5BUyYv5v1h7TFtgPa1uDnKd3f6pzFzOx8lqw5Q99RK9h/7A5qtYYaVfxYNKsPi+f0pXb1Ukbtrf8otjYWDO3TgK2/jqRvt9qYmZlw92EcH362mamz9vxJKb+kaVOvAr981hMnOyvCnycz/NutPIsvnj3JpFJmDWxDrTK+5MuVfLhsD7GpmQZZ29PBlrm92iKVSNgVep/9YY+KtF7PyhVpGlgKhVrNJ4ePodIj5SiVSPi2YUskwIGIx1yOi9F5jU+rNUMqkXA89gk3kl+ItpNIJK9qvbZFXyOlUFzETSqR0ttPGy3bHXsWubp4oqBiMTpeJcTtzFCi8iIwk5rRyUvcpPY7mU+5lHoXKVLGlO4q+iK298Ut7mfGYm1izuTgNjrt87vbZ0gpzCPQzolxOqYYBUHg83MnSCssoLyTC1Nqi5sM/0dOR0Sx/Jp2RMfstu8R6Oyk1zoA6Xn5jNmwl5xCOdX8PJnTvbVBUnKFChXjV+wjNDIOGwszfvmgG5X9dXNSxRIdn87QGZu5/iAGCzMTZn3Qno/6NMHkLam3FxQqWL/9Cn1HrWDb3psolGqqBPvw8+y+LPi2NyGVfI0O1/8IdraWjBnchM2/jKDDe1WQSiVcuh7B0PFrWbrmLPn5b+8CV7m0Fyu/7IOvuwMJqdmMnLmNexHxxXIsM1MTFozoSDlvV9Jy8hnzyx4ycg2T0qpf2p8xzbTp0xn7TxGdmqH3WhKJhFmtW2Jnbs69xCTW6JlyrOTqzoCKIQB8ffGUzg5cGXtXegdVBeD7sNM6pakbuJahqqMvco2KNZEXRNs1da2Ou7kjmcpcjide12m/hsboeJUAakHNntgdALzn3hYHM4c32mgEDcsjtQX17b3qE2AtTgQzW1HAoscnABhdthluFuK1SK4lPWdbZBgAs2u307mLce/TRxyPjsBUKmV+83ZYmOiu0B6fnc0nh7URt0HVQ2hfXvfBrC9RqNR8tPkAsRnZ+Dras7h/Z8wNoBqvUKqYvPoA15+8wMrclKVjuhab03X9wXOGfbuFuJQsvFztWT29L+/V0f89KQqCIHD87EMGfLCKlZsukpevoEwpN+Z+1YOfZ/ehasXiH1xs5N+Jm4stn4xtzbqfh1K/VhBqtYate2/Q/4OVHD/78K3Vf/m4O7BqWl8qBXmQnVfIh9/v5PKdonUJ/h22luYsGd0FT0dbYlIymbBiX5Hqsl5ndNM61ArwoUChZMr2wyhUunUUvo67rQ2f/5ZyXHjpCjGZmXqtM7lWAxwtLHmSkcamh2E624+v3BhLmSm3UuM4GfdUtJ1EImFMWW3Ua+fzG6SKjHqZSGV0/61GelfsWdTC22sKMTpeJcCl1PMkyROxMbGllUdbUTankm4SkRuLlcziVTusGJY8OUWGIp9AG1f6BogXSpWrVXxxQzv/sG/pEGq7+Ym2BUjIzWH6RW235vga9anoovtMQKVazYQDh8ksLKSyhzufNtUvYgZaJ2HmgdPceh6PrYU5Swd2xtG66IXdSrWaT9Yd5uLDaCxMTVg8qgtVSxVPjdXuM3cZP283uflyqpbxYs30vpT2fTtq7g+fJPDBp5uYueAQKWm5eLjZM31yB1b8OIg6xpSikd/w93Hmuy+78f207nh7OpCWkcfMBYcY9/lWIqNT3sqeHGwtWfJpT+pW9qdQoWLywn0cvVK0lN3f4Wpvw5LRXbG1NCfsWQIztpwwiNMpk0r5vmcb7C0teBCfzMKTRatT6l4pmLp+vhSqVEw7fkqvPTpYWDKpllam4scbl8ko1C3C52Zpw9Dy2q7QeXfO6tRpWdcliCoO2qjXuijx70Vrj9rYmliRUJjK5dS7Ou3XkBgdr2JGrpZzIH4vAO09O2Epe/PFv1CtYO2zQwD08WuJg5k4JeYn2Ylsj9aGUD+r1EH0TCuApQ8uE5WdjquFNZ+GiO+cBK2T89m5Y+Qo5FR19WB0Nf2UnBddusqtuARszc1Z2Kkd5npEzF6y+doddobeRyqRMLdXW4Lciq66rdEITN94nDN3IzEzkbHw/U7UKG34KI9GI/DTlnN8t/Ykao1A2/oVWPJpDxzfQj1XemYes346zOgpG3kQnoClhSkjBzRiw5JhtGxc4a13Uhr5d1KvZiDrfh7KyAGNMDcz4e7DWEZMWs/KTRdRGCgKpAuW5qbMn9CF1vXKo1Zr+OrXI+w9WzwX3iBPZ+YObY9MKuHQzcesOlE0EdSXeNjbMrNbKwDWXAzl0lP9OyglEgkzW7XATCbjUnQMex/q54j2rVCF8k4uZMkL+fGG7s7g+xXq4mBmydOsVPZFPxBtJ5FIGFW2KaAdh5cuF6cJZiEzp6OXtoRm+wvdUpyGxOh4FTNnU06RpczE2cyFxq7NRNnsiT1HqiILd3NHuvqIk4EQBIHv7x9Cg0Arz4rUcRE/yDQyK5VlDy8D8FXNVjoPwN4Rfp9zL6Ixk8mY37wtJlLd/6yuxrxg2VWt0zirdcsiiaTeeBbLd4fPAjCpdUMaly26tIMgCPyw+yyHQx9jIpUyf3gH6pYrmqbYXyFXqPh86cFXY1BGdavP1+8X/2DtP6LRCOw/docBH6zi2BntCbFN84psWjqCgT3rYm5Wsvsx8u5hZmrCwJ512bh0OI3qlEat1rB++xVGTtrAwyfFqy7/V5iayJjxflt6tqiKIMDsNSdfzTU1NPXK+/NZD+35/ueDlzh7L9Ig67aoEETfOtraqKm7jpKRp38dWYCTI2Pra7Mis0+fJ7OgUOc1TKRSvmqgvVHf/PAOERm6NTDYmVkwKli7h5/vX9SpVqyBaxkq2ntTqFGyJfqqaLvO3o0wk5ryJCeG+1lROu3XUBgdr2KkQF3A0URt5KqjVxdMpW/uzMtU5LL9hVb2YEipDpiJsAE4kfCAm+nRWEhNmaRDQb0gCEy/eQylRkNTryDa+pYXbQvaFOO3l7UtwR/XakhpR90jS5kFhXx86CgC0LNyJdqVL6vzGq/2k5nDxK0HUWsEOlQtz9AGNfRe63VWHr/OlvNhAMwc2JrGFcU7tmLJzZczYf5uTt94iqmJjG9Ht2N457olnsaLjknloy+2MG/pcXLz5JQLcmfZ3AF8Pr4dLs7FOwfPyH8Pd1c7Zn3elW8+6YSjvRXPYlL54NNN/LL2LHK5skT3IpVK+Hhgc/q10Z4Xflh/iu0nbhfLsXo1rErvhr85SeuPEJGQapB1p7RpTKCrE6m5+Xy172SRojYjategtLMTGQUFzDuvm6DpS+p5+9EqoDRqQeD7a+KL3V8ysGwNnC2seJ6bwZ5n90TbSSQShpXWlqNsjb5Gnkouys7BzJaW7jUB3pqgqtHxKkZOJR0nT5WLu4UndZzFTbHfEnOcfLWc0jY+NHUTJxhaqFay4JG2IH1o6YZ4WjqI3uP+5w+5kvQcC5kJM2q21ukiLwgCU88dJ0ehIMTNk+FVdHdyBEHgi2MnSMzJJcDRgS9b6Cb0+jqFShXjtxwgPa+A8p6uzOhcNO2vl+y6fI/Fh7QRwU+6N6VtDd2cUzGkZuYyas52Qh/HYm1hxsKPu9K6nuGP80/IFSpWbbrIsInruPswDksLU8aNaM6yuQMILiuuucOIkb+jaYNyrFs8lJaNK6DRCGzZc4MRkzbwNCqpRPchkUgY36cxA9tpL77zNp5h63H9uvvexJTuTahZ2od8uZIJK/aTlad7VOmPWJia8EPPtpjIpJx8GMGBO4/1XstMJuObVlqZha137nErTr+uz0/qNEImkXAiOoLrCbE62VqZmDGqgnb80uL7l1BqxDcONPOogL+1M9nKAnbF3BRt19Vbe525knaf+ALDOMS6YMwXFBN5qjxOJGn1rDp5dUUmeXO9VXxB6itxtxGBnUSNEwLYGHWZ+IJMPCzsGRwkXgIiRyln9i1tdO3Dig3wtXEQbQuw7+kjzr54hplUxtymrZHpkWLcee8Bx55EYCKVsqBDW6z1GKL9km8PnOZ+XBIOVhb83K8jlgYYEn3mbiQzt2mbBoa/V4v+TYqmnv9XvEjKYNzc3cSnZOFkb8XCyd0o5697c0JRePw0kVk/HeZ5rDZV0KB2aSa83wJ3V/Fdsf81BEEgP19BRnouGRn55OfJKShQUJCvID9fQWGhAo1G+G1moYAgaG3MzEwwtzDFwtxU+6+FKbZ2ljg4WOHgaIWtrSWytyQF8rZxsLNi+uQONG9Ynnm/HOd5bBqjpmzk/YGN6dWpZonVDEokEsb2aoRMKmXtwev8uOksggB9W+s32uzvMJXJmDesA/3mbeZFahafrD3E0jFd9TpXvk6wlxsfNKvLopOXmXXwDHUCfXG30y8aXdvXhx6VK7Lz3gOmHz/F3sH9dS4XKe3oTJ8KVdj08A6zrpxlb9f+Ot309i9TneWPrvIiL5PdUffoXTpElJ1MImVIUCNm3N3L+shL9A2og6n0zW6Nn7UHtZwqcCP9EfvizjOmtDiJJ0NhdLyKibPJJylQ5+Nt6UMNx1qibNY9O4RKUFPDsTzVHMWl29LkuayK0M4y/Kj8e1iKVLYH+PneRVIK8/C3cWREhTqi7QAyCgv45rcU47gadSnjpPug6ZjMTGaeOgvAhIb1qOypvyTD7tAHr2Ywzu/dHm9He73XesmdZ/F8uu4QGkGgS92KjOvQoMhr/pGnMSmMm7eL9Kx8fNzsWfRxd3zcHQx+nL9DpVKzfsdVNmy/gloj4ORozcRRLWlct8x/vlNREAQy0vOIi8sgIS6D+PgM4uMySEzIJD09j4z0XORywxeCSyRgb2+Fq5sdHp4Ovz3s8fR0wM/fBXcP+//8e9+wTmkqVfBi7uJjXLgWwdI1Zwm985yp49viVELzRiUSCWN6NEAmk7Bq3zUWbD6LpbkpXZpWNuhxHG0sWTiyEwMXbOVqeAzLj15jTLt6RV53RKNanHkUyb24JGbsO8mSAZ31/rv5pEkjTjyN4HFKKtvu3KN/tao6rzG+Zn32PHnIneREjkVH0KaU+Fm1liamjAqux6xbJ1n64DLdAiuLbg7r4F2Vpb+Nxzsaf4+OPuJujrt4N+ZG+iOOJ15nSKn2WMrMRe+3qBgdr2LiXPJpsIKOXl1FRa4ic+M4m6KtNRge2EH0cZY9OUO+WkFFe2/aeos/YURkpbI2XNtt81XNVjprds26cpb0wgLKOjozKkT3Lka1RsOUQ8fIUyqp5ePNyNo1dV7jJeGJKXx7QBuVGteiPvWCdJPC+CtepGQyfvl+5Eo1jYJLMa23YdKWr/PwWSIfzd1Fdp6cMn6uLJzcrUSHXEe/SGPWgkOER2pTPc0alGPS6Pf+k/MUlUo1UZFJREUm8ywymajIZKKiksnOenNxspWVGQ6O1lhbm2NpZYaVlRmWlmZYWJohk0qQSCVI0P4LoFCokBcqkcuVFBaqKCxUkJ1VQGZmPjnZBQgCZGbmk5mZz9MniX95PP9SrgSUciUw0I2y5TwpU9YDM/P/1unawc6KmVO7sP/YHX5edYZrt54xbPxavpzYnpohASWyB4lEwvtd6yNXqtl4+CZz1p7A2tLM4Fp5Zb1dmda7JV9sOMqvx65StZQX9SsUrTnHRCZlZrdW9Fi6mbPhzzh45zEdQyrotZaTlSXjG9bnm5Nn+OniZdqXL4eDpW5NVm5W1gyvUoOfb11l3vULtPQP0ily1q90NZY9uMyLvEz2Rz+ge6C4SS1mMhP6lqrLoscnWBd5iQ7eIaLO1dUdy+Ft6UpcQQqnkm7SwcvwN9Z/x3/rm/wvolBTSKBlaUIcxIWu1z07DEBT12oE2YiTKHiWm/Iqrz0puLXo1KQgCHwbegKVoKGFdxmaeuk2LPpyXAw7wx8gAeY0aa3zLEeANTdvERoXj7WZGXPb65emBMgtlDNhy0HkKjUNywQwsrG46OI/kZVXyNhf95KRV0Cwrxs/DG1vcJX4uxHxjJ+3m7wCBZWCPFk4uSu21rqd6PRFEAR2H7rNL2vPolCqsbWxYNKolrRorN9J+99IWmoOD+7H8ehBLA8fxPHkSQJKxZ9rR6RSCa5udnh5OeLp7YC3txOeXg44O9vi6GyNo6M1lpb6p7//iEqlJjurgIyMPJISs0hMyCQxIZOEhEwS4jOJfZFGfr6CRw/iePTg/+cemphICSrtToWK3lQI9qZqNX9cXGwNtq+3hUQioXObEKoE+/D1vAM8e57K5K93MKxfQwb2qFsiqUeJRMK4Xo3Iy5ez5+w9pv96BCsLUxpUNWwDTYdaFbgVGcuuy/f5fP0Rtn3SH3fHon2GZdxdGNOsDotOXmb2obPUDfLD1Va/m7d+IVXYEnaXp6lpLLp0hektxXXhv87IqrXY8CCMiIx0dj95QK/y4oMBliamDK9Qhx/CzrD0wWW6BFQSfV3o6V+LlU/P8TQniSupkdQXMSZPKpHS0ashyyL3sD/uAu09xdVhGwKJ8LZHyv/HyM7Oxt7ensFn+jC+6sdUc3xzwfmj7Ggm3P4JKVJW1PoMHytx9T3jb2zibNJjmrmX56da/UXv8UTsE0ad34mZVMax9u/jb+so2rZQpaLtjnU8y8pgYMUQvm3UUrTtS56mptF53SYUajWz27xHryqVdF4DtA7EJzuOcOhuOB52Nuz6cECRRVKVajVjlu7hxtMXeDjasnFSH1ztDdvJd+dJHOPn7ya/UElIWW8WTOqKtQEv7v9Edk4BcxYd5dL1CADqVC/Fp2PbvPPdigX5Cu7ceU7o9WeE3nxGzPM/F8za2llSuow7gUFu2kegG34BLpibF70W0FAolWriYtN5FpXCs6hkoiKTePwogcyMP+sUBZRypUatUtSoFUiVqn5YWPx7Xoc+yOVKFq44zcETWn2tBrVL8+XEdlhblUwKSK3R8NWyIxy/Fo65mQlLPulh8AH0cqWKgT9uJTwuhWqBXqwc17PIN3VKtZo+y7byKCGZVhXL8FNf8RmTP3L5eQyDtu1CJpFwcOhAyrjo3qW+4s4NZl05h5eNLWf6Dtcpm5KrlNN431IyFQX8VL8znQIqirad++AwG59doa5LEL/WHSLueKp8+l/5mkKNgrlVxxIgdcPe3p6srCzs7IqvvtXoeBmYl47X51enMLP296JCnp/dWcrtzCe09qjDpHJ9RR3nVvpzhl5eiUwiZVeTsZSyEadoLleraH1oOTG5mXxQsT4fV20qyu4lP928zE83L+NmZc3J3sOwM9ftpKjWaOi1aRt3EhJpEhjAyu5d9E7h7bp5n2l7TyCTSlg/ohfV/Ip2khQEgW+3nWLX5XtYmZuyfmIfynjpXrv2T9wOj2XC/D0UyJXUDPZl/oQuWJbQhf/+4zhmzDtIUko2piYyPhjalG7tq72z9UQJ8ZlcuhDOlctPeXDvBSrV/2sASSRQKtCN4Eo+BAd7E1zJG28fp3fytQqCQGJCFo8eaqNgD+6/4OmTRF4/c5uayqhWPYCGTcpRv2FZHEowZW1oDp+8x4/LTqBQqvHzdmLW513w9ym6ALIYVCo1Uxbt59KdZ9hZm/Pr570J8jHsOSAmJZM+P2wiT67g/dZ1+LB90SMtjxKS6fXLZtQagZ/7d6JFBd2yGK8zZs9+TjyNpGlgKVb26KKzfaFKSZPNq0jKz+Wbhi0YVEm3hqRF9y7w070LlHNw5XDbEaK/s3H5GXQ4vQANAruajKW0rbsou4VPtnM44TJNXavxoU/XEnG83vnWmiVLlhAQEICFhQV16tTh+vW/H37ZtGlTJBLJnx7t27d/9ZwhQ4b86fdt2ug2aBqgjUc7UX8w9zIjuZ35BBOJjH7+rUStLQgCP/0mH9HVt4ZopwtgTfgNYnIzcbO0YUywbl/4Z5kZLL19DYBp9Zvp7HSBNsV4JyERGzMzZrbWv27qaVIqsw5pi/s/alG/yE4XwOZzt9l1+R4SCXw/pF2xOl21K/rxYwk5XRqNwObd1xg3dQtJKdl4ezrwy9z+dO9Q/Z1yRARBIDIiiXWrz/P+0BUM7LOEZUtOcuf2c1QqDR4e9rTvWI3p33Rn98FJLF8zkgmT29KqbRV8fJ3fqdf6OhKJBE8vB5q3rMiH41uxdMVwdu6fyJdfd6VthxDc3O1QKtVcvxbJjz8cpleXhUz6aAO7d1wnNVXcHLt/E+1aVubnOX1xdbYlJi6dUR9v5PINwwiQvgkTExlzPuxA5dKeZOfJGT9/NykZuQY9hp+rA9P6aDMFK45f49qTmCKvWcHT7ZVm4cwDp8mT6z+c/NMmjTCRSjkb9YyL0bqr41uYmDK2hlYUdfGtqxSqdNNqG1S2JtYmZoRnpnAuQbzAqbeVI809tOUSm5+JF1R9mWK8mHqXDEXJfF/eacdr27ZtTJo0ia+++opbt25RtWpVWrduTXJy8l8+f/fu3SQkJLx63L9/H5lMRs+ePX/3vDZt2vzueVu2bNF5b5UdQkQ9b320dj5ia486eFiIu6s7nfiIOxkvsJCZMrqs+Dx8SkEuS+9r5So+qdoMa1Px6S1BEJh+8RQKtZpGPgF0CNK9+DQqLZ0fL2j1sL5o3gRPW/3qGwqVKj7efphCpYoGpf0Z3qjodV0XHz5j3h5td+ikzo0NLpB6LyKeiT9qna46Ff2ZN6EzFiXgdOXkFvL57D0sW3cetUagRaPyrPxxEGUDxd0N/htISsxi0/qLDB/4K6OGrWTD2gtERSYjlUkIqebPhx+1Yt3mMWzY9iETp7SjcdPy2Nr+9xoEXsfe3oqmzYOZ/El7Nm0fy6r17zNsZFPKlvNAoxG4GxbD0p9P0K/Hz3z28RZOn3xQ4mKlRaFCGU9W/DiQqhV9yC9QMHXWbrbvv1kiI14szE35cWIXAjydSE7PZeKPe8gr0N+R+Sva1ihH17qVEAT4Yv1RMnL1V6B/yQfN6+HraE9Sdi4/n7qs9zoBTo4M+K2rcc6Z8zrNUHxJ7/KV8baxJTk/j80PdRvN5GBuSe+gEACWP7yik23/QK0TdTA2jAyFuDFCpW19KG/rj0pQczpJvBZYUXinHa8ff/yRkSNHMnToUIKDg1m2bBlWVlasXr36L5/v5OSEh4fHq8eJEyewsrL6k+Nlbm7+u+c5OoqvgXqJmEL3O5lPuZsVgalERh+/90StqxY0/Bx+AoCBgfVxtRDvvCy8d4FclYLKTp50KaVbXdWxZ0+5EKsdC/RtoxY6Rw80gsDUoye0jlspf3pUFp+7/yMLjl/kaVIazjZWzOnRusgFuDEpmXy27ggaQaBr3UoMbGZYLZ8nMSlMmL+H/EJtpGvuhE5YGEBj7E1Ev0hj9BRttMDMVMaUD1sxfXKHEquZKQoFBQqOHbnDx+M30r/XYtasPEdMTBqmZjLqNSjDlKkd2LF3AvMWDqBrj1rvbBrREEgkEvwDXOk3sAFLVwxn47YPGTP2PSpW8kGjEbh5PYrZ3+ylV9eF/DT/CBFP/9xJ+W/EycGaBd/0omPrKggCLF51hkUrT6NW6+4I6Iq9jSULJnfFyc6KJzEpTFt2WC8H5J/4tEdTSrk7kZKdx6zt+g2qfh0LUxOmddKO79l4JYzwRP2Hko+tXxd7C3PCU1LZff+hzvZmMhkfVtdGvZaFXadQpZssy7DytTGRSLmaHMPdNPHjpao5+lHB3gu5RsWemFDRdi87Go8n/X3GzJC8s46XQqEgNDSUli3/v7hbKpXSsmVLrlwR5yWvWrWKPn36YG39+3qIs2fP4ubmRrly5RgzZgxpaX8/f0oul5Odnf27h1g2RmsFVtt41sPNQpxzdzjuDs9yU7E3tWRwoHix1MisVLZFhgHwRfUWSHW4SBWqlHx7+SwA71etRYC97o7optt3tF2MpqbMKkKK8XLEczZc0cpuzOrWChebotWy5MuVTFy5n5wCOSGlPPmiV3ODXsCfJ2bw0dxd5OTLqVrGi7njO5eI03XpegSjp2zkRXwGbi62LPmuHx1bVf3XOycxz1NZsvA4fbovYu6cg4Td1qY6Qqr58/FnHdi5byLfzulF67ZVsbcv+aHh7wIeng5071WbhUsHs27zGAYMboibux15uXIO7rvF6OGrmDh2PefOPEKtKn4npiiYmMj4eEwrPhjaFIBdB28x/Yf9JRK983a1Z96EzpiZyrgYFsXibbqPw/knLM1MmTOoDSZSKSfCnnIkNLzIazYsE0CrimXQCALfHtB/CLSDpQVj6mq1HX+6eIVCPQab9yhXCa/fol47wu/rZOtlbUcH/2AAVj2+JtpOIpHQ218rb7Qz5iZqQdzfdyPXEKxlFiQXpuu0T315Zx2v1NRU1Go17u6/T5m4u7uTmPjmO7rr169z//59RowY8buft2nThvXr13Pq1Cm+//57zp07R9u2bVGr/3qMwZw5c7C3t3/18PX1FbV/bbQrElOJjN5+4joDlRo1vzzR1jUNCWqIral4+YEf7pxFLQi09C5DbTfddK6W37lJXG42Xja2fFBNd82uhJwc5p3TzgGb3KQhXnoWLWbmF/L5Lm1tW986VYs8/FoQBGZsOUFEQhoudlbMHdYBUxPdpTH+joTUbMZ+v5P07HzK+7uxYFLXYq/p0mgE1m2/wuez95BfoKBqRR9WzB9IudL6i9MWN2qVhvNnHzNlwiaGDfyVPbtukJcrx8vbkaEjmrBp+1jmLRxAm3ZVsbb+90fr/k14+zgxZHgTNm4byw8L+tG0eTAymZR7d1/w7Ve7GdB7MZs3XiIrK/9tb/VvkUgk9OlSi6+ndMTURMaFq0+ZMG0bmSWw50pBnkwf0RqATUdD2XdO/CxBMVTwdef9NloHZ/aO0yRlFL3G6JO2jbE0NeHW8/gijRMaWL0qnra2JOXmsvG27sPEzWQyRoVoy0CW3b6O8m+uoX/HsPLaa83hmEfE54kPaLTxroydqSVx+RlcTo4QZWMhM6O5u/5akrryzjpeRWXVqlVUrlyZ2rV/70j06dOHTp06UblyZbp06cLBgwe5ceMGZ8+e/ct1pk6dSlZW1qvHixcvRB3/9WiXq7mDKJt9L24Rl5+Bs7kNfQLqirIBuJ4cw4nYJ8gkEj4N0U2bJS4n+1VB/ed1m2ClQ13YS749eZY8pZJqXp6vagd0RRAEvtl/iuScPEq5OPJx60Z6rfM6G8/e5uitcEykUuYO7YCbAWUj0rLyGPvDTpLScwjwdGLhx92wKeYUn1yhYsa8A6zadBFBgK7tqrHgm144/ks73AoLlezddYPB/ZbyzfRd3L4VjVQqoV6DMsyZ14e1m8bQf1BD3D2KPoXgfx2pVEL1GqX48uuubNr+If0HNcDBwYqUlBxWLz9L/16L+XXpKTLSDVtIbkiaNyzPj9/0wtbGggfhCXz42WaSUsRfkPWlVd3yjOyiVZr/bt0pQh+JO8eLZfh7tank70FOgZzpm48XOeXo5WDH+020zty8o+fJLRQ3PPqPmJuY8FED7XXm12vXyZHrvk7v8pVxsbQiLjebPU91S1lWcvKgrpsfakFg3ZMbou0sZWZ09tV2Um57Lj5a1tazLmbSkukwf2cdLxcXF2QyGUlJvx+wmpSUhIfHP9/d5+XlsXXrVoYPH/7G4wQGBuLi4kJExF97zubm5tjZ2f3u8SYeZEVxNysSE4mMXr4t3vh8AIVaxYqn5wAYHtQYKxNxDpAgCHx/Wxsl6x0UQpC9bp163107T6FKRR1PH9rrUVB/KiKS40+1sxhntm6pU4rzdQ7fDefo/SfIpBK+79mmyHMYb0XGsWCftph+ctfGVA/yLtJ6r5NXoGDi/D28SMrE08WOxZ90x9GueNNiWdkFTJq+nTOXwjExkfLJh62ZOKolJgaM4BmKnJwCNq2/yIBei1m88DiJiVk4OFjRb2ADNmz7kG/n9KJW7aASm9v3v4aLqx1DRzRl845xfPJ5R4LKuFNYoGTH1qsM6L2EXxafIO1f2g1ZtaIPS7/vh7urHS/iMxj3+VbiEzOL/bgjutSlVZ1yqNUaPl9ykKR0w70/JjIpswa0xtxUxtXwGHZf0S0t91cMbVgdf2cHUnPz+fWc/nVLXSsFE+TkREZBIetCb+tsb2Fiysiq2kjSsrAbaHR0Kof/Nspua0QYeUrxDQ49/bQBlYvJT0koyBRlE2Tjw5raX+q0P315Zx0vMzMzatSowalTp179TKPRcOrUKerV++c5WDt27EAulzNgwIA3Hic2Npa0tDQ8PT2LvOeXbI3RDqZ+z6O26NquvS9ukViYhau5LT38xYdET8Q+4XZaHJYyU8ZX1i1KFJoYx4GIx0iA6Q10r33KVyj55uRZAIbVrE45V/3kGZKzc/n24GkARjetQyXvoqXN0rLz+GTNIdQagbY1ytG3cUiR1nsdlUrN50sO8vh5Mo62liz+pDtuTsWrMB6XkMGYTzdx71EcNtbmzP+6Jx1aiRu3UZJkZxewesUZ+vXQFstnZubj4enAR5PasGnHWIaNbIq7uzG6VVKYmZvQqk0Vlq0czqzve1M+2Au5XMWu7dcZ2Gcpvy45SXZ20bvtDI2/jzOL5/TFx8uRxOQsxn2+5dVw9+JCIpHw5YhWlPN3IyOngKmLD6DQo+7p7whwd2JcB23N7vw950lIL1okz8zEhE/bNgFg3eVbRKdm6LWOiVT6Kuq16sYtsgoLdV6jX3BV7MzMicpM53i0uNTfS5p5lcbfxpEcpZy90eIdUn8bZ2o7ByIg6FRkb2VSMtND3lnHC2DSpEmsWLGCdevW8ejRI8aMGUNeXh5Dhw4FYNCgQUydOvVPdqtWraJLly44O/9eviE3N5cpU6Zw9epVoqOjOXXqFJ07d6Z06dK0bt3aIHuOzI3levpDpEjo6dtclI1CrWJlxG/RrtKNMZeJi/aoNRrm3TkLwLDytXC1FJ9K0wgCMy5pnZ3e5StT0UWcmv7rLLlyjbjsbLzsbBlbX3xq9HUEQWD63pNkF8ip6OXG+010rzF7HbVGw9T1R0jJziPQ3YnpfQw3g1EQBOasO8mVe9FYmJmwYFJXfN11b0TQhYfh8Yz5dDOx8Rl4uNmx9Lt+VKtc9FmVhiQvT86GtRcY0HsJmzdcpqBAQWCQG59P78K6TWPo1KXGv0o9/n8NiURCnXql+fmXIXw3ry8VK/mgUKjYse0ag/osZduWKyiKYVh4UXB3tePn2X0o5edCSlouH32+lcho/bv4xGBhZsp3Yztga2XO/chEftpyzqDr92sSQkgpT/LkCmZsPVnklGOTcqVoWMYflVrD3KPn9V6nbfmylHVxJkcuZ82NWzrb25qZM7BiCKCt9dLldUklEgaV1eqTrX+im5zIywDFnhe3UGl0qy8rbt5px6t3797MmzeP6dOnExISQlhYGEePHn1VcB8TE0NCwu9bUcPDw7l48eJfphllMhl3796lU6dOlC1bluHDh1OjRg0uXLiAuR5ioX/FthhthK6xawjeluKET/e8CCWpMBs3Czu6+b15BNFLdj+7R0R2Gg5mloysoJvjs+fJQ+6mJGFjasbk2uK7J18SkZbGqhvaO41pLZphpWdqcN/th5x/8gxTmYzZ3VtjqsdcyNdZdeIG1568wMLMhHnDOmBlbrhRPav3X+PA+QdIJRJmfdiB4MDiLWi/fCOS8V9qi4zLBrnzyw/9CfAzrOhrUVDIVezcdo2BfZawbvV58vPklAp0Y8asHvy6egTNW1ZEZvJOn4L+U0gkEmrWDuSnJYOYPbcPgUFu5OYWsuKX0wwZ8AunTz4oER0tsTg72rBwVm/KlHIjIyuf8V9u5UlU0psNi4C3mwPfjG4LwM5TdzhySXephb9DJpUyo18rzExkXHn8nEM39S+MB+3n+WnbJsikEs48juJalH61aVKJhPENtVmkNaG3ySjQPQo6pHJ1zGUmhCUncC0hVifb7oFVsDYx42lWKpeSokXbNfeogKOZNcmF2VxMfqLjjouXd/6sN3bsWJ4/f45cLufatWvUqVPn1e/Onj3L2rVrf/f8cuXKIQgC7733Z90sS0tLjh07RnJyMgqFgujoaJYvX/6nzkl9iS9I5UJKGAC9RHYyKtQqVkVo71Z0iXYp1GoW3dd2Eo6pWA87M/Eh1EKVknnXtbYfVK+Dq5VuxdmCIDDjxBlUGg3NgkrxXhn9xlek5ubx3RHtXeWHzetSxr1oTkVYVDzLjmilRr7o2ZwgT8ONITl6+RG/7taKFn4yuAWNQgwrwPpHTpx7yBez9yBXqKhbI5BFs/rg7PjvmLcoCAIXzj1m2KBfWbbkJNlZBfj4OvHFV135dfUIGjQq96+XtfhfRiKRULtOEL+sHM4nUzvi6mpLclI2s7/Zy8RxG3gW9dcC1W8DBzsrfprZm+CynmTnFDJ5+g6exfx5TqchaVA1kBGdtTey3607RXS84SQIAtydGN1Gu/a8PefIztc9tfc6QW7O9KqlLTv48dgFvR3n98qUpoKbK3kKBetu6l7r5WplTc9yWu3G5WHiC+UB7Mws6FZKO2x74xPxaUNTqQmdfEIAbanOv4l33vF6l9gdexYNAjUdyxNkI66Ye3/sbZIKs3E1t6Wrr3hhz+1RYcTlZeFmacPAMuKjZABr790mIS8HLxtbhlXWzRbgSPhTrsS8wEwmY1qLpjrbv2T2wbNkF8gp7+nK0Ia67+N1svMLmbr+CGqNQLua5elUR38B1z9yOzyWb1cdB2BAu5p0a1a89VX7j91h5gJtjVrrpsHM/qIrViU0ZPtNREUmMWXCJmZM20ViQibOLjZM/rQ9q9aNolmLYGPB/DuETCalVdsqrN08hqEjmmBhacr9uy8YPXwVK5adpsDAau76YmtjwfwZPSlfxoOsnAImTt9ObIJ+NU1iGd6lLjUq+FIgVzJ1yQEKDagrNqh5DQI9nMjILWDhgYtFXm9MszpYmplyLy6J4w+e6rWGVCJhbH1tUGNt6G2y9aj1Gl6lJhLgdEwUkZm6OasDymqvfSfjnpKQL77+rctv18zzyU9ILfz3NIwYHa8SIlORy7FEbWtrT5GdjEqN+lW0a2hQI9HRLrlaxdL72ujLB8H1sTARn+bLLCx4JR8xuVZDLEzET5YHKFAqmX1GG6UaVacWfg4OOtm/5PSjyFddjDO7vlekFOPL4dfx6dn4ONvzRU9xtXViiEvJ4pNF+1Gq1DSvWYaxPYsuc/FPbNlznXlLjyMI0KVtCFPHt8NE9va/xllZ+fw0/wijh68i7PZzzMxMGDC4IWs3jaFt+xBjSvEdxtzclP6DGrJ6/WgaNCqLWq1h2+YrjBi8nKuX9buQGxprK3PmfdWDQH8X0jPymDhte7FKTcikUr4d3Q4neysiY9OYt/GMwdY2NZHxZS/tNWLnpXvceRZfpPVcbKxfzXH86cQlnfW0XvJemdKUdXEmV6FgXWiYzvalHBxpEaDNfqy5Kz5yBVDG3pU6bn5oBIFtEeKPHWjrRlVHX9SChoNxumuRFRfGs2EJsT/+AgqNkrK2flR1KC3K5mj8PeILMnEys6abv/iIz9aI2yQW5OBpZUvv0iE67XPp7WtkK+SUd3alS5kKOtkCLL92k8ScXLzt7BhVR78ZirmFcr49oC3sH9KgBsFeRUv1Hrj+kOO3n2AilTJncFtsLA1Tr1cgVzLlp31k5RZSPsCdr99vU2wRHUEQWL3lEr+s1Tq1/bvXYeKolm89giQIAqdO3GfYgF85uO8WGo1Ak2YVWLNxNEOGN8HyXxKJM1J03NztmDGrJ9/M7ombux1JiVl8+dl2Zn2zl5yct9/9aGdryY/f9MLXy5GklGwmTd9erCKrLg7WfDu6HRIJ7D9/n9M3DFdHVKO0D51/i8rP2n4aVRHHJA1tWAMna0uep2WyO/SBXmtIJRI+qPcy6nWLPIXuEc+XGZRdTx6QJdctatavtFaba3vkHVQ6jG96GfXaExP6r6lRNDpeJUChWsGBOG3IuIdPM1H1LRpBw5pI7YiKAYH1sJSJu4DJ1SqW/TZYdEzF+pjLxEesEnJzWHtfm7//tHYjZFLd/jwScnJYcV07ZPTTpo2wMNUtWvaShScvk5Sdi6+TPR82/2dpkDcRm5rJnJ3au9EP2tWjSoBhZEEEQeCbFceIiE3Fyd6KueM7FdvQa0EQWLnxImu3aqOYIwc0YtSgxm+9TiopMYsvPtnGnG/3kZWVT0ApV35cNJBpM7oZRU//w9RvWJZV60fRq29dpDIJZ04+YOSQFYTefPa2t6ad7/ht71c6X1Nm7CQ/v/hSorWC/RjcXttpPWftSVIzDSdAO7FzI+yszAmPS2HHJd0GTf8Ra3MzRjfVOk3Lzl7TawQQQNtyZQhwdCCrUM6Ou7rrjdXz8qW8kwsFKhU7Hutm38q3HI7mliQW5HA+IUq0XWuvylhITYnOS+V+ZpyuWy4WjI5XCXAy6QbZqjzcLZxo6Cqu/ud88hMic5KxNjGnp794CYVtkWEkFeTiaWVLz0DdVOIXhV5BoVZT29OHpn66j+OZf/4ShSoVNX28aFuujM72APdiE9l8LQyArzq10Nt5A610xBcbj5EvV1I9yJshLQ03EmL9oRucuvEEE5mU78d2xL0YtbrWbLnEhp1XAfhwWFMG9tRPmsNQqNUa9uy8wfDBv3L9WiSmpjKGjmjCLyuHUyXk3yVlYaR4sLQ04/0xLVi4ZDDePk6kpuTw6aTNLF10vETmKP4Tbi62zP+6J/Z2loRHJvHFnD0olcUnJzCyaz3K+buRlVvItyuLrjz/EkcbS8a11w5vXnLoMmk5RYve9apVGU97W5Kyc9l6Xb+0m0wqZUQtbdRq9c1bOqctJRIJgyppI1cbHoTpJKhqLjOha4C2yH77b3OHxWBtYk5zD2325mCceLvixOh4FTMaQcOe2LMAdPNugkwirlZpTYQ22tXTvxZ2ppaibORqFb/+Fu0aFVxPp2hXVGY62x9r55B9UruRztGUewmJ7H3wCIDPmzXRKxqjUmv4et8pBAE6VC1P/dL+Oq/xOhvO3CIsKh5rczNmDmitcwTv77h85xlLd2ojmFMGNqdqWcOp3v+Rddsus3ab9jMdO6wZvTvrl741FAnxmUwev5Eli45TWKCkchVffl09gv6DGmJq+u9TyTdSvFQI9mbZquF06KxN5+zeeYMxI1YTGVG8sg5vws/HibnTe2BpYUro3Rh+WHKs2NJMpiYyZoxqi5mpjCv3otl12nC1RN0bVKa8jxs5BXIWFbHQ3szEhA+aaW/aVpy7QZ5cv0hg10rBOFtZEZ+dw+HHuqdXu5SpgK2ZOc+zMzn3Qrcoaa8gbTDhdFwEKQXio4vtfbR2x+LvofwXaHoZHa9i5kb6I2ILUrCWWdDaU1ykIiw9hrCMGEylMgaUqi/6WLui7pKQn4O7pQ29g0J02ueCm5dRCwIt/AOp6ambIyEIArPPaJsAulSsQBVP/fSrtt+4y6OEZOwszF+pLutLVGIaiw9qU3NTujXB29kwqa+45EymLTusnYXYrApdi7GDceveG6zafAmAMUOa0KtzyQ1x/SOCIHD86F1GDVvB/bsvsLQ0Y/zkNsxfNBA//3+PdpiRksfS0owJk9sy6/veODpZE/M8lXGj13L8SNHSY0WlfBkPZnzSCZlUwrEzD9i4U/zcPl0J9HZmbC9tY82ireeJTco0yLoyqZTPe2rn6+679oBHL4rm0HauFoy/swMZ+QVsuhqm1xrmJiYMrhECwMobutdNWZma0at8JQA23NdtD2UdXKnu4o1K0LD7mfiB5XVdgnA2tyFDkc+VFN3U84sDo+NVzOyL0zokbT3rYSkTV9S9NlJ7Z9PBOwRXC3EpLKVG/aq26/0KdXWKdj1OS+FghFasb3It3cVST0VEcSM2DnMTGZMaNdDZHiA9L59FJ7WO0vj3GuBso/9sQ7VGw/RNx1Gq1TQMDqBLXcNIR8gVKj5bfJCcfDmVgjyY3L+pQdb9K/Yeuc3SNWcBGNG/IX27Fk2xvyjk5BQw8+s9/DD7APn5CipV8WX5mpF07FzjrRf3G/n3UKdeaVaufZ/adYNQKFT8MOcAP807jELx9lTv69YIZML7Ws3EFRsvcPZyeLEdq1fLatQo70OhQsW3q46h0Rgmwla1lBdta5RDEGD+Xv21uEA7F3LMb1GvNRdD9Y569QupioWJCY+SU7j2QjdBVID+wdoI1JmYKGJzsnSy7RGovdnd/eye6PfCRCqjlafW2TsS/3ZvCMDoeBUrMXmJhGaEI0VCR29xDk10bipnk7RO0KBA8dGuA9EPic3Lwtncij6/dX+IZcHNywhAu8CyBOs4Gkil0TD3nNZRHFKjOl52+tU6LTxxiexCrWZXr1qV9VrjJRvP3OLe80RsLMyY3ttwI4F+2nKO8OfJONhaMmdsR8yKUH/2Txw784Afl2nneQ7oUYdBvYrWYFAU7t2J4f0hKzh35hFSmYShI5owf+EAPL0c3tqejPx7sXewYuZ3vRkyvDESCRzcf5uJY9eTlKTbxdWQdG4bQvcO2lTorAWHCY9ILJbjSKUSvhzRGktzU26Hx7HjpO5Co3/HuA4NMJXJuPH0BRceFq2JoX2Vcvg7O5BVUMi2G/o5IQ6WFnSrFAzAmpu6i5MGOjjRwNsPAdj6SHzkCqCdXwUsZCY8zUrlbnrCmw1+o6239rpyJvExBeq3q0FndLyKkX3x2jqtus6V8LAQp5K+8dllBAQau5Uj0FacE6QRBH55qI0WDStfG0sddLsepCZz7NlTJMCEmuIdvZfsuHufyPR0HC0tGV1Xv/qj+3GJ7AzVdrh82aFZkWqxopMzWHJY+15M7toEd0fDFL2fuBbOrtN3kEhgxqi2xVZMf+VmFN8tOgJA9w7VGTmgeHXB/g5BENi2+QqTJ2wkJSUHb29HFi0ZTP9BDZH9C3TDjPx7kUolDBjciFk/9MHWzpLwxwmMGaHVd3tbfDisGXWql0KuUDF11h5S0wzXffg63q72jOvdGIAlOy4Sl2IYh9Pb2Z7+TUMAWLDvQpHkJWRSKSMbayPoay6G6t3hOKSG9gb/dEQU0em6C9a+jHptfXRXpyJ9OzMLWvuWA2BnlHjHsYqDL16WDhSoFZxLKr7IpxiMZ9BiIk9VwMlE7WiEzt7iLp6ZinwOvAgDYFCg+JTdqbinRGanYWtqzoCyuim8L76lTU92KF2esk661eoUKJX8fEnbbTeufh1s9ZhnKQgCcw6dRRCgY9XyVPfXv1BdoxGYseUEcqWauuX86GqgFGNcciazV58AYHCH2tSrHGCQdf/Io6cJfPXD/leK9OOGN38rkhF5eXJmTNvFimWn0agFWraqxLJVIygfXHxNBEb+e9SuE8QvK4ZRpqwH2VkFfDZ5M8ePvp00j4lMylcfd6SUnwup6blM+35vsXU6dmtWheq/pRznbThtsKL+4e/Vxt7KgqjEdA5cL9qMyI4h5fFysCMtN5+9t/TT9Qp0dqJZYCkEYMPtMJ3t3wsojYulFakF+ZyKES8PAdCtlDbdeOj5IxQinTaJREJbb63d8XjdpTAMidHxKibOJt+mUKPAz8qDqg7ipBV2Pr9BoUZJeTtPajoHiD7W8kda56d/merYmop3fp6kp3IkSqs8Pa667hIFG2/dITkvDx97O/qE6FdkfvhuOLdjErA0M2VS66JFd3ZevsutyDgszUyZ3scwKUaVSs2Xvxwmr1BB1TJevN9V96igGOISMvj0290UypXUCgng03HFJ8b6TzyPTmHsqDVcPB+OiYmU8ZPb8OkXnbC0MgqhGtEdD08HFi4ZTNPmwahUGn6YfYANa4tWp6QvNtbmzP68CzbW5jwIT3hVQ2lopFIJnw1uiYlMyqU7zzgbaphibjsrC4a30kaqfjlyBbmekSoAU5mMIQ206dfVF2/qHUEb9FvUa+e9h+TqWC9mKpPRo5y27mrbI90c8vru/rhZ2pCpKOBcQqRou5d1XheTn5Cvkut0TENidLyKiaMJ2khSR68GohwApUbF1mht182AwPqinYbQlFhCU2Ixk8oYUk63VN/iW1qHrW1gGZ2jXTlyOb9e00b0xtWvi5keI33yFUrmH9OmY0c2roW7nf5DnlOyclm4X1trNq5DfYN1Mf6y6xIPohKxtTLnm9HFM54nMyufj2fsJDMrnzKBbnz7aWdMTEpemuH82cd8OGoNL2LScHW1ZcHiQXTsXOOtC7UaebcxMzfh8+ld6N1PW6u4bvV55n13sFi1tf4Ob09HvpjQDoBdh25x6vyjYjlOgJcTg9prz8fzN54hz0BzLfs0qoq7gw1Jmblsu1A02YruNSrhaGVJbEa23jMcGwT4UcrRkTyFgj0PdI/C9S6vrbs69yKaxFzxsxRlUimd/LUZjb3PxEevytl54GflhFyjeqvpRqPjVUzEFiRjKTOnhbs4Z+hkwkNS5Dm4mNvQxquS6OOs+C3a1TmgEm6W4h2XZ5kZHIzU/uF9qEe0a83NW2QWFhLo5EjnirqPFgJYc/Emidm5eDnYMaRB0YZgz9tzntxCBRX93OnTOKRIa73k+oPnbDisVeL/cngrPF3sDLLu68jlSqbO2k1cQiYebvb8ML07ViUcXRIEgU3rL/LN9F0UFiipVj2AX1YNp4IxtWjEQEilEkaObs6EyW2RyiQcO3KXLz/dRn5+yUcdGtQuzYAeWhX3H5YcIyZWt4HNYhnSsTY+bvYkZ+Ty6+7LBlnT3NSEMW21DuzK49fJLdD//bM0M6V/3RDtWhdu6BWFlEokDKyurdXaeOuOzmuUcnCktqcPGkFg1xPdHLcupbTXyVNxT8lWiBs/JJFIeO+36+uJBP1SrIbA6HgVI83damBtYiHquS+jXT39a2MqFdct9zwngxOxWgG7ERV0kxv4New6GkGguV8glVx0m4WYVVjI6hvaTpbxDephokcxfEpOHqsvagelTm7dsEgK9dfCYzh6KxypRMK03i0NIpSanVfIjOVHAa1eV7Oa+inx/xOCIDB74REehCdga2PBvK964Oyof9RPH5RKNfO+O8ialdoZkN161OK7eX1xcLAu0X38WynMVxD/PI37odFcPx/O+WP3OL4nlH2brrB95Xl2rDrPrrUX2bP+Evs2XeHg1mucOXiHGxfCeXz3BXHPU8nOzP/XzIh723ToXJ2Zc3phYWlK6M1nfDJx81uZ8zisX0OqVfajoFDJV3P3Iy8GyQsLM1OmDNIOu95x8jaRsakGWbdj7WBKuTuRlV/IxrNF65zsV7cqlqYmPE5I4foz3WUhQCuoamVqSmR6OjdjdR/J06OcNnK1+8kDnb4nFRzcKGPvgkKj5mSs+Ijde57a411KfvrWuhuLpx/eCADtvcQVyD/OSiAsIwYTiYwefuJFMteG30AAmngGUcbeVbRdYm4Ou55ovf0Pq9cRbfeSNTdukatQUNbFmbbly+psD7D0zFUKFEqq+HjQppJ+awAolCpm79AO1O7dqCoVfHWTw/g75m04TUpmHn4ejkzsWzQx179j/fYrnLkUjkwmZdbULvj5OBXLcf6OnJwCZny5i7Dbz5FKJYyd0JpOXYoWeXzXEASB1KRsXjxL4UWU9hH3PJW0pGzSUnLIy9FtkO/fYW5hiruXA+7ejtp/fZzwL+1GYDkPnN3s/qfSubXrlmbeTwP4/JOtPH4Uz8cTNvHD/H7YO+iv3acrJjIp0ya1Z9iEdURGp7Bk9RkmjX7P4MepVzmAZjVLc+ZmBPM2nGbpZz2L/FmbyKSMalOXz9YdZuPZW/RrEoKdlbgb/D/iYGVJl+oV2XLtDmsvhVIn0FfnNWzNzelQoRzb795n65171PL10cm+bWBZpl04RWRmOvdSkqjiJk6AWyKR0M6vAgvvXeBgzEO6BYqTISpv54mXpQPxBZlcTo6ghWewTvs1BEbHq5goa+NHkI24VM2236JdLT2DcREpmJqtKGRHlDbHP1zHaNfKuzdRajTU9vShhodu6aTMgkLWhGrvsj5qUA+pHieRZynp7Lyp1W75uLXu44leZ8OZW0QnZ+Bsa8WH7Q1T+H76xhOOXnmMVCLhq5Gti2X49fkrT16p0k8a3ZKQSrqf8IpCQnwmX3yylZiYNCwtzZg2oyu165Yu0T28DdKSs3l05wXhd18Qfi+WiIfx5Of9c7rG3MIUJ1dbrG0tsLA0w9LKDAsrM8wtTEHQyrlo1Bo0GgGVSk1+TiE52QXkZBWQm1VAfp4ceaGSmKgUYqJS/rS+nYMVgeU8CCzvSXCIH5VrlcLe8b8dcSxfwYv5CwcwZeJmIp8mMXn8Rn74sR9OziUX8XVxsuGLCe2YMmMne4+EUb2KH03rlzP4cSb0bcrlO88IfRzLyetPeK9O0Y/RulpZlh+7SlRiOlvOhzGqjf7zWwfWq8bW63c4F/6MqJR0Al11vwHsU7Uy2+/e50j4U6a1aIaDpXhH0NbMnFalSnMg4jG7nzwQ7XgBtP/N8bqY8IwsRQH2Zm8eryeRSGjhGcyGqMucSnxodLz+S7T2FBdJylYUcDhO29HRJ0B89GlrRBj5KiXlHFxp4B4g2i6zsIDND7XH+6CaHtGum7fIUyio4OZKq7L6XagXnryMWiPQtFwpapbS7e7odRIzclh+XOu0TurSGFtL3eUs/kh6dj7frTsFwKAOtahc2qvIa/6RqOcpzPrpMADd21enYyvdhpkXlehnKXw6aTNpabm4utoy8/veBJXWLd38rpCdmc/tKxGEXnpK2NUokhMy//QcqUyKl58TvqVc8S3lik8pF1w9HXB2tcXZzQ4rG/Mi3RwoFCpSE7NIjMsgKS6DpLhMEl6kE/00kRfPtKnIsGtRhF2LYvc6rTMeUNadKrUCqVq7FCF1g7C20S+i8W+mVKAbPy4awJSJm4h+lsLH4zcyf9EAHJ1KzvmqU70U/brVZvPu6/yw+BiVynnjYmDnz9PFjiEd6/Dr7sss3HqORtUCsTAr2s2cVCrh/db/H/Ua0LQ61hb61YYGuDjSrHwQpx9Fsv7yLb7u3FLnNSp7uFPBzZVHySnse/iIwTV0E/HuVjaYAxGP2R/xmC/qNcVUZLNWaXsXyjm4Ep6ZwvEXT+gZJO5c2sJD63idTwpHqVGJLu8xFEbHq5io7yJOXuFAXBiFGiVlbN0JcfQTZaPSaFj/RFv0PbRcbZ0uChsf3CFfpaSCsytNfANE2wFkFxay7rdo19j6dfSKdj2IS+L4g6dIJDCxle7jiV5nwb4LFCpUVAv0on3N8kVa6yVz158mM6eA0j4ujOxieMX4nNxCvpi9l4JCJdWr+PHh8GYGP8Y/8fhRPFOnbCUnu4CAUq58N78vLi7FIwb7NhAEgcjHCVw59ZCbF5/y5H7c7+pGpFIJAWXcKVfFl/JVfChbyQefABdMzYrvVGhmZoKXnzNefn8WUVbIlTyPSCYqPIGnD+K5HxpN9NMkop9oH/s3XcHUVEZI3SDqNa9A3WYVcHL973xefv4uLPh5EJPHbyQmJo3J4zcxf2H/EnW+RvRvSOid54RHJvHDkmN8P62bwVO/A9rWZN+5eySm5bDt+G0Gdyj6CLBW1crwyxFHnidnsPPyPQY3179MYHD96px+FMn+sEdMatUQOx0iVqCNIvWsUolvTp5h570HOjtejXwCcLawJK2wgEtxMTT1KyXatq1vecIzUzj2Ily041XV0RcnM2vSFXncSn9OHZcgnfZbVIzF9cWEhezNdx+CILDzuVaSoZe/eAfqZNwT4vOzcTK3pHOAeJHQQpWKtfe1RfGjqtbS+eSyLjTsVW3Xe2X0i3b9dEJ7R9+hSnnKuOs/XDk0IvZVQf1nPZoZ5ER56sYTTt14gkwqYfrI1pgaWNJBrdbwzY8HiUvMxMPNjq+ndCwWeYq/407Ycz6ZuImc7ALKV/Dix58H/iecLkEQiHgUz5qfjjO83QLG9ljCpl/OEH4vFkEQCCjjTvchDZm1fAi7rk5j6e5xjP+6C6271aRUWY9idbrehJm5KWUqetO6W03GTuvEsr0fsfX8VL74sS8d+tTB298ZpVLNjQtPWDRjH/2bfc+k/r+yf9MVsjPz39q+DYmXtyPzFw7AxdWWmOepTJm4mezskiu4NzGR8fmEdpiZyrgaGsWhk7qNsBGDuZkJo7tra37XHrxORnbRPzuZVMrQFtqa4A2nQ1EUQderZoA3ZdydKVSq2HdbP3HWThXKYyqT8Sg5hQdJyTrZmkiltA/SpmD3R+gm8dHGV3vTfTHxGTlKcV2eUomURu7a451/C7ISRsfrLXIr/TlRuSlYysxo5y1egHRduDba1ad0NZ2GYe+PeERqQT6e1rav/sjFkitXsDZU67R9WE+/aNf1qBdciniOiVTK2Bb6R5PUGg3f7zoLQPf6lSnvU/SC+sycAn74LcU4uENtygcYPvW2dutlroU+w8zMhG8/64KDXckVE1+7EsHUj7eSn68gpJo/Pyzoh53dm+sh/s2kpWSz5dczr5ytbSvOER+Thpm5CQ1aVmTSzG5sPP0Jy/Z+xMgpbanRoAyW1kVPRxc3Ds42NGpdibHTOrHq8CSW7x/PkAmtKFvJG0EQeBgWw9LZB+nf9DtmTtzCzQtPUBdhhMy/gZfOl7OzDdHPUvji020UGEj7Sgyl/FwY3l8bgV+86gyJyYafLdmmXgXK+rmSV6Bg1f6rBlmzQ60KuDvYkJKdx74iqNlLJBL61tZGi7Zcv6vXgG8HSwtalg4EYNc93aUaOpXWyhIde/aUQpVStF0ZexcC7ZxQaNScjRMvVtvETXsNPJcUXuJdx0bH6y3yMtrVzrsKNqbiQrvhmclcS45BJpHQv0x10ccSBIFVd7XyDUMqVxOdQ3/J1jv3yCqUU8rRkTbldJdWEASBRSe1WjY9albC18lB5zVesv/aQ8LjUrC1NDdYQf2CzWfJyCkgyMeZYZ10r317EzfDolm/QyuqO+WDVpQLKrmaqssXn/DVFztQKFTUq1+G2T/0wcrq3++A/BUajYZblyP4dvxmBrWcy7pFJ3/nbE2d15ttFz5n2sJ+tOpaAxd3wwjpvk38gtzoM7IJi7Z9wIZTnzD6s/YEVfBEqVRz8fh9vhy9jiGt5rFtxTlySzBSZGi8fZz4bn5fbG0tePQgjplf70GtKjmHslenmlSu4E1+gYK5S44b/GIslUr4qI92juPu03cNMsfR1ETGoGbaFOP606GoNfq/Xx1DKmBtbkZ0agbXn73Qa40elbUaWQcePRY9yucl1T288LaxI0+p5EyM+EHgEomE1j7aqNexWPHRq3quQZhKZbzITyc6zzBSH2IxOl5viUxFPicStXcF3XWQkNgSoa2xaulTFk8r8YKeV+JfEJ6eipWJKX0q6DbeR6FWv5pAP7JOTb10si5HxHArJh4zExmjm+rv2BQolK+GYI9sXQdHm6JHbW48jOHI5UdIJPDlsFaYFUFT7K9Iz8xj5oJD2nmUravQuplhZkiK4dqVCL6ZvguVSkOTZhX4amZ3zMzfvdLOwnwFezdeZni7BXw+cg2XTj5ArdIQXM2fj2f3eOVsNWlb5Z2IaumLq4c9XQbWZ8nOsSzdNZbOA+phY2dJSmIWa346zsAWP/Dr94dJjs9821vVi1KBbsz6vjdmZiZcuxLBT/MPl1g0QiaT8tm4NpiZyrgRFs3RM4YX2Kxd0Z/aFf1QqTWs3HvFIGt2q18JOytzYlIyOXdft5mHr2NtbkbHqloHZsdN/dKtDQL8cLW2IqOgkPNR0TrZSiUS2gdppYUOReqW/mvlo7U7Fx+FXC0u5WplYk4NpwAALibrp9yvL0bH6y1xMDYMpUZNOTsPgu3Fdc7lKRXs/m08Qr/S4qNdAKvvaaNd3ctVxN5ct8LJAw8fk5Sbi5u1NZ2DdS9iFwSBn09pnaU+tavgVoTRQBvP3CIlKw8vJzv6Nip6N6BCqeL731KMPZpXpWKQZ5HXfB2NRmDmgkOkZ+ZTyt+Fj4Y3N+j6/0TojSi+nrbzldP1+bQub2UUUVHITMtl/c8nGdjyB5bNOUTCi3SsbMzp1K8uy/Z+xI8b36dl52r/aWfr7wgs78mYqR3YfPZTPp7dg4Cy7hTkK9iz/hJD2szn+0+2Ex2R9La3qTPBlXz48uuuSKUSjhy6w/o150vs2L7eTgztq63FWrzqDOmZeQY/xgc9tCnNI5ceERWXVuT1rMzN6NVQey5cdzq0SGv1rKXVwjrxMIL0PN3r0EykUjpW0F4j9j7UfRxTu0Bt+u/08ygKlOLTjZWdPXGztCFPpeBq0nPRdg3dtA7bxeQnum20iBgdr7eAIAjsfvGbI+RXU3Rh+MHnD8lVyvG3caSBR4Do48VkZ3IqWjtIdEhl3Rw2jSCw4rq2pmxIzWqYm+geLbkU8Zy7sYlYmJowvJFu8yRfJy0nnzUntXv5qGMDg0SmNhy+SUxiBs721ozpUbQuy79i8+5r3Ax7jrmZCTM+7oh5MWiC/RV3w2KY/vkOlAo1DRqVZeq0zshM3p2ve2pSFktnHWDQe3PZvOwMOVkFePo6MXZaJzaf+YwPvuhIQJn/pgSGrpiZm9KyczV+2T2OmcsGE1InEI1aw5lDdxjT5WfmTt1BUnzG296mTtRvWJaPJrYBYMPaixw+WDSFdl3o3aUWZYPcycktZOHyUwZfPzjQg6Y1SqMRBH7dfckga/ZpVBVTmYywqHjuPIvXe50Knm5U9nZHpdawV88i+y6/jZA7HRFFdqFuAsRV3TzwtrEjX6Xk7Avx6UapREILb23D18tpLmJo6KYtmwlNjy7Rodnvzpn4P8SDrDgic5Ixl5rQVoei+pdpxn5lqulU3L7hQRgC0Ng3gCAH3cTxLjyLJiItHWszM/qG6JaifMmys1qtrV61KuNqq78w5Mrj18iTKwj2daN1taKLEMalZLH2gHZvE/s1wcbAdU8PnyS8EkmdMKolAX76d3HqQvjjeL78bBtyuYradYP44quu70ykKze7gNULjjGs7Y/s33wVhVxFmYrefPFjX1YemkiHPnWwKOFZlu8KEomEmo3K8t3q4fy84wMatKyIIAic2h/GiPY/sWLeEXKy3p0asA6dqzNgsPZmaNGPR7l/T7+6I10xkUn5dGxrZFIJZy6FczMs2uDHGNWtPhIJnLkZwZPnunUA/hWu9ja0r6WNNBV1jFCPmtqo1+5Q3Ub4vKSCmytlXJxRqNUceyK+2B20f8Mv041HonSLQrX01tqdiY8Qve8Aaxe8LB1QatSEpomPlBUVo+P1Ftj/QvvFaOERjJ2puBqlhxlJ3E1PwFQqpVspcaMRAAqUSrY90ubrB1fSTVsFYNUNbWSud5VK2Jrr7pjcjI7l1vN4TGUyhjUUX8v2R+LSsth+USv8Or5TQ6TSostHLNh0FrlSTc1gX4OoSb9Ofr6Cb+cfRK3W0KxBOdq1ED/4vCg8j05h6hRt92LVav589W13zN6iXIJYFHIlu9ZeZEjr+WxfeR6FXEVwNX/mrBrGom1jaNS6ErISlN541ykT7M20hf1YuHUMVWqVQqlQsWvNRYa2mc/ejZdRq3QrfH5bDB7WmCbNKqBSaZgxbRepKdn/x95Vhrlxnd0jhgVpmdmL9tprZnYMQYc5aRpOA23ypW3aJA02DTZpmwYbbjgOm2JmXMMalplR0oppvh93Rl67tqM7M5LWjs7z7PN9dfbeudpdjc6c97znDcp183OTsPRccr98+a21cLnE/XnlpcfjnEnknvOWSF6va2eT8647UIsug5n3PktKC6BWyFHf04+DrZ3U6yUSCS4oJq/th6P0UQ2LclgC1VxPZdCfmpQFtUyODusgKg3/OyHiVGedmkCUsu29dCRRCMJ3siDD6XFjRTshQhdm+E+EPmXVroXphYhT+68afVdbCZPTgYwoHeZk+B9KBwBHu3uwrakFMomEOhCPw5sbdwEALh5XIsjb9dqK7XB7vJhckIEphVm89+GwZX89Nu2rg0wmxYPXzxM9MPEf/1mHtk4DEuOj8H93LQzKLL6ebhP++MAnMBltKCxKwZPPXB600iZfMAyD9T8ewM3n/h1vPb8CZpMNmXmJeOxf1+HFD2/F2Cl5v6g5hmKjsDQdz757M5547QZk5yfBbLLh9Wd+xL1XvYaqg8FRkIRAIpHg//54PnJyEzHQb8FjD38Fp0P8gdYnw6+vng69Tovm1n589WO56PvfvHQKJBJgY3kdalv8IwqnQ0FaAsblpcHt9eKrbQd57xOpVuGcEkJGlu3l12BwXhEhXtubW9BH6RUbm5SCBG0EBp1O7Gj3/29ULVdgGjvFZX27/yRqKhueur0nTLzOWmzsqoTJZUOSOhqT4nP9WmNzu/BtI3kDXDmizO9rMQyDDw4TwnbdyDHU3YhcJ+Piwnyk6fzvoORwpL0LW2qaIJNKcPNM/mpXbUcvfthNjJr3XiDch+V0ufHSf9cDAK5eNA45qf+bKC4E23bXYfmaCtIlef95iArCuBeLxYE//+Ez9PQMIiMzDn99fvhHRrQ29uKhm9/Bs7//HD2dRsQn63D/U5fgta/vwZS5xWHCJRIkEgkmzSrEq1/djXsevRCR0WrUHe3Ab695A//+6w8/O6sy1NBolHj8r5chKlqDyqPt+OfLK4Ny3ahINe64gcQ/vPvJVvQN8FeRToac1DjMm0DUnfd+2CXKnlexDUdfbauAizLOYSguHkc6r1dUVMHOI5g1K0aP0uQkeBkGq6rpOgalEgkWZBEy9FMjHRmay/q81lPkeU2Kz4UUEtSbe9BtEz+/7WQIE68g48c2Mtj6vLQxkEn8+/GvaqnCoMuB9Aidj9H7gwPdnTjc2w2lTIYrivwvTwJAr8WC71mZ+KYJdIZ8Dm9vIkb4xaMKBeV2vb5iBxgGmD9mBEZl+T9A9VT4ZHU5WruNiNdH4OYL+Q+XPRkGzXY8/+oqAMAVF01A2cjAD7/2uL146rFlqK/rRkxsBJ55/irodMELZ6WF0+HCh6+uxZ1L/4H9O+uhVMlx/d3z8Z8ff4eFF48PlxQDBJlMivOunIy3vv8d5l9YBoZh8N1/t+OOi/6B8m3Be9rng9TUGDz8l6WQSIAVPx7AyuUHgnLdxfNGoTg/BTa7C//5rzhG+KG46QIyOmjtrmpRcr3mjRmBuCgtek1WQdESk3IykKqPhtnhxPrKOl57nFtISOWqGvq/rXOyCfFa11RH5TObk0rW7etrg8npn7Ffp9SimE0W2NvfSHdQngjf4YIIg9OKzWxeyPnpZX6v+6Ke3GQuyx1NZar/7xGy7vy8QsSo6fKuPtlPnpjGpCSjLJU+YqG5z4DVh8lrFaJ21bT34qf9ZLbjXecKn53Yb7Live/I0+VvLp+JCI24Ru1//Wc9+gYsyEiNwS3XiN8leSIYhsE/X1mF3TvroVLJ8dTfrkByij7g1+WLQ3sbcecl/8J//70OLpcH46fn4/Vv7sW1d86DSj28y6JnC2LiI/HgM5fjr2/dhKS0GHR3GPCnW9/FG88uh9MZnDIeH4yfmIsbfz0bADHb1wUhKkMqleDum+cAAH5ccxC1DcKN8ENRkJWIyaOy4PEy+GSVsCgIAFDIZFg6hahVX27lP/pIKpXgfDbT6/v99LEQAHBOAVGfdja3wmCj626clpYJtVyONvMgqvr9DzdNi9AhLzoOXobBtq5Gv9dNZqtPwTLYh4lXELG6/RDcjAdF0SnIi/JvzE2L2YDtXU2QALg01/+uQpPDge/rKgEA1xTT5V05PR58sp94BPh6u97buhdehsGM/GwUpSTw2gMA3lhJRmucU1aAESnCuwLfXLYNFrsTRdlJWDKtWPB+Q7Fjbz1WrDsEiQT4471LguKv+urzXfjh23JIJMCfHl2KwiL/MuGCDafDhTefW44Hb3wbbY29iImPxJ9evApPvXHjSYdHhxF4jJs2Am98cy/Ov4oEGn/9wVbcd+VraKoVl1yIiWuun45Jk/PgdLrxxKPLYLMGfqxQaXE65k4vBMMAr76zXvRA1+vPJRE73248BMOg8K7TS6aSRp7tlU1o7eOvonFhqltqmjBgoT9XdoweRQnxcHu9WFdHp5qp5QpMS80EAKxtolPuZiYTL/OWDv/jKDjbz54+/9cIQZh4BRG+MmO6/0Toq3pCgKYlZyMtwv/xJ9/WHoXd7UZBTBzGJ9N9GP9UU4tuiwUJEVpe44H6LVZ8XU48abcI9HZxatdti4SP8Wls78e3G8lT4G+vni1KZyQHq5WMGQGAyy8Yj9LiNNH2PhV2bKvBG/9eAwC4/a4FmD5T3M5MsdBQ3Yl7r3oNy97fCoZhsOjS8Xj7h99h1uLSsI8rxFBrlbj7kQvx2L+ugy5Gy/6u/o013wYvN4sGUqkEf3j4QiQkRKGttR+vvfpTUK57+42zoJDLsPdgM3bsFffDeWJJBoqyEuFwuvHVOuEl1PR4PaYWkQakb7Yf4r1PXmIcilMS4fZ6seowv4DRhazqRRsrAQDzsggZWtdER9qmp7DEq9P/31NZbCYUUhm6HYNU1+KLMPEKEtqsA9g/0AwJJFic6p/fimEYfM0m1V+WS6dafVFJCMaVxaOpP9w+2c+uHVMKJeVMRwD4bNdBONwejExNxMScdOr1HP6zmsyynD96BPJThatd//5yCzxeBrPG5mFcEf9znQxvfrQJPX2DSE3W4ZbrZoq698nQ2tKPvz75LRgGOO+Csbj0ikkBvyYtvF4vvvlwG+698jU0VndBHxeBx/51HX73xCWIiAp8w0EY/mPK3GK89vW9GDs1Dw6bCy/86Uu88pev4RqGpUedTos/PHwRJBJg+ff7sWNb4Me9pCbpcen5xOv65oebeA2RPhUkEgmuWULmLX659gBcIkR9XMyWG7/bdUTQ/MYlpaxP6xC/n/GCEcRztbWxmdqkP5vtwt/X3QGjw/9S5eTETMgkEjSbDWg1G/xao5EpMUov7mfC6RAmXkHCSjZCYkJcNhLV/nUI7ulpRYvFgAi50jeLyh9U9vXgYE8X5FIplubTldPq+vqxo7kFUokEV4ymM+QDgNPtxsc7yVPbjdPH81Y0mnsMWFlOzP23LBSudlXUtmPD3lpIJRLcdbm43qtDlW34ejlRCP7vzoVQB7jEaLM58djDX8JqcWBkaTru/u2iYaccDRptePzuj/D6336Ey+nGxFkFeG3ZvZgyV9zybhjiITYhCk+98Stcf/d8Mq7nyz146JZ3YegXf2yOUJSNzcKll5P7wovP/QhDAEb7nIjrL5+CyAgV6hp7sGEbfT7V6TB/YgES9BHoM1qwZqfwveeU5iFaq0KXwYydVfxjQxaNIhWP3Q2t6DPTjxAqTkxAanQU7G43tjU1U63NiNYhTx8LL8Nga6v/3qtIhQpj4kiVZxvF+KAJ7NzGYOCMJ16vvvoqsrOzoVarMXnyZOzadeq23Pfeew8SieS4L7X6+CdvhmHw6KOPIiUlBRqNBgsWLEBNjfAnqpVtpGR4LkVS/TeNRO1anFEIjdz/D/Mvqsi6BVl5iNPQdbd9eoAQxLl5OUiNjqJaCwArK6rRZ7YiKTrS96blg3fX7CYesZJsFGf454c7FRiGwb8+3wwAOG9mCXLTxPMUud0evPDv1WAYYPG8kZhQli3a3icDwzB46fnlaGzoQWxsBB59/BIoFMMrlb6+sgP3XPEqdm6sgkIpx11/vgBP/PsGxMTzz3ELIziQyaS49s55ePzf10MbqcKhvY2498p/o6GaPkgz0Pj1rXOQlR2PgX4LXn5+RcCHaUdFqnHlRcQ68c7HW+H28FeSToRCLsNlC8oAAJ+sKhf8WlQKOZaMJx6tb3fyH/adEavHyNREeBkGa47QlwslEgnms6rX2lr67khO9drU0ki1bmoSKbVupzDYj4/LprqGEJzRxOuzzz7D/fffj7/85S8oLy/HmDFjsGjRInR3n9ocGh0djY6ODt9XU9PxjPi5557DP/7xD7z++uvYuXMnIiIisGjRItgpZ04NRd1gN6oHuyCXyDA/ucSvNU6PB8ubSTfJRTn+p567PB58U01mbF1eRJeW7nC78fUhsvbqMfzGA/13x34AwFWTyOwwPug2mvHdLnKOWxYKL6HtqGjEvqo2KBUy3LZ0muD9hmLZ8n2ob+qFLkqDu26aI+reJ8N33+zF+jWHIZNJ8eiTlyIunp4cBxIblh/E7659A52tA0hOj8FL/70NF14zZdgpcmGcHhNnFuLlj+9AamYcutsNeOD6N1G+fXhFTihVcvzx4Ysgk0mxZXMVNqzj131Hg8suGA9dlAbNbf1Yt7lS1L0vnjsaKoUMlU3dqKjrELzf0smk3Li+ohaDNv5ZbYtGkWrLT4f5CRDzRxCv1vq6BmpCOSsjGwCwqbWRau1UNnZpR1eT3+vGxGRiYcpIqvPxxRlNvF566SXceuutuOmmm1BSUoLXX38dWq0W77zzzinXSCQSJCcn+76Sko4N2mUYBi+//DIefvhhXHTRRRg9ejQ++OADtLe345tvvuF9zp86iAI1NSEPOqV/CtTmznoYnXYkqCMwNdH/pPZNrY3os9sQr9H6nhb8xerqWhjsdqRERWFmDn06fEVrJyrauqCQyXD5RP4jcv67oRxujxdjc1MxNleYSZ1hGLz21TYAwGXzy5AUJx5R6TdY8O4nJNvnthtmQh8d2Oys6qoOvP4vYqa/9c55GFUa+Iwwf+HxePGfF1fibw9+BofdhXHTRuCfn92F/JLANxmEERhk5iXilU/uQOnEHFjNDjxyx/v46RvxE9yFIL8gGddcPx0A8K+XVwW85BihVeEKVvX68Isd8IioeukjNVg4hahUX67ZL3i/4oxE5CbFwuHyYO0B/qR5AZtiv6uhFUbKWAgAmJieBq1CgW6LBUe76RL6J6WkQSmVod08iEajwe91Y+PToJBK0WUzo9lPn5dWrsRjYy6mOh9fnLHEy+l0Yu/evViwYIHv36RSKRYsWIDt2089+8psNiMrKwsZGRm46KKLcPjwMRm2oaEBnZ2dx+2p0+kwefLkU+7pcDhgMpmO+zoRq9oJ8VqU6j8Z+b6RKD7nZRZTJc4vqyKv56L8Ysgpk+o/P8ga+UtHUqfcA8AnrLdr8ah8xEbwIyGDNge+2ELKnTctmMhrj6HYsLcWlY1d0KoVuPE84fsNxZsfbILF6kRhXhLOnU/vh6OBedCOJx5dBpfLg+kzC3Dp5cPHTG+zOPDEPR/hi3dIOfeKm2fhyddvRJR++Ia4huEfovRaPP3mrzD3/DHwuL148c9f4dv/ijNbUCxcc/105OQmwmi04tV/BL7L8ZLzxiIyQoWm1j5s3M6v2+9UuGx+GQBg7e4awdESEokE500knkpu8gcfZMfHYERiHNxeLzZW0Xd0quRyTM0iD4kb6hup1moVSoxNIjmSW9r892tp5AqMZn1eO7vpvGXBwBlLvHp7e+HxeI5TrAAgKSkJnZ0n9yMUFhbinXfewbfffouPPvoIXq8X06ZNQ2trKwD41tHs+cwzz0Cn0/m+MjKOVyHqBrtRb+6BXCLD7KQiv16bze3Cmjbyhr4g23/p0+iw4ye29fbSAjrJtGnAgO3NLZCAEC9aDFhsWF5BTKHXTCmjXs/hy60HYXE4kZsci5kldIrdifB6Gbz5NVG7rlo4DjEiKlJHqjuwfC0hqr+9fUFA09YZhsGLz/2Izg4DklP0ePCPFwyb0p2hz4zf3/Q2dm6sIqWf56/Er+9fFE6fP4ugVMrx+79djktuJMrSa3/9AZ+/vSnEpzoGhUKGBx86H1KpBOvXHMaeXfwT2/1BhFaFyy8kXYgffL5dVG9ZcU4SirKT4HJ78OMW/t4sDkvGk4iZPbUtggZnc6rXWh4+LwCYk0vu5Rvq6X83M9JJ9YXGYA+Q7kYA2BUmXqHF1KlTccMNN6CsrAyzZ8/GsmXLkJCQgDfeeIP3ng899BCMRqPvq6Xl+A6StZ1EuZqakIdohX/p8evba2F1u5AeoUNZnP8ZXCvqq+H0eFAUG4+SeDpDOuftmp6dxWsu49f7DsPp9qAkNRGj0/mN9XF5PPhk034AwK/mTxCcs7WxvBZ1rX2I0ChxzeLxgvYaCoZh8K//rAMALJo7EiMLAxta+tOqCmzeWAmZTIpHHr8YkcMkiqGztR/3X/cmag63QxejxbPv3ow55/LzBoYxvCGRSHDrg0tw7V3zAADv/H0VPn1rY4hPdQwFhSlYegkpAf7rlVVwuYRHMpwOl50/HlqNEvVNvdixV1yid/Ecop5/t+mwYFKXFqdDWU4KGAZYe4B/k9j8YmKQ31LbBKebPmJkVk42AOBAeydMlH7paWmEeO1ob4GX4ucxKYEQr709rVTXCwbOWOIVHx8PmUyGrq7jx0Z0dXUhOdm/D36FQoGxY8eitpaweG4dzZ4qlQrR0dHHfQ3Fuk4i8c5L9r+NfkUzMW2em0k3KPibGtaMTxkh4WUYLDvMGvJ5qF0Mw+CL3aQ8eMVE/qGY6w7UostgRlyUFkvGCQsDZRgG735POlyvWDAW0RHikZV1W6pwqLIdGrUCt18/S7R9T4auLiP+9QoJZr3x17OGTTJ9fWUHfnftG2hv7kNSWgxe/Oh2FI/JDPWxwgggJBIJrv/NfNxwD7FivPfy6mFFvm749SzoYyLQ2tKPZV+KM3T6VIiKVOPCRSRb8eNl4l7rnCmFUCnlaGjvw5F64d2k55QRc/ya/fyJV0lqIhKjImBzurCrgZ7IpOmikRMTAw/DYEcz3frRCUnQyOUwOOxU44PK4lMhAdBkHkCPTdwB50JxxhIvpVKJ8ePHY+3atb5/83q9WLt2LaZO9W+mn8fjQUVFBVJSSA05JycHycnJx+1pMpmwc+dOv/ccinarAUeN7ZBC4neZ0ep2Yh07Wf3cTP8JVId5EDvbidp24Qg64rWjuQXtpkFEq1RYkJ9HtRYAdta3oKnPAK1SgfNG+/c6T4aPN5IsrMunj4ZSIee9D0A6GSsbu6BWynH1In5Dvk8Gh8OF198nHzbXXDIJ8XGBi0jwehk899fvYbU4UDIyDVdeLXxWpRg4tLcR/3fjWxjoNSOnIBkvfXQb0rOFB9yGcWbgmjvmHke+vvjP8Cg7RkaqcesdcwEAH723Bb29gU0hv/zC8ZDLpThwuBWHq9pF2zdSo8K8CSSK5/vNwsuN88eQMmF5fRt6jPwIiEQiwexC0p24gYfPCwBmsA1bWxrpSoYKmQwTkkm46Y52/zPJopVqFOpJ5WfPMFO9zljiBQD3338/3nrrLbz//vs4evQo7rzzTlgsFtx0000AgBtuuAEPPfSQ7/ufeOIJrF69GvX19SgvL8d1112HpqYm3HLLLQDIH9dvf/tbPPXUU/juu+9QUVGBG264AampqVi6dCn1+dazatfY2CzEqfz7gN7QXgebx4WMCD1KY/0v2X1fWwkGwKSUdKRF0ZUKv6ogb+7ziwuhktMTni/2ELXr/DFFiFDxGzp9pLkL+xs6IJdJcfkM4eUqTu26ZN4Y6KPoBoSfDl98X46uHhMS4qJw5VJxzfon4puvduPAviaoNQr84c8XQiYP/du1Yk8D/nz7e7CaHSidkI3n378FcYn0pekwzmxcc8dc3HgvIV//eWkVVn89PLodz1k0GsUj02CzOfH2G+sDeq2EuCgsnE3igcRWvc6fSSoPq3dWwSFwekBKbDRKs5LBMMC6g/RZWhzmFLE+rcp6XiXQGdlEEaclXgAwJZV4p2mIFwCMTyCEbbiVG0N/JxeAK6+8Ei+88AIeffRRlJWVYf/+/Vi5cqXPHN/c3IyOjmN5KAMDA7j11ltRXFyMc889FyaTCdu2bUNJybFsrd///ve45557cNttt2HixIkwm81YuXLl/wSt+oMNXaRkOCfZfxVoZQsxqC/OLKQq2XEDsS8YQac4WZ0u/FRD3owXj/IvY2woDFYb1hwh6y+fwL+z77MtpCNyYVkB4qMjeO8DAAdr27G/ug1ymRTXiKh2DZrt+HjZTgDAbdfPDGhCfVtrP/7zJvnguO3O+UhLjw3YtfzFkX1NeOSOD+CwuTB+ej6eeuNXiIwWj9SGcWbh6tvn4oqbSan9lce+HhY5X1KpBL+5dyEAYM2qCtRUCc/DOh2uYh++tu6qRVfP/3a088X4ogwkx0XBbHVgywHhHrIFZURBW1/Bn3hNyc2EUi5Du8GEht4B6vWTMtLJKB+DEe0n6f4/HSanEAK1p6OVivSNiydxNvv72qiuF2ic0cQLAO6++240NTXB4XBg586dmDz52HiZDRs24L333vP977///e++7+3s7MSPP/6IsWPHHrefRCLBE088gc7OTtjtdqxZswYFBf6P6+Fgctqwt78RADA3yb/Sn8Pjxnq2zLg4w38C1WwyoKKnC1KJBEty6dLi19bWwepyIUOvQ1kKvSn++wOVcHk8KExOQEkqv4R5o8WOFXsJcbxyJt1MypPhwx/JjMcl04uRGCtebtcnX++C2eJAblY8zplNT1L9hdfL4MVnf4TD4cbYcdk4/0LxyCNfVB1swcO3vw+7zYmxU/Pw6D+uhUod2NFIYQx//Oq352DueSRq4qn7PkZ9VegT7ouKUzFvAVGMXv/32oAm2mdnxmPc6Ex4vQy+XblftH2lUgkWsZleK7YJD4adU0osJLtrWniHqWqUCozPIkRmS00j9foolQqjkokosrOFToEqTUyCUiZDn91GlefFjQ461N8JpyewDRc0OOOJ13DFzt46eBgvciMTkBHhn1qxtbMRFrcTyZoo3x+MP1heR6InpqRmIF5DpxZ9d4QQnguLi3iZ4pftJWXKS8eP5G2q/3bnYThcHhSmJWBMTgqvPTg0tvdj0z7yVHfdkgmC9hqKvgEzvvyelFNuuXam4I7L0+H7b/bi4IFmqDUK3P/78wJ6LX9Qc6QNf7rtPVgtDoyemIO//PO6MOkKAwDJTvzdU5eQkFWLA4/e+T56u4yhPhZuvm0uFEoZDuxrwvatgR2ifcm55OH9+9UHBZcFh2LxNPLAvu1AA4xmYZle2YkxyE2KhdvjxZYjjbz3mZGfDYAf8QKAyRlEudpJabBXyeQYnUCEgT2d/qtXOVGx0CnVcHo9qDSceqJNsBEmXgHC5m5Chub4aaoHgFVsmfGc9AJIKUjMinpyrXNz6ZS5AZsNm9l6+wUl9F2ElR09qOrsgUImw/lj+A0/ZhgGX2wlcywvnzFacD7Vxyv3gmGAWWPzkJMq3kzG/361C3aHCyUFKZg+ib4BwV/09g76Soy33j4PKan6gF3LHzTXdePPt74Hy6AdI8dl4fFXr4daw8/HF8bZCaVSjkdfuRaZuQno7TLhsbs/gt3mDOmZkpJ1uOQyEjL8nzfXw+sNnOo1bdIIJMZHwWiyYaOIw7Pz0uORn5kAt8eLdbuFk0dO9dogoNw4I58Y5Hc3tMLhoieZkzNZ4kWpeAHA+GQiRpR3+d/IIJFIfJFMw6ncGCZeAcLOXlKXn5XkH6HxeL1Y107eXOdk+E+g2gZNONDTCQmARTl0ZcbV1bVwe70oSojHiDh6kvL9ASKBzy3KgV7LL65hT20rmnsM0KoUOHc8/45IADAM2rBiG4nFuHaJeLldvf1mfLeKeNBuvnZGQMNL3/j3WlitThSVpOKCpeK9Bj7o6zHh4Tveh8lgRcGoNDzx2g3QRKhCeqYwhieidBo88fqN0MVoUXukHS8/+nXAh1b/HK6+bhoiI9VoauzFpg2Bm+Mol0lx/jmkIej71QdF3XvhZPL5sXa38IT82aNIV+K2ykbeA75HJMYhPlILh9uDAy30/rlxaSTiocVgRLeZrsNybCKphuzrprvu6DiyrqI/9GVwDmHiFSAMuu3QKTQYHePfPL0Dfe3os1sRpVD5Enf9wepG4gmbmJKOBC1dmXF5FauUFdGrXR6vFz8eYA39Zfz9Tsu2kfT3JeOLEKEWpqR8te4AHC4PirKTUFYg3ozAj5ftgtPpxqiiVEwYQz/D0l/s29uI9WsOQyqV4L7fLQ5pidFmceAvd32I7nYD0rLj8dQbv0JE5PAIbg1jeCI5LQYPv3wNpDIpNiw/iB8+3RnS80RGqnHpFUT1+vC9zQFVvc5dUAqpVIIDh1vR3Nov2r4LJpGH8D1HWjBgsgraqzQ7GTqtGiarAwcb+TUdSCQSTM4ln2k76+k6DAHi8ypKTAAA7G2ji+AYm0SUq+r+Xlhc/iuqpbEs8eoLbKMFDcLEK4CYljACMol/P+K1rKl+dkouFFKZ39dY1UBUsoXZI6jO1me1YkcTeeOcV0TfPLCzvgXdgxboNGrMZOv+tDBa7FjDpilfOo3/UG0AcLk9+GodUaWuWTRONFVqqNr166unB0ztcrk8+OfLqwAAF1w0DvmFwrxuQuDxePHMg5+h9kg7dLERePK1GxAdnrsYhh8onZCDm+9fBAB489nlqD4U2jb+iy+d6FO9Nq4PnOqVGB+FKeOJovTDT+KpXmmJehTnJMHLMFi3R1i5USaVYnpxNgBg82F+WVwAjhGvBnriBQDj0wiB2ttKR7ySIiKREhEFL8Ogoqfr5xew4IhXrakXVndoS+AcwsQrgJiR6D+hWd9OiNe8NP/LhQN2G3Z1kBvbohw64vVTTR08DIORSYnIitFTrQWAHw8SL8OiUflQyv0nisftseconG5iqi/JSPr5BafBhr216DVYEKeLwPxJ9ETyVPjs290+tWt8ANWub7/eg+amXuj1Wtx0y5yAXccfvP3CSuxiZy8+/ur1SM0UzysXxtmPS26cjukLRsLl8uBvD34Om4VfF50YiIxS45LLSeTDp//dGtDyJ1duXLX+MO9S3skwfyK5n60XSLwAYEZJNgBgWyV9lhaHSTmEeB1s7YTN6aJe7yNelIoXAJQlEYP9AYpyY5I2CgnqCHgZBpUDw8NgHyZeAYIEEkxL8I9EdVhNqDR0QwJgdmqu39dY31wPL8OgKC4BGdF6qvOtqiZv4sWFdL4wAHC63VjDDks9X0BS/bc7iR9r6RT+HZEclrFq19I5o6DgSQRPhNFkw3cryb43XDE1YGrXwIAFH763GQDpxgrlLMaVX+3B1x9sBQD83zOXoWi0f6XyMMLgIJFI8NsnLkZCsg7tzX147ZkfQnqepZdOhFqjQF1tN3YHcID2lPE50Ou0GDBasXsff0XpRMwZTx6q91a2wmwVRmKnFJGHx8rWbvQN8itdZsTqkBgVAbfHi4Ot9L6pslSiQB3t7oGd0qA/Kp4QLxrFCwBKYsiD/dFh0tkYJl4BQlF0MmJV/nmuNraTLpOyuDTEqPwv6axpJOvOyaLrsjPa7djOlhkXF9ATry01TRi0O5AYFYFxWfy8VDXtvahs7YZcJsW5E4SZ6hva+7C3shVSiQRLZ4s3pPmrH8ths7uQn5uIyeNyRNv3RLz39kZYzA7kFyRj4ZLQDZk+tLcR/3riOwDAdb+Zh1mL+AfihvHLRpROgz88dwWkUglWf12OjSvENZ3TIDpag/MvIFl4n/53W8CuI5fLsGAW6e5euU74qB8OmckxyE6JhcfjxfaKRkF7xUVpUZhGPFY7q5p57SGRSDA+m9z39zbSdwqm66IRp9XC7fXiSDcdERqdQAjUIUriVcQRrwG6dYFCmHgFCJPi/VeuNrDEa06q/wTK4XFjYwt5qlqQTUe81tXVw+31oiA+DjmxMVRrAWBFBSkzLikt5G0A/2E3UbtmjcyFPkJY+vnX68lNfcbYXCTFiROYarM7sexHktt13WVTAqZ21dV2YfkPZEblXfcuhEwWmrdkf88gnv7dJ3C7PZi1uBTX3jkvJOcI4+zBqPHZuOq2OQCAfzz+LXo6DCE7y6VXTIJcLsXB/c04cjhwsQKL55Hg1i07azFotou278yx5PNkY7nw6QBTWdVru4By44RsdhRPE/3PUiKRoCyVKFf72ukM76NY4tVoMsDo8P/nW8zObDwaLjWe3ZjsJ/FyeT3Y1tkIAJhNQbx2d7TB4nIhQRuB0gS6xPk17Iighfl0vjAAcLjcWF9J5PrFpfy8VF4vg+V7CHk7fyK//C/feZxuLN9KTLOXzBFPLVq1/jBMg3akJesxawq9Kugv3np9HRgGmD23GKUhKut5PF4894fPMdBnRnZBEu5/6pKARmaE8cvBtXfORdHoDFgG7XjlsW9CFjGRkBiN+QtJA89Xnweu2zI/JxE5mfFwuT3YtEO84NaZY8lnw46KJni8wvxjUwpJ1/yumhbev49xWcSndaClg9d5xqSQcuOhTjoFKkatQVokmQ1b2dfj97riGEK8qo09IY85AcLEK2AYpU/36/v29bbB7HYiVqXBKIqh2OuaCPmZm5lDFbbqcLuxuYE86SzIpw8C3VLbBKvThWRdFEan048YAoDyujZ0G82I0qgwkzV78sXG8lqYLHYkxUZhcqk45nevl8EX3+0FAFx2wfiAqVAH9jdhz656yGRS3Hzb3IBcwx989tZG7N9ZD5VGgT+/eHU4IDUM0SCTy/DA05dCoZBhz5YabFpZEbKzXHo5iZbYvKkSXQFK15dIJJg/k1gn1m4Sr4tyVF4KIrUqmCx2HG0QVi4ry02FXCZF58Ag2vr4/RxGJMYhQqWE1elCbXcf9fpSdnRQBSXxAoDieFIqPUJBvLKjYqGQSmFxO9FuFW+mJl+EiVeAIPczEmJLBykXTk+mI1Drmwnxmpfpf0kTALY1NcPqciElKgojk+hnK64+RLK/Fo3M562KLGfnMi4Ykw+lQs5rDw7fbiQ5YBfMHAmZVJw/553lDWhpH0CEVokl84TFXJwKDMPgnbc2AADOvaAMqWn0JV8xULGnAR+9uhYAcM8jFyEjNyEk5wjj7EVGboKv5Pj6Mz9i0Chs/A1f5OYloWxsFrweBt8t2xuw63DEa19FMwwCs7c4yGVSTBpJlKptB4UZ9zVKBUZlEuKzp5Zf2VUmlaI0jeyxv5k+H2tUMvnsaRwwwGSnK8mWxJG1R3r9LxsqpDLkRJHu7CqD/4QtUAgTrxBjcyd5E81M8Z9ANRoH0GAcgEIqxfR0OpVnbS0hbPNH5FITJ6fb4yszLhzFr/zm8niwZj+R4JdMoA9uHYq2HiN2H2mGRAKcP3OkoL2G4svvyU35vHNGQ6sNjPqze2cdDle0QqWS49obZgTkGj+HQaMNz/7hC3i9DBZcNBYLLhr784vCCIMHLr9lFjJyEzDQZ8b7r6wO2TkuYVWv5T/uh9Mh3lzFoUhLiUF+biI8XgabRSw3ThtNGnx2CDTYA8D4EaxHq5Z/zlpZ5rFyIy1iNBqk60jJ8HAXne+qJI5TvOjWFejiAQA1xjDx+kXD6LShop/80c5I9r9rblNLIwBgfHIaopT+j3BhGAbr6wjRm5tHp5QBwK6GFpgdTsRHajEmnV/A566qFhitdsRFaTFhhH/l2FNh+RZi0J9YkonUBJ2gvTi0tPVj9/5GSCTHht+KDYZh8MG7JD7iwqXjER8vTkMA7Rn++cS36O00Ii0rDr/58wVBP0MYvxwolXLc/ciFAIDlX+xGfWVoUsQnTx2BhMRoDJps2LpFvLmKJ2L2VOJ/3bJTuBmew+RR5CH7SH0XBi3CjPvj8khX4v4G+iwtDpzV5FAbv9InV3E50k1HhApjCfGqHein8peNYIlXrYm+NCo2hNV5whCEHV3N8DIMcqNjkaz1/8OXI16zMrKprlfZ04susxkahRxTMulJz9qjxJQ/rziPdzfjqn2kVLmgLF9QaZBhGCzfSojXedP5jyw6Ed+s2A8AmDI+F6nJetH2HYrdu+pRebQdKpUcV1w9JSDX+Dms++EANq2sgFQmxe+fvSI8g/EEeL1e9HUa0dnUi86mXnS3DcBudcDlcMFhd8Fld8Hl8kAToUKUXotIvRaROi2iYyKRmpuAjBHJUKoVoX4ZwwpjJuVi1uJSbFpZgdf+9iOee/fmoDdxyGRSLD53ND58bwuW/7Afc+eLp5QPxYzJI/D2f7dg74EmWG1OaEXwTSbFRiEzOQbNnQMor2rF7HH0zVEcRmeTB+fmHgP6B62IjaKfTDGSLTXW9/TD4nAiQkX3GosTE7CquhZHKYlXZrQOKpkcDo8bzSYjcvT+2TTyokmpsd4YJl6/aHDdjNOSsv1e4/R4sL2d5K/MSvd/HQBsrCdq15TMDKjkdL96r5fB+iHEiw9cbg/WHSRPgAvLhKXL769uQ1uPEVq1AnMmiNN1aLM7sWId8YxdHFC1axMAonbFxEYG5DqnQ1+PCa/99XsApOussFSY8nimg2EYtNV349COWhzaXoPqA03oaOqD28m/FCWVSpCam4iswhRkF6Vi9PQClEzMg1whTrjvmYpbHliMnRsqUbG7AZtWVmB2CHLrFi0Zg4/e34J9exvR0W5ASqpe9GvkZMYjNVmH9k4jdu9v9ClgQjFpZCaaOwew63CzIOIVrVUjNzkW9Z39ONjYgTml9Pf0hKgIJEdHotNkxtH2bkzIobuPFLMzG2mJl0wqRX5MHA71dqFqoNd/4sUqXnWmPjAME9LO7TDxCiG2dzUCAKYlZ/u95kB3BywuF+LUGpTE05njN7HdjLNz6cNAj3Z0o3vQAq1SgSm5/GIPdlW3YNDmQFyUFmPzUnntwWHlNtIxNG9CATQqcZSFdVuqYLY4kJqsw6SxgQlMLd/biMojoVW7XvvrjzCb7MgfmYqrbp0dkjOEGnarEztXH8S2FQdQsb0GA93/2+kkk0uRmB6H5Mw4JGXEQRuphkIth0qthEIlh0Iph3XQDrPBikGDBWajFYbeQbTUdMJstKG1tguttV3Y+uN+/PfF5YjUaTBuTgkmLRiF8XNLoA9BiTnUSEzV44qbZ+HDV9finb+vxtT5JVAqg/sxlJyix7jxOdi7pwGrVx7Ejb+eJfo1JBIJZkwagc+/24ttu+pEI14TSzLx5doD2HOE35zEoSjLSUV9Zz/2N7TzIl4AUb06TWYcau/iTbzq+vrhcLupxICCWEK8qvt7sTjHvwfvnKhYSACYXHb02i1I0AT/oZdDmHiFCD02M2pNfZAAmJLov0F+WxtRu6amZVJ1QZodTuxjZ2PNzKaPXdhUTdSyaSOyoKRUyzisZdWueaNHCCozut0erN3NjjyaJiwHbCh+WE3GA12wcAzvUurP4dOPSHL2kvPLQqJ27dxYiS2rD0Eqk+K3j18MmUjjlc4EuJxu7N1wBBu/2YsdKw/CPmT8ikIlR+HYbJROzUfJxFxk5CcjPkXP6+fDMAz6u4xoqupAU2U7qg80o3zDEZj6Ldj07V5s+nYvSf+eW4LzbpyJifNH/qJ+D5feNAPLv9iFrrYB/PjpTlx8w/Sgn2Hh4tHYu6cB6346hBtumhkQ9WPK+Fx8/t1e7NzXAK+XEeWeUlZAvFkN7X0wDNqgj+IfPl2alYxl2w/hcDP/eIrilESsPVqHyg56w3pKVBQilUqYnU40DhhQmBDv99oRMWzZ0NDv9xqVTI7UCB3aLEY0Dg6EidcvEbu6CYEq0idCr/L/zbOVJV7T0jLprtfSCpfXiwxdNK+h2JuqGwEAswqyqdcCgMfrxYYKtlQ5mr9EDgC7DjfDZLEjVqfF+GJxymT1TT04XNUBmUyKJfMDEyFReaQN+8obIZNJcflVwVe77FYnXn2KlBgvvmEa8oqFqY5nCnraB/Dd2+ux8uNtMBuOtfcnZ8Zh1kXjMWHeSBSOzRbNkyWRSBCXrEdcsh7jZpMHA4/Hi+p9jdi15hB2rTmE+kOt2LPuMPasO4y4FD2WXDsdi66djvgUvShnGM5Qa5S47jfz8cpfvsGnb23E4ksnBN1jOG1mAdQaBdraBlB5tB3FJfxGn50Oo0emQ6NWoH/AgtrGbhTkJgneMyZai5zUODS092F/dZtvjiMfjMwi5vgjzV28iWFxKlGt+BAviUSCgoQ4lLd1oLqnl4p45eljAQB1FMQLALKjYtBmMaLJPICJiaGbQxvuagwRdrLEa3KS/+qTzeXCvi6iWk1NpSNeW5tImXEGD7VrwGLDwVbShTSzgF8J7mBjB/oGrYjSqDAxXxhZ+mkX6UaaP0GYQX8ovl9Nxg5Nn5SHWL1/MzZp8enH2wEA888ZhaQkcbowafDf19ahu92AxBQ9rr9rftCvH2w0VXXghbvfw02THsGX/14Ds8GKmMRoXHTrXPx9+YN4Z+cTuOnPS1E6NT/gRniZTIriCbm48Y8X4tU1f8J/tj+Gy35zDqJjI9HXYcBHL/yIGyc8jJfu+wC9IRytEywsXDoOKRmxMPZb8N3HO4J+fY1GiRkzSZzNmlWBCXVVKuQYN5rcb3fuFW9o9thCQhL3VfGPggCAvOQ4qBVymO1ONHbTERgORWweV31PPxyUA68BoCCekK3qXjrDu494DfRTJdFnRRI/WOMgv9crFsLEK0TgFK/Jif4TqPKudri8XiRHRCJbp6e63tZGVinLpiNsALCttgkMAxQkxSMpmp88u6GC5H/NLMmBQkBZxeX2YFM5Uc7mTxKWA8bB7fZgDZsyff45gTH7dnYYsG0L6ei88prgq10t9T1Y9sFWAMBvHr4A6gDlkw0HNFV14Mlfv4E7Zj+JtV/ugsftxehp+fjLB3fgw31/xR1PXo6icTkhNdem5iTi5kcuxof7nsYfXrsJo6aMgNfjxU+f7cAt0/6CD5/7ATaBkQHDGTK5zDcPdNkHW+Gwu4J+hnnnEGV708ZKeDzCxvCcCpPHZQMA9uxvFG3PMpZ4HazhHwUBkFDWogw20qGF3wzDZF0kdBo13F4v6nroyUx+PCkZ1vbREa+saD1kEgmsbhe6LGa/12VHEcLWPDhAdT2xESZeIYDBYUO1sRcAMCHBf/VnZwd5wpmckkH1odFjtqC2r5/4yTLp5dWttUQtm57PfyTPpkOEeM0upc8PG4q9R1swaHUgNlqLMQXilMp272+E0WRDjE6LCWXZoux5Ir77Zi+8XgbjJuQgKzu46fAMw+C1Z36Ax+3F5NmFmDynKKjXDxbMRiveePRL3DXvaWxbTvx6088rwysr/4Bnl/0OUxaODtkQ8lNBqVJgzsUT8fw39+Pl5b9HyaQ8OGwufPzSctwy7XGs+nhbwEhBqDHn3NFITNXD2G/B6q8DlyR/Kowbn42oKDUG+i04VCHcrH4yjGcVr0OV7bA7xCGXpSPIfa+qqRsOAZ23AFCUTohXZSs/4iWRSJCfxJInHqODcmMJEarvpyNCCpkM6VGkatBoMvi9LiNSDwBosQRmZJS/GF53oV8IynvJmIacqFjEqf0va+1sJzeHyal0pbodzWRdcWIiYjR0ZkyGYbCNI14j+BGv1j4j6rv6IZNKMK1I2DzF9XuJQX/2eGEG/aFYvYHkgc2fVQx5AD6Y7XYXVvywHwCw9JIJou//c9ix/ijKt9VCoZDh9j+cF/TrBxperxerPt6KW6Y9hm/eXAevx4upi0fj9Y2P4OH/3IaCMnFmeAYaheOy8cK39+PPb9+K5Kx49HcZ8fL9H+HBi15EWz2/D8bhDLlChst+RaY2fPXeFnjcnuBeXy7DtJmk23DTevHmKg5FemoMEuKi4HJ7UHGU33ieE5EaH41YnRZujxdVTcL+LorSWI9WK/809/wkNpi0q5d6bV4cKf01DRjg8tD9/rPYqk+T0eD3Gh/xMocVr18c9vYQ5Wo8hdrl8Lixr5v4rCan0qlWHPGamkWvdtV296F70AKVXIZxWfwMqFsOE39DWU4qorVqXnsAJEtsYzkhXnMFmEqHwmp1+tKlF84WL4h1KNavPYzBQTuSk3WYPFWcc/sLt8uDt19YCQC45FczkJoVF9TrBxrN1R24//wX8PL9/4Wxz4yM/CQ89endePS9O5BVyG+6QighkUgw4/yxeGPTI7j1sUuhiVTj6J4G/Gb+X/HTZ8H3QgUaCy8ZD12MFp2tA9i8+nDQrz+LbX7YvLESXq//XiF/IZFIMH4MsXfsPdAk2p6j8sjfdkWtsHIjp3hVtXVTeaWGIj+R3FOqu+gVr+SoKKjlcri9XrQa6YZX5+gIaWsw+k+i0iOIStbvsMHscvzMdwcOYeIVAuzrZYlXvP/E61BPF5weD+LUGuTq6AYq72xhS5QZ9Kb2nfWEtI3LSoOa50DrbZWsYlaczWs9h8P1Heg3WhGpVWF8sTgdKVt318LhdCM9NQaFI4R3HZ0MP363DwBwwdLxQS91/fRtOdqa+qCLjcCVZ1lm10+f7cC9i55FVXkjNJFq3Pb4pfj3uocxfk5gCHQwoVQpcMkd8/Ha+j9jzPQCOGxOvHTfB3jx3g9gt4TuA0NsqDVKXMB6Hr9ho1aCiXETcqDVKtHfb0F1pTAScyqMLSXE68BhYWb4oRiVS4jXkQb+URAAMCIlDnKpFCarA90G/71SQ5HHEq8GHh4vqUTi67JvNhio1mawpcaWQf/LhtFKNXRK8vDfbqEjemIiTLyCDLfXi4PsfMax8f4rSHs6iUw9PjmNyt/VbTajccAACYAJ6fSeKI548Q1Ndbk92F1D9phWLKzks3kf8YlNK80WZNAfinXsvLZ5M4oCYraurelE5dF2yOVSLAxySrfT6cbHr60HAFx162xoz5KxQDaLHS/c/R5euu8DOGxOlM0sxJubH8XFt88/65LhkzLi8PTn9+L6358PqVSCNZ/vwL2Ln0VTVWhmHQYC510xGXK5DJUHWlB9SDxy4g8UChkmTCK+0+3bxBtoPRRjSsgDb1VdJxwi+byKc8hDYmWjMOKlkMuQmagHANR28Bulk5NAhIBWg5FXZ2OmnhCopgED1bqMaLKu1UTn10rVkuHc7dYw8frFoMbYA6vbhUiFyje00x/s6SRPYxOS6cp9u1sJYStKTEC0mq7M5/F6sbuBVcvy6LshARIjYXW4EBOpQWEaXdL+idi8n3QzzhgrzKDPwWxxYFc5OzR8ujgdkifix++J2jV9ZiFiYgITU3EqLP98F3o6jYhP1uG8KycF9dqBQsORVty76Fms/XIXpFIJbvjjBXjq03vO6vwrmUyKa+4/F898eR9ik3RoqenEAxe8gINbq0N9NFEQEx+JWUtKAQDf/Tf45dQp00jy+Y4AEa+UJB3iYyPhdntxpFocwlyYTe6lLV0GmK3CFNARKeRzqKaD3qMFAHERWkSpVWAYoLnfQL0+S68HADQb6AgUH8ULAFLZcmNHmHj9crCPNdaPjk3xO3meYRiU+xQvOtVqdwtZNzGd3p9V1dkDk92BSJUSJSn8SNN2tsw4pTBTUHJze48Rda19xKA/WpxxPtt218Ll9iArPQ65Wf6TYH9ht7uw9ifiWznvwsDMfjwVHHYXPntzIwDgmtvnQCnSWKVQYuuP+/C7855Ha20X4lL0eHbZ73D1b5cMu07FQGH0tAK8uuZPKJmUB4vJhoev+Rd2rg5MBlWwcdG1UwEAG1cchHHAEtRrT54yAhIJUFfbjd7eQdH3l0gkKC1mIyBEMtjrIzVIjiMjp6qbhRnsR6SwXYk8iZdEIkF2nB4A0NBLb1r3KV6UpUauq7HfboPF5fR7XYqW/NzaQtjZ+Mu4Yw0jcGXGMXH+E6iWQSP67DYopFKMjKfzIe1lxwRN4EG89jSyZC87jXe3365qtlRZKKzMuL2iEQBppY6O4G/QH4qN28kT7uxpBQEpM27dXAWrxYHkZB3KxmaLvv/psPKrPRjoMyMpLQYLLx4f1GsHAis+2oK/3vo2HDYXxs8twatr/oRRU4LbqDAcoE+IwjOf34upS8bA5XDjqZvfxJYf9oX6WIJRWJqO/JGpcLk8WPf9/qBeW6fXIr+ApLjvL28MyDVGscTrqEiKFwDkZ5COxNoWfoSJQ24SiXRo6OLf6ZfJEq+Wfnoyk6YjBKrdREd6o1UqRClJHmGH2f+1yWypscvGz9MmBsLEK8g42EfeeKPj/O+42tdF1pTEJ0JNMSfR7HCiqoe8Kcel0fu7OOI1IZtfN6PF7sSh5k4AEJxWv/1gIwCIpnbZHS5fmXHmFP+GrNJi9QqShn/O4tEBm/14MjidbnzxzmYAwBW3zDqjfU8Mw+Dzf67CP/7vY3i9DJZcPwOPf3QXdHGhm7MWaijVCvzpzVswe+kEuF0ePHP7f7Duq12hPpZgLGKjVlaFINNr7DhyX9kXIOJVnE+I3dHqDt7dgyciL52o9HWtwohXNku8GrvoUuCHIiNWDwBo4VFqTNMRBarVaKK+fnIEWdtJEaKaxM5o7LaKr276izDxCiJsbhdqjCQvhQ/xGptI1x5/oKMDXoZBWnQ0kqPoPqgYhsGeRuLvmpDNjzSV17XB42WQFheNtDj+I3Jcbg92H2GHg4/O5r3PUOze1wiH043kxGgU5Arznp0M3V0mlLNjQs5ZXCr6/qfD2m/3obfTiLjEKJyzdFxQry0mGIbBf574Gu8+/S0A4Mr7FuGe567+xZQWTwe5QoYHX/0VzrlyCrweL164+32s+fzMjpuYvWQ0FAoZGqu7UF8Z3OaBsvFEkd+3t1E0YjQU+TmJkMmkGDBa0S1SOZMjXrUCiVdmgh5SiQRmuxN9g9afX3ASZMSyfis+ilc0UaAsTidMDjq/Gke82s3++7USNWRNly1MvH4RODrQBQ/DIEEdgWT2l+8PDvYQ1aiMknjtayc3r3Fp9HlG9T39MFjtUCvkKObp79pTS8qME/OFRT8crGmHzeFCrE7rk9eFYusukt01Y3J+QMqM69ceBsMApaMzkJpKF/8hBF6vF1++S9Suy26aCaWSXwRIqMEwDN549Et89doaAMCtj12KXz10UUjH/Aw3yGRS/Pbv1+G8G2eCYRi88sB/cXhXXaiPxRtROo1vqsK6Hw4E9dqjSjMgl0vR3WVCRwBmZapUCuRmEqJUWdspyp4jMsh+9W19gsiiSiFHaiwhP408y40ZMWyHIQ/ipVEoEKslwd605caUSCIo0IwN4hSvcKnxF4JDA+QNNzI22e8PELfXi8O9xDw5OjGZ6noH2lnClkpPvPY3E9JWmpYMJc/ohvI61l82QliZcddhonZNKhFm0Ofg9TLYsZdEU0yfmCd4v5Nhwzo2DZ+dBxcs7NxQibamPkRGq7H40uCn5IuFd5/+Ft++RaIw7n3hGlxyx9k/1JsPpFIpfvO3qzDzgnFwuzx4+ua30NMW2gHAQsB1N25dczggytOpoNEokc8G7h6uCEykxYgc8gBb1yDOFIKMJKJUWWxO9BmFNSRkJOgBAC29Bl7rU/SEuHWazLyCaJM4AjVIR4YStVzZ0P/XH89OizE67XBSpuWLhTDxCiKODJDMlVEx/hOo6v5eODxuRCmVyKYITmUYBgc6CfEanUJH2ABgXzMhTWWZ/NK/rQ4XjjST1zsuj59HjMPuI6QzcmIJv0iLE1Fd14V+gxVajRKjS4SRwpOhvX0ANdWdkMokmDE7MDEVp8KyD0gI5bmXT4LmDM3t+u4/G/DFv1YDAO578VosuW5GiE80vCGRSHD/y9cjpyQNAz0mPHnTm3DY/O/yGk6YNLMQKrUCHS39qD0amEDTU2HUKHIvOByguY15OawZvpH/eJ6hUCrkSE0ghKepQ9gInIx4VrHq49fplxgdAalEApfHgz4LPQlMZolX5yCd4pWoJSSqh4J46VUayCWE+vQ5gttByyFMvIKIw/2ECJXE+t+ZWNHDkrX4JL/jJwAi2fZbbZBLpShJpC/P7W8hihdf4lXR1AG314vkmCifjM0HZpsDR9l05gkiEa/te0k5ZkJZFhQBMJ5zc9/GlGVBrw9edldDdScqdjdAKpP60sDPNOxYdRCvP/wFAODGhy7E4munh/hEZwbUESr85b07EB0biZqDzfjHgx8HVTESC2qtEhPZ+YmbVx0K6rVHjSaWiEOBUrzY7K3aBnGIFwBkpbAdie3CVM70eD0A/oqXQiZDYjQhT+0Geu9UEutB7jTTKV4JLPGiUbykEgni1FoAQK89TLx44dVXX0V2djbUajUmT56MXbtO3d3z1ltvYebMmYiJiUFMTAwWLFjwP9//q1/9ChKJ5LivxYsXCz6ny+tBjZGYIEti/Cdeh3oJ6ShNoIuRqOgk6wri46Gi6IQEgEG7A/Xs+IcxGfyI1/568rQ6NjdVkC+noqYdHi+D1AQdUuL5E7ih4LoZp4wXJ4j1RGzZTNLwZ7F+lWBhxRe7AQDT5hUjIZl/M0Oo0FTZjufuehcMw+DcG2bgynsXhfpIZxSSMuPw57dvgVQmxbovd2HN5ztDfSRemH7OSACkbB5MlLCKV1NjDywBGMuUl00egDu7jbCKpEhmJrOp8d0GQfuks81P7X38Q0VTdCx5MvIgXqzi1W2mI0IJGkK8em106+LYcmO/nV8zgVCc0cTrs88+w/3334+//OUvKC8vx5gxY7Bo0SJ0d5+8hr5hwwZcffXVWL9+PbZv346MjAwsXLgQbW3Hh9otXrwYHR0dvq9PPvlE8FkbTP1wej2IlCuRHqH3e90R1t9Fm991uIusG5VMb4w/3EZIW5o+GrERWur1AEmsB4DR2cIGFe+rJr+bsYXCypUczBYHjtawERdl2aLsORT9fWZUHiGkc+r0AtH3PxUcdhfW/bAfALDk8olBu65YGByw4PFfvQGbxYExMwpx59NXho30PDB6WgGue/A8AMC/H/oMrXXCRsqEAhOm50MqlaCpthtd7cJKaDSIiYlAYlI0GAaoqRbHAD8UumgNYnTkftrcKo4PL50d9yOUeKXEkGavjgH+xCuBVa26B+lVpAT2c6bXQkeEYjXElN9vs1Gt0yvJugEH3TqxcEYTr5deegm33norbrrpJpSUlOD111+HVqvFO++8c9Lv/+9//4u77roLZWVlKCoqwttvvw2v14u1a9ce930qlQrJycm+r5gY4V1plQZChAr1iX6XDL0Mg8p+IkuXxNGVC4+w5HNkEg/i1c6WN9P5DY32ehkf8RqTI4x47a8ixKusQBzitf9QC7xeBumpMUhKEEdBGwpu3lthUQri4/3vXBWKLT8dhtlkR2KqHmOnBqZhIFDwuEkWVUdjD5Iz4/CnN28+o7PHQo0r7lmE0dPyYbc68MI978Pj8Yb6SFSI0mtRXEZsBbs3BXcsUmERyTusCtDA7OwMkhLf1MpvLuKJSE9klapuYSnsKawdpNdkhZPHvEUASGJLjT0m+m7BuAiiQPVZ6YhXnIYQNrPLCbvb/3PHqjjiFVa8qOB0OrF3714sWLDA929SqRQLFizA9u3b/drDarXC5XIhNjb2uH/fsGEDEhMTUVhYiDvvvBN9fad+kzgcDphMpuO+ToZjxMt/AtVkNMDickElkyNHH/vzC4aAU7z4EK9DrOI1Ko0f8WrqGYDJ6oBaIUdBGv/4B6fLjSMNbGemSMSrvIJ0SI4fLY5f7ERsZ+fnTZsRPLULAFZ9tQcAsOiS8ZBKz6y39Ucv/Ih9myqh1qrw6PvEpxQGf8hkUvzfv34FbZQaVeWNWPHB5lAfiRqTZpGmlN2bqoJ63cIi8qBYHaAcsSyWeDW2iEO8UocoXkI8ffoINdQKYknpMvCLWUiMJuSpiwfx4hSvHkpjfrRSBQV7v6MpG+pVYcWLF3p7e+HxeJCUdDw5SEpKQmenfzLxH/7wB6Smph5H3hYvXowPPvgAa9euxbPPPouNGzdiyZIl8Jyi7fSZZ56BTqfzfWVknDyzqtpAlKsCCuJVNUA8YfkxcZBTfJj2WizotVghAVCYQD+D8Eg7IW1887sONZGff1FGIhQy/spFTXMPnC4P9FEan5dBKA4cIh1LY0vFJ15Ohxv7y9nZlNMCk4Z/MnS3G3BwNxvWetGZFZhac6AZn/+TdDD+7u/XIadYHIL9S0dCagxu/OOFAIAPn/8Bg4bQPNnzxfgZ5P1zcHcD3K7gtfxzo4Pq68SJfDgRGWnkAbpNYBcihxR2XqPd6YbRbOe9j0QiQYKO7RDkQZwAID6S9U1Z6MkMl+M1QFkylEgk0KnICDmD3f/Xz5UaTS7+PzMhOGOJl1D87W9/w6effoqvv/4aavWx2X9XXXUVLrzwQpSWlmLp0qX44YcfsHv3bmzYsOGk+zz00EMwGo2+r5aWk7cic8b6Ap3/xKu6n10TG+f3GgCoZMcEZcfEQKOgG45stjt86cMlqfyI12E2RmJUJj/FjMOhOvLUOSovRRS/z6DZjtpGNhMtADESFRUtsNtdiIuLRG6e+Gn4p8KG5WQ0UenEHCSm6oN2XaFwOd146bcfwOvxYtZF4zHrojN/puRwwnk3zkRmQQpM/RZ8+vcVoT4OFXILkxEZrYHN6kTNEXEGS/uDHHaKRVtrP+x2l+j7pyXryf4ihbQqFXLEsr6xrn5hSezxrGLVwzMTjPMD91H6tAAghvVq2Vxu2Fx0P3c9+/ltcPhPoqKVZI3JKX4ThT84Y4lXfHw8ZDIZurqON492dXUhOfn0uVUvvPAC/va3v2H16tUYPXr0ab83NzcX8fHxqK2tPel/V6lUiI6OPu7rRFjdTrRaDACAfJ3/ClQVS7wKY+lUq8puoq4VJtKrXZWdZG2yLgp69imEFhzxGplJnx82FBVDiJcYOFTZBoYB0lNjEB+ActaenWxMxeTcoBrDOVP9vPPHBO2aYuDTl1ei8Wg7dHGRuPPpK0J9nLMOMrkMtz52CQDgu3c2oK0+MCpOICCVSjF6EpmfeGBXQ9CuGxMbAb1eC6+XQZNIeVtDkZaiBwC0dgyIFveRHMvOKxTQkQgACSzx6jXxI15xkazR3UxPvCKVSl/JcMBGp0LpOBJFQbyilCTj0OQMK15UUCqVGD9+/HHGeM4oP3Xq1FOue+655/Dkk09i5cqVmDDh55O9W1tb0dfXh5QU/h/+9aZ+MADiVFpfG6s/8CleMXQEihuMXRjPg3h1kJtNUTL9WgBwe7yobmMbAgQrXqRkOSpPGIHjcOAwyecJhNoFALt3kTT8CQFKwz8ZGmu60FjTBYVChhlBTskXgpaaTnz+z1UAgLv+eiX0QWxE+CVhwryRmDBvJNwuDz549vtQH4cKZZNI3MtB9n0VDEgkEp/q1VAvPvFKSdJBIgFsdhcMRnHKv0lxHPESqHj5So3CFK9+i42aVEokEug1rHJFWW7kSo1GijmP0Qp2TbjUSI/7778fb731Ft5//30cPXoUd955JywWC2666SYAwA033ICHHnrI9/3PPvssHnnkEbzzzjvIzs5GZ2cnOjs7YWZD28xmMx588EHs2LEDjY2NWLt2LS666CKMGDECixbxzxSqMxEjZW60/yVDt9eLRiPxAYyIoSs11vaRVuWCBLp1AFDTxZK2ZH6m+OaeAdhdbmiUCmSyoXx8YDTb0N5DSp7F2cIIHIcj1ayCxnYuiYmBfjMa2WDEceOzRd//VNjyEwmZHDc9H1E6fgplsMEwDF57+HO4XR5MWjAKMy88s3xpZxp+/fBFAIDN35WjpUb8mIRAoWQcGVxdVdEKrzd4nZmZWeS+2dIsjgF+KJQKOeJi2PE4PeIMaY7Xk/36DMLCQGMjCXEaMPMznHMVErfXC4uDPqcsWs0pV3TlP069GqQoG0YqlAAAqys0Ex7OaOJ15ZVX4oUXXsCjjz6KsrIy7N+/HytXrvQZ7pubm9HRcaw75bXXXoPT6cRll12GlJQU39cLL7wAAJDJZDh48CAuvPBCFBQU4Oabb8b48eOxefNmqFT8x6/UmwiZyaMgXi0mI1xeLzRyOdKi/I898DIMatkuzPw4PsSLXZvET/GqamMbAlLjBc1VrGS9WOmJOkRFqH/mu38ebo8XleyHzqhC8YnX/n2kWzI3LxE6Pb/sMz7Y8tNhAMAMNnTyTMC25fuxb2MlFCo5bn/q8nBeV4CRU5KOqUvGgGEYfPrKylAfx2/k5CdBpVbAMmhHa0Nv0K6bnknum60idR6eiKQEolB19QorDXKIZ6djCJ3XGMOWCvkSL7VCDhU719dIWS4EgGj2M3aQknhFKgmJoiFeEXKyxuIODfGiizQfhrj77rtx9913n/S/nWiIb2xsPO1eGo0Gq1atEulkx1BvIgoUjeJVa2BVMn0s5aggE2wuNxQyGTJj9FTnZBgGNd0c8aInbQBQ1UYIU0EaP+LGobKR+MSKRFK76pt6YHe4EBmhQmY6v9d2OhzY1wgAKBubJfrep0JbUy8aq7sgk0sxJcgp+Xxhtzrx5qNfAQAuu+scpGbzjxsJw39c87sl2L7iADYs241r7j8XabnBa/7gC5lchoJRaajY04jKgy3IDFLDSkYGp3gFZth4Ynw0Dld1oLtXJMWLLRH2ClS8YljFy8CTeAGATqNG96AFRpsdaTF00zOiWOJlsvMjXmYK9UrLKl6WsOJ19qJhkLyBc6L9z+KqN7BkjTK/q44tM+bE6KkiKACgwzgIi8MJuVSK7Hh+8Q217YS4FaQK+0CtamJzz7LFudkerSLKZ1F+siAl7lQ4uJ8oXmOCSLy2ryMzIUdPzEFUEFU2Ifjh3Y3obutHYlosrrgnPBIoWBgxOhOTFoyC18vg27fXh/o4fqOwlMTzVAdofuLJkJ5B7rkd7QPwesWfd5nA+hm7RVK8uK5GoYqXnq0sDPCIg+Cg07I+LSu94hWlYpUrWsWLI1FO/0lUqBWvMPEKMBiGQdMg8WplR/pPZhqNBgBAjo6OANX3k2vlxNITp4YesjYzTs87f6uukxCvESnCVKXaFraxIFMc4lXFjk4pGiGOUX8ojEYrmlk/yKjSk+e4BQJ7NpOw1slniNrlsDmx7HXSDHPdg+dBrVWG+ES/LFx48xwAwPplu+F0iB+VEAjksYGm9VXB86YlJERDKpPA5fKgv59fptXpEBfD5l0NiDOgOSaKEC8hOV4AEM2SpkEb/4iFSJY8WZ30f18RSs53RZecr5GTyCQbRXK9WkaKfXaPOyTD5MPEK8DotVtgcTshlUiQHqn3e10Da6ynJV4NLPHKjaVTygCgvoeQh7wE+rUAYHU40d5PnuLyBBAvu9OF5k7yOvIzxClFVbEdkgV54pQuh+LoYZIzlJEZFzR/l93qxGE2rHVCkFPy+eKnT7djoMeExPRYzL10UqiP84tD2awixKfqYTZYsXN1RaiP4xdyCsmDUmNtV9A+IGVyKRLYcWJdHcJG8ZwMnLleLOKli2Q79ASUCAEgSsN6rGwO3j/rCJZ4mSnLhQCgZTMnaQ3vvnVu/8meWn4s39LpDV5AL4cw8QowmsyEQKRoo6GS+W+pazCQdVk6PdX1GnyKF906AKjvZdfyJF71naTMGRulhT6Cf4ddfVsfvAyDmCgN4nTCiYzT5UZDM9utKVI0xVAcYssgI0cFJqbiZKjY2wCXy4PEVD3SssT3rIkNj9uDL179CQBw+W/OCc9iDAFkMinmXz4ZALDmsx0hPo1/SMuKg0wuhdXsQE8ASNCpkJRM/EmdnQbR9+YUrz6xiFcUudfanW7YBSiZ0VpCvNweL2xOfvMafcSLR1ejVskSKEq1jFO87DTEa8hnsd0TfPU3TLwCjFYzuVlkUqhddrcLXVYicWdH+78OABoHDGQdj8HejWypMYenv6uhi/WlJfEjbhzq2QGyeRnxonS8NbX0we32IipSjeRE8QdjVx0lA3VLRgVv3M2BnSRUcuzUvDOiK3DH6gp0t/ZDFxeJc646dc5eGIHF/MsI8SrfeBQWU2jm1NFAoZQjlesybApeZ2Mie5/oFSnyYSj07MOkQaSff4RaCRnrWx208i8TapQKcLcSCw/FCgC0Sv6lRo1P8aJbq5azZUOKUqNCKvM1rdGsEwth4hVgcIn16RF6/9cMknJdpEKJGLX/ypHD7UbnILlRZOrpOkoAoKnfAADIitNTrwWAph52faKwuYoNrEE/J1UcJaeevWHnZolD5IaCYRjUVLNlzEJxEvb9waG9jQCA0gk5QbumEPzw7kYAwOJrp0OlCXu7QoWM/GSkj0iC2+XBnnWHQ30cv5DKmd0DkKt1KsTGsdlYfeJ7vKKjWC/VIH3Q6MkgkUgQwb6nzAL8WRKJxEec+CpeGnbQtoPSpwXAVxFyuulKf0rWj+w8xTzlU0EhJevcTPAy4jiEiVeA0Wohild6hP9EqMVE1mRE66iIQqvRBAak5h2npSvR2V1udBpZ0saXeHWzTQSCiRfbmZkqTDnjUMeO/sgLQHRBR4cBZrMdCoUMWUGKRrBZHL75daUTsoNyTSFoqenE/s1VkEolWHL9jFAf5xePKQtLAQA7Vh0M8Un8A6d4tbcEJt7hZOCIV38giBfryfJ4GVis4nTVRbD+LLMAxQsAtCpWdeJRKgRIlhdAZi7SgssAc3jo1nIEykHp1eLW0RI2MRAmXgEGV2pMoyFegyzxiqJTrVoMbFlTT0fYAKCFVbsiVUrE8JzRyBGvzAQ9r/UcGlnFK1sk4lXfRIhXbpb4xKiWVbtychOgCJJvqbKiFR63F4kpeiSlCiO5wcCKj7YAACadU4qkjOHvRzvbMWUxmem5e+1heCjVhVAghSVewVS84gJIvFQqBVRKQlBMgyKVG32KlzAip/ERL36+JzVbLqQddA3wKxkCQhQvQn9cYXP92Yd2KykbpkX47y1qY0uN6ZTEq9XErtPRlxnbBsjajFg9r3IcwzBo7SXET0ip0eX2oL2HnCU7RRzi1dTKKmiZ4n/oN7CDh/NGiN8teSpUHWwBABSXBS+6gi88Hi82LNsDAFh07bQQnyYMACgan4OIaA0sJhvq2Y7c4YzEFHI/6+kMnrme6042ijRP8UREsFEqFoEKFQcta2oXYq4HAJWCK/fxKzUqWdXKxYPQc7mTbg9d6Y8jUB7KsVIyCVnnRThO4qwCwzDoYIlXCg3xMpM1qZF0g4PbjSzJ09EPHG4dYJW5GH7mc4PF7pvPlRrL38De3mOEl2GgUSkQp/N/oPipYLM70cUSucy0QBAvoqZl5QQvgb2K7aIsDGJmGF8c2FKFgR4TomIiMH5OSaiPEwZId+PISWSQ+6EdNSE+zc8jLok1uneJEzjqD6LYcqB5MDBDlDWsQmW1idNRxyloDp7eLA4ccXK4+KlAXP6ji0f5Ti7jFCg6AiVlCZSH0qvFmeu94RyvswsDDpuvXp2k8Z8MdZiJ14qWeLVyxCuav+LFl3i19hHilqiL9D018UFLlwEAkJ7ET3n7n/3aSflTF62BLlr8IdJNjcS4nxNE4lV9iBCvgiB2UfLFhmW7AQAzLxgHhfKMn1B21mDUlBEAgIodtSE+yc8jjs3UMvRZ4OZJCGgRxd4rBgNEvLQs8bLZxfF4qdn3ll0k4sVHsQKGkCdK1Qo4pnjRKldytqPTQzllQBYmXmcnOm2EQMWptVQZXu0s8UqJpCNB7WxHY2o0veLVZmCJl54f8WpjiVdanLC4htZuAwAyHFsMtLBlxsw0ccqWQ+F0utHG7h8sxauvx4S+7kFIpRKMKBZ/2LeYcLs82LbiAABg7iUTQ3yaMIZi1NR8AMCRXXUhSe6mgT4uAlKZFAzDYCAAnquTIZJVvJxON5wO8eMGtD7FSxzidUzxEqagHVO8+L1mn2+Kh+LFlf7cQVK8JJDwWicGwsQrgOiyEiJEo3Z5vF50sxleKRGRVNfjoiRSeBCvLrajMYUn8eocYNcLKDMC8Pm70hLEIV7tXSwhTNGLst9QdLQb4PUy0GiUPjNuoNFQRUYfpWXHD/uRO0d21cFiskEXF4mSSbmhPk4YQ5BbkgapVAJjnxkDPcEr4fGBVCpFtJ5VoIzByR7TDIk8EUuVGgolWxVwiaTgKVjCROuPOhFSljjxVYG4Obh8VgstcHBEyl9wZ6RdJwbCxCuA6LYTApWo8f9Duc9mhYdhIJVIEK/13+Pk8XrRYyZJyEmR9CSggyVeydH8CEQHR7xi6EnfcfuwBv2UeJGIF5s8nZqkF2W/oeDUrvSM2KCFmDawXZTZ+cEz8/PF7rWHAAAT5o303dDDGB5QaZRIyyNzUBvOAIN9FBs6OmgIjNn9RMjkUl+Xst0ufrI5t7dYxIsr8QklXjKeZTsOnG+Kj4rKEaDgKbDkOqHInw7fDQMITrmiUby4xPp4jdZX8/YHvRZC2GQSCRIi6DK8nG4P+izkhpbMw5gPAJ3sjMZkwcSL3SdenIR5H/FKFofIDUUrmyuUli5+GfNUaKw5c4hX+aZKAMCEeWFT/XBETjHxCDYcOQOIF+e5ClCX4cmgVrOjaEQywA+FrzTIs6R3ImQ8OwJPhM9wTlnu4yARQLyCDe6IYcXrLEMPq3glqP1XrrosrGpFWWbsNrOELULrexP6i16zBQxDnpr4Znh1GViSqRdGvLr6WeUsTtg+HDrZMkpKkvjEq5017qem6UXf+1RoriPxFcOdeFlMNp+SMmZGYYhPE8bJkFlIPIIttZ0hPsnPI1JH7kuB6jI8GVQs8XIKjGg4GeRyliiJlKMmk/Ezpp8IoZ1+HInhKZjxAkfyaJUrLkZCGgLJK0y8AoheOyFR8RTEq9fGrtHQqVY9rGIVH0EfwdAzyF4zMsJXo6dFr4nskSggAsLpcsNoJjfWhBjhnimvl0Eva8ZNEInIDUU3myuUlKwXfe+TgWEYtDezKlt2fFCuyRc1B5vBMAySMuIQkyD+fMwwhCMxjeTt9bAPEMMZPhIUgLLfqcCV7zwCVaST4ZgyJPrWgsAdhy8Z8bJGdRmPzxEP+8OgtSVw5njOnO/3Oi+3Lky8zir02QkZilP7T6J6rSyB0tARGG5dAg/i1Wtm10bxI00erxd9g+y5o/kTr14DIW9KhQzREWre+3AwmqxwuT2QSIA4EYjciejuJmpaUgDUtJPBOGCFZdAOiUTim183XFG9rxEAUDg2K7QHCeOUSGBL5L1nEPFyBJF4+VQkj/jsyEe8gikN+QGvTz3iS7z4q0g+0ka51s3+DGmsOcCxGY1ySsImBsLEK4AQpHhRzlrsZUuU8ZT+LgDoGWTLlJH0awGgf9AKL9sQEBvFbw/gGPGK10eKYlbvZtWuGH2E6ON8GIZBl0/xCg7xamdHpsQnRUPJjvYYrqje3wQAyC8LE6/higR23FR368Cw9+RwxCsQRvdTQeYzrIufHcYRE74m9hMh2u+P8z3xJV5e/sTLw3Othzdh49S5MPE6qzDgIK3PMSr/yUi/nayhUckAoN9K1sXy8Gj1m9lr8iBtQ9fHRGoE/RH3GQnxitPxJ2/HnWuA3S9GeAL+ibBanbCxGTwJicEppXW1EWUiOX34z2dsrGwHAOSNGv7p+r9U6BNI+d1hcwa1hMcHcvbBKaizJQNYguKUIT4luZOB8e0n7CP9GBnhdy4hZIbL/lLI6NZy62gVL25GIzcsO5gIE68AweP1wujkiJf/ZGiAJV4xajoC1W9jiRelNwwABljSFhPBz1g/wJYqYyKFJcMPsANjYwSoZsftxyposXrxiddAP1HTtBEqX/dToMGNTIkPksLGF26XB51NJNE/nY0sCGP4QROh8v3/NrM4MwMDhWNRA8G7JiOgbPZz4LoGZZQk41TguhnlAvfj9uFywWjBDapW8ljvW0sRNj50nUru/zqGYeBkiRdNuLlYCBOvAMHksvuMijolDfEi5vIYNZ3H6ZjiRe+NMnBreSpeA6zipedJ3Hz7mAiB00eJM9pngG0914ukoA1FH1vGjI0Vn9SdCr1sGGxCkDxlfNHV0geP2wuVRom4AATXhiEOpFKpj3xZLcHrFuQDjvsEsyTKlc0kIqlSQ8H5xoYb8fKpRzz3cblZ4iYTQrzo1jpYAqWkUK440gWEiddZBYOD3Mgi5UqqPyRO8dJTKl4DrOIVo6EnLQMWdi0P0gYcI16xAhUvg0/xEpd4xQSAePX3sWpabHAS6wGgt5MoXtzQ4OGKtjo2XT83MRycOsyhYUfj2MzDm3ghBGZ0TpUKhOLFdUry7SI/EaIRLze/sh0HJzubmLZcSNbyJF5uN/U6boYyQEfYxEL4rhggmF1Euo9W0pEZk5Os06so1znIOh2lUgYARhu56ep4Ei+TlawX2oloYp+6dQIJnG8/lshFi0TkjtubVed0evFJ3algZD1rMfHBI3t80Mcpc2nD34v2S8cxJSm05/g5uNmgUbnITTKnvybrAQrANZ3s61GKNDjewQ7HVgncjwt01Sj52Se49WoF/Xq7m1tL9xq4dRq5/9e0uYmnUSqRhInX2YRBHsTLyzAws8QrWqX6me8+4Xp2si6Kch0AmLi1avq1ADBoY8+sEUa8Bq3sOSL4neN/9mN9K1GR4ux33N4mQhKjooXHXvgLk4Eje8Erb/LBABuzEc7vGv7w+kpeIZibQgGXkyVBIhEVf8CRGaVK/Gva2cHbapFej50djq3mSZiO7SPsXDaOuFGSJ7KWvAYtJWnjSJSGYp2VXaOVK4M27m0owsQrQDimePn/oT/odPh8YVEU6xiGwaCDH2EDhpA2nsTLxBEmjTCCM8gqXlFasYgXq8QFQPEaZNW0KJHUOX9gYpsFooKosvGBj3gFqdszDP7wldOGeUnYxX6gB5N4OTniJZDMnAwONg1fJVIsjFiKl90ljMDZWALIRzGzufgpXsdIFIXi5aFfIyaG97vtDMYgq1xFyv0nEVy5UCWTUxn+rC6XL/WXVvFiGEYw8eIUL6GEiVO8InmWPE+EmSVykSIpaMftzY4uiYwKjuLFMAwGjSzZ0wWP7PGBoZeMfdLFDe+SaBjHymkynl1swYLTETj16WRgGObYNZXi/2xsPuIlzuvh9lMLJHI2Bz/y41vPEbdgKl481lndJApIIwsTr7MKFg/5xUYq/P/Q5/4YopRKqmtZncfq1bQSr9Pt8QXXRajoruu7vsMpaD0H7uYRIVI8g43NJtIEIO6By/DSaoW9Zn/hcnngYTuGtAEgkmLCwf5s1CIpl2EEBh6PF1buASIADShiwsKeMyIyOA86dpvL19UYiGtarew9U6T3iJl9z0Vq+N+PPF4vLA5uH37nMtvZzzAeD/Fc1YZWPBh0cp+1/r92ThihqSyJiTDxChCsLAuPoGDhFp6Mf+g62no1R9oAQMtTXrayhEkr+GlLnKc2DnYf8RKfHHHES60JzhOTg71RB/OafOFTCoKUbxYGP1iMVl88Q+QwL19bWb9mRJAUZjNrU5DJpKKpUkNh8an7IhEvdr8IAXYP65Bh4JE875lmAQ/hZo5AUQoPnK2HhkT51lAII2IiTLwCBE690sr9/yOysH94WgrmPnRdBA/iZGXXqhVy3qnH3FOSVqjixT4taUUiSoFUvOw2dm8BT5g0sLHES6GQDf+yEPt7DBOv4Q0T2yWrjVIHtVuQD8yspzIySM0sFgtLZCJVopuvvV7GR7wiIoTfPxiGgYW1ewhRvMzsHgqZDCqepUYhthVO8Yqk/BwZ5EHYuOY3moqUmAgTrwDB5iNefDot+NW41TyMgnwNjUMhtBMGIDcjB+s3EaPTh2EYOFg1T6yW7aHgzLHB8pxwRl9FkK4nBF6RwyHDCAz62dgPXVxUiE/y8xhkO3qjglQSHeRKsAEoM1qsDl98R6TACB6AVAo4u0iUgP0GRSBvx4gX/R6D7AM8famRXvEaDCteZyfsvnEE/pMhX44JxegD4FiAHB/y5OR5zZPtwfcpaegegDi5OR4v47u5KQPwNO/xBRYGRynggiOHe/cZAMhZMzJn3A5jeKKziQxdT86KC/FJTg+3ywPjABuGHKQMOwOrBuoDUII1suqdRq0Q3IUIHAueVilkgh5aDWwzEt8JJAzDHMuE5BHkza3VU2ZRGuz06wxO9pyUOZtiYfjfxc9QcMm4aoruRD5rAMDh5kgePQng1ioFkCZOqeIzn4uDa8iHtJB9OLiHDNOVB6A052aN7nJ5cN5CXh/xGt55SwAgZ/+WXE73z3xnGKFEZzOZp5mSFR/ik5weBnYuqkwuDVpHr4GNbtHHiJ+ZZ2AnauiixSF1RtaPpovSCCqLGtkJJjqeqpnN5YaTve/qKTvTGYY5RqAo8yCNDnbaC0XouG8NxTg/MREmXgGCkw/x4pQjSqLAETaaIaG+tVyCsgDlhlOr+A5WJXscI0pC9uEwlMiJsd+J4IhXsPxWXN5SIObGiQ0ua8nlCBOv4YyOxh4AQHLm8CZeA72EeMXERQZN8R3oZ6dEBIB4GU3sh75IJNLAjmwTOvHDwE4goSVNx9aTc8hlUupGLZvL7RsZRDt9hRvPp6MgXgYn+zM72xSvnTt3BmrrMwIOHpPWfWuk9JEQ5Fr0JMDFlsyEqEy+ifYCyBtXupPJpKKYWb1DZroF0msUrNBj7gPHy/6chjMioskHgIUtgYQxPNF4tB0AkJGfHOKTnB7dHQYAQFwQA3l72Sy62ABk0fWzappYM2T7WQUtNkrYftzMXT1PAscRrxgtvfLGzRpWymRUXf12t9vX1R9DMd94gFW8YlRnmeJ1+eWXB2rr4/Dqq68iOzsbarUakydPxq5du077/V988QWKioqgVqtRWlqK5cuXH/ffGYbBo48+ipSUFGg0GixYsAA1NTXU53KzHi8FxRwot5cjMHS/Fg/DkhYeT4MeL/+1x/ZgzdQC1BjOjyXWQFoGgR0+55txF6ShvYozyDelZ304RvbDK4zhB4fNieaaTgBAXmlGiE9zenS2DgAAktODN/uzt5v87SYGgOz1sqXTeJFIXa+R7BcncJRY3yAhcPHR/PbpNZP1cZH0BLDPyq7VaqlIW7+drFNIpVRTYvodLFlVhyZGRZCz74orrjjpvzMMg/7+fiFb+4XPPvsM999/P15//XVMnjwZL7/8MhYtWoSqqiokJib+z/dv27YNV199NZ555hmcf/75+Pjjj7F06VKUl5dj1KhRAIDnnnsO//jHP/D+++8jJycHjzzyCBYtWoQjR45ATSGBulkypKAgNC4eZA04plrxmSjPkT05T9I0VFkSQpq8LPMSrZI2hA8FQpXiXmuwhgtzDQfczLrhDF086ZIzhInXsEXj0XZ4PV7o4iIRn6IP9XFOi652AwAgKTV4xKubHXuVEEjiFSsO8epjOz7jBCpofSaixPFVzvo54hUhhHjRKVD9rFIWo6ZT2TjCFqsKzdxbQcRrzZo1+PDDDxEZefwfEMMw2LRpk6CD+YOXXnoJt956K2666SYAwOuvv44ff/wR77zzDv74xz/+z/e/8sorWLx4MR588EEAwJNPPomffvoJ//rXv/D666+DYRi8/PLLePjhh3HRRRcBAD744AMkJSXhm2++wVVXXeX32TgyREOiXF5+BMrDc93QtVIJP8WLU9sAYaoZR7wCwZIYRvxtOa8V570KNDjflNvtgdfrHdbdjXqWeHEzG8MYfqg50ASAqF2hGBJMg65W8hCflKYPyvUYhgks8eoTmXgZCWGK04mjeMXxJF59FpbM8OiK7OXWaumu3Wtj12n8X+fxejHAerzizkTFa86cOYiKisKsWbP+57+NHj1ayNY/C6fTib179+Khhx7y/ZtUKsWCBQuwffv2k67Zvn077r///uP+bdGiRfjmm28AAA0NDejs7MSCBQt8/12n02Hy5MnYvn07FfHiCAmNCsSlSMsob4TcR7+Q+2eo772+n5NIEtLQ7j9CVMQ1wXMKlDNIpT/NkDFBNqszaKNT+CApg8QTdDT1hPgkYZwKFduJfaJkYl6IT/LzaGkg3Zfp2QlBuZ7JZIOVDVBNTtGJvn9nDyF1SfHikLquPqIsJwnMY+s2EEKYqONHCLtZxSwxmn59j4VdG0lHHnusZF2Cxv91/Q4rvAwDCYBY1RlIvJYtW3bK//bTTz8J2fpn0dvbC4/Hg6SkpOP+PSkpCZWVlSdd09nZedLv7+zs9P137t9O9T0nwuFwwMEm7gKAyUTeVF5wJMp/ZcKn+oCOBXGELRRPrkOJpRBfFbePRyTP1NB8LbfHK3qkBBfKGqzIBKVKDrlcBrfbA4vJPqyJV1ouKfN3NPbC4/YM+6T9XxoYhsHBbYR4jZleEOLTnB5OpxudrOKVnhuc7sv2NuIpi0+Igkqk8WUcGIZBJxtcmySSmtbVzxKvWP7Ei2EYdLNesUQ9P+LVZWLX8yBe3WZ+xKubJV6JWv/X9djZkqpay6tKJAb8vurg4CAeeOABFBcXIyEhASNGjMC5556Lp59++pRE55eAZ555BjqdzveVkUGMqhzxklKQKI5y0HqlgmQzOikkQ16fELFK6ivdifNqZEPytbjoBzHB3ZAdQYpMkEgkiIgiqpeFze0ZrkhIi4FCJYfb5UE3+yEWxvBBc1UHDL2DUGkUKBibFerjnBbtTX3wehlERKkRGx+chH2OeKUGwFM2aLb7RpklJwgnXm6PF72sUiWEeBksdl93fCJPc33PIEu8oujXHyNedKStx0qumUBBvLpt7DnVwQnjPRn8Jl433HADvvjiC1xzzTV4+umncc8992DdunX48MMPMXLkSFx00UVob28P5FmPQ3x8PGQyGbq6uo77966uLiQnn7w9Ojk5+bTfz/1fmj0feughGI1G31dLSwsAfipUoDvxTgcvT9Y09OXx3QM4FvngZRjfz04IhmZ3DQ1TFQvcqCCH3fUz3ykeItmYBrNpeMc0SKVSpOUQ1aupKnj3hDD8Q/nGowBImVEpsqIjNhpryL04IzchaIp+G6uwpaaJT7w6WLUrVq8VRU3rNZjh8TKQy6SIFWCu7zKw8RlRWt5h2p2sYpbEQ/HqMrNkKCLwihdHvBI0ZwDxWr16Nb799ls88sgjuO2223DfffdBoVBg+fLlqK+vR1JSEiZOnIiGhoZAntcHpVKJ8ePHY+3atb5/83q9WLt2LaZOnXrSNVOnTj3u+wFSEuW+PycnB8nJycd9j8lkws6dO0+5p0qlQnR09HFfx8N/EsGpY7QE7FiHHT1h4QzxfJUmiUTik2vdAjKmhuaIuUQgSlKpxFcOdASgHKhlPVfcsNtgQM+2nw+w5tzhjBGjMwEA1fuaQnySME7EthUHAACTF5aG+CQ/j5ojbQCAEcWpQbtmUyPxlGVli1/abG0nalpaijikrq2bELmU+GhBzU1tfcQikxrLT4Vze7zoZhWvVD39Hh0mQvxSoujIUIeFrEuN9F/t67KSNcna0M0o9fs3lZSUBCvb8nkisrKy8Oabb+LOO+/EfffdJ9rhfg73338/3nrrLbz//vs4evQo7rzzTlgsFl+X4w033HCc+f6+++7DypUr8eKLL6KyshKPPfYY9uzZg7vvvhsAIRG//e1v8dRTT+G7775DRUUFbrjhBqSmpmLp0qVUZ5PwiBuQ8CRQMgH+KI40eQR053Fjc1we/oRp6DxFsQzralaVsgVAlYqICH7ZL4brFuwd/sSroIyUsGr2h4nXcIKhdxBHdtUBAKYuHhPi0/w8ag4R4pU/8iwhXh2EeKWLRbx6CPFKSxTWBNDWx+4Tx4949QxafMpbPKVPy+nx+Mz1KdF0ZKiTVcqSI/xf12kjJDNZEzri5bemePfdd+PXv/41Pv/8c4wZc/I37HXXXYe//e1voh3u53DllVeip6cHjz76KDo7O1FWVoaVK1f6zPHNzc3Htd1PmzYNH3/8MR5++GH86U9/Qn5+Pr755htfhhcA/P73v4fFYsFtt90Gg8GAGTNmYOXKlVQZXsAxezyNesU14tHSJ07x4lPq456S3AK8VQqZDHa4BSleQ0uDTpFKgyqlAoAdDof4xCuSNbdbzMFTvGITOOI1/POxOOJVfaAJDMMM+8iCXwp2rq6A18tgxOgMJKbHhvo4p4XX60Utm66fPzI9KNf0uL1obSHDw7MC0EXJKV7pIvnHOMUrLUEvaJ/2fmGKV7uBJTPRkdTzZLvNZjAgnyM0cRIerxfdrMcrhULx6mAVrxRt8CYhnAi/idf999+P9vZ2jBs3Dueccw6WLl0Kr9d73A31008/RXx8cOd+3X333T7F6kRs2LDhf/7t8ssvP22qvkQiwRNPPIEnnnhC0LmkrJjooSBDXJaWm1J94pLuadcBZK4WcGy2JB9wZUJu7iMfSCQSqJRyOJxu2EQiSlqNEgBgtTlF2W8ooqII8TINBk/ximOJV0+nMWjX5IuckWlQqhUw9VvQXNWBrKLgKRZhnBobvt4NAJi2pCy0B/EDzfU9sJodUGkUyMwNTpRES0sf3G4vNBplQDK8mtqIfyxDJOLV0sUSOYGKV2svuaekx/Hbp40lXnzKjK1GsjYlKpKqsazTYoaHYaCQShFPkePVYWVJ4plQagSAF154Adu2bUNUVBQeeOAB2Gw2jBkzBrm5uYiLi8OTTz6J559/PlBnPaMgl3DEy38ypJDyJF5sRhWfUp+aNVIKUZnUInmptKzZ1C4S8Ypky4Fmi/iqlD6GvNGN7Ny1YIAbmcKNUBnOUKoUGDVlBIBjZu4wQouetn4c2FINAJh36aQQn+bncbiclKmLR2dArghOJEkda+bPHZFIrdz8HBiGQROrpmWLNJi8qZPcCzJThKmXTT3sPgn8CGFLvwEAkBGrp17LEa8MHR3pax0kZDE10n9/G8MwaDOzKmGE+Blt/oK6fWHy5Mn44osv4HQ6UV5ejurqaphMJsTHx2PevHknHdXzSwQ3t5AbA+QPfASKYg1wTHFy8iBeKm6tIOJFCJPNJYwwadRKDAzaYLGLo1BFRgaQeLFz0QwDJ/c9BgJJbJdV1xkS0TBhbgnKNxzF7rWHcfHt80N9nF88Vn+6AwzDoHRqPpIy40J9nJ8FR7xGjgte5EUtO79yRAAGh3f1mGCzuyCXS5Euwpgmr5dBM0u8spL5K2gujwftrLk+i2fJsrWfkJmMWHoy02pg1+ppiRc5c3qU/yqbyWWH2U0+X84o4sVBqVRiypQpmDJlipjnOWvAR73ijO60BEop40+8lHLyJ2AXUCbkVDOhJUKtmhA4sUqDURGkHDgYAAO8Tk8Ur4GBICpeLPHq6x6E0+Ea9lEAk84pxZt/+QoV22tgNloRKXCWXBj84XK6seKjLQCAxddND/Fpfh4Mw+DQ3kYAwMhx2UG7bi2reI0YkfQz30mPhmaidmWkxooS6NzVPwiH0w25TIrUBP4kor3PBLfXC7VCjgSeqfUtAohXi5Etc+roypQtrOKVHuX/NdsshKzFqbTQyEN3/xy+A9/OcMh5qFcqlgTREig1R57c9ORJo2DLewLUqgg166USSLwiNaxCJRLximZ9WMZB8XOv4uPJDaq/3wyPgKYCGuhiIxARpSZyeVNfUK4pBGm5icguToXb5cGm78pDfZxfNNZ/tRt9HQbEJEZjxvljQ32cn0VHSz+62w2Qy2UoHpMRlGt6vQyqqjoAAPmF4itedY1khFaOSGXGhjaWyCXpfV5dXvt0Ed9ZVmIM7/JqU58BAJDJo9TYzCpemXq6tc0m9prR/q9rMZM16ZF01xIbYeIVIKhkLImiIF5qdo2d0uiuFkCeIrgEdreHd1dipJolTHZhJb1otlPQZBFHodJHE4XFYBS/HBgTGwmpTAKvhwma6iWRSJCZR0r5zXXdQbmmUMy/fDIAYO0XO0N8kl8uPB4vvnh1NQDgktvnD3ulFAD2ba8FABSXZRw3pzSQaGnuhdXigFqtQE6O+JaZ2gbyns3PFWfvujYSe5GXLozIccQrN5mfT8xks/sGZGfH05c8GwcMAICsGD3dOiNZl63zf12zmZRmM8LE6+yEilW8HBQkiq9ypWHX2XgoXlrlsZswX49WJKt4CVWqorVsaVAk4hWjCxzxksmkiGOH0vZ2m0Tf/1TIzCPdXWcK8Zp7yURIpRIc2VWH9oYz48xnG7avOIDW2i5E6jQ498aZoT6OXyjfRrLGxk4dEbRrHj3CRlcUJB83ckws1DayxEskUlfPKl5CiVd9JyFeOUn8iFdDLyEziVERiFApqdaa7HYM2EhFIotS8Woysv42KuJlAABkhonX2Qklq17xI150BIhTvGxOeuKkkMl83jKLgx9ximRjGwZt4iheRrM4pUE968PqNwTGAJ/Axjt0B5N4sU/LjTVnBomJS9Zj7OxiAMCqj7eF+DS/PHi9Xnzy9xUAgAt+PQfaYTxcnYPb5cGBXRzxygvadY8eJmGtRSVpou9tszt9GV55OeJEY9S1EMUrN01Yo0RdJyFwuTyJV30PS9zi6dc3sGpXQoQWkRSkzeRwoM/OEjaKUmPzYFjxOquhYYmXlYJEaVmzn4VSeYpSKn3raENUJRKJT7Ea5Fkq1LFKldEqTKmKiSKzCAdE8mTFxZDOw76BwCS9p7BZPO1B7DLMK0oBAF+w5JmAc2+YAQBY8dFW2K3iZ6qFcWps+HoP6g+3IiJag6W3zg31cfzC4X1NMJvs0MVoUTAqOMGpAFBxkMzZHVUq/jWr6rrg9TJIiItEXIzwGYFutwd1rOJVkMmfyHm8Xh/xyk/lp5zVdrPKWxI9AazrY9fG0a2tNxCyl6CNQJTS/1J0I0u8cqJCGx4cJl4BgkZOyIyNgnhF+ggU3YfT0CcFi5P+gy1aw3qreCpWughCmIwWYYQphvVkDZjEUagSuFJgv5n3LMrTITVNDwBobw8e8RpRQoJIu9oGYAqQkic2Ji8cjeTMOAwOWLDuq12hPs4vBk6HCx/87XsAwOV3n4Po2NANBabBzg2VAICJMwshE2Aap4HBYEFzE1GQRo0W38x/lDXtF+WniLJfY0c/XG4PIjRKpMTz72hs7TXC7nRDpZAhg2eUBEe8RiTSk5naPkKg8uLo1tYb2XV6/9c5PG60WgwAwsTrrIXap3j5T4QiFMeUKxooZTJffIWZD/FizfF8FS89S7wMAr1ZsSzx6hfJkxUXEwGJBHC7vTCKROaGIjWNvHk72gyi730qREZrkJJBrlt75MxQvWQyKS68hagt37y5Dl4Bc0HD8B8rPtyCrpY+xCbpcNEt80J9HL/BEa/Jc4qCds1DrNqVnZMAXQBiT47WEOJVUiAO8apsIlaDwixhQa817YRsjkiJ5z1ku7aLVcwS6RWzOr7Ey0AednMpiFezeQAMgEi5EvFqunmSYiNMvAIELUeiKIhXJCuZWlxOqpKhRCJBpIqsNfEgTzpW8TJY+SlWMaxvZECg4hXL3vD6jOJ0CcrlMsSyQafdAZhvmMbmarW0BDfaoWAU8aBUsh8WZwIWXj0Vmkg1Wmo6sW35gVAf56yHoXcQH73wIwDg2gfOhVpLZ3oOFRpru9DW1AeFQoZx04NnrD+wrxkAUBqA6AqGYXC4ijwkjSwUZ3TW0QaSN1aYJcyoX9VGIi74lhkH7Q50GMm9dQSPUmNNL6uWURKv2gHWl6bzv4uy3kRIXnZ0bMhnx4aJV4AQyZYazRRlw2iWeHkZhrrcqGeHeBvt9KqTXst6q3h6tOKiCLnpF6gqJbLehz6jVdDA7aFIZmeYtXeJP98wI4vcaHp7BmEJQDr+qVAyliR5H9nXFLRrCkVE1DGP0UfP/xBWvQKMNx75AmaDFbkj07HommmhPo7f2LzqEABg3PR8RASxEaB8bwMAYOy4HNH37ug2oqfPDLlcimKREvEP1xEFbWSusP2OthDlrDidH4Gr6iTELUUX5XuA9xdWpwstbIZXIeWM52qWeBXE+r+u1sSqe9HBnSd9MoSJV4AQqWCzrVz+fyCr5XJfCr3JQfdB7lOtbPTkKZYtFQ5Y+BGnuCg2tsFq4zUvkkNMtBYyqQRehkG/SKpXajIhXh1dBlH2G4qoKA3i4ghZ5PwhwQA3QuXI/uaghbeKgYtvn4+IaA2aqjqw8Zu9oT7OWYuty/djw9d7IJVJce8L10AmQkp6MMAwDDavrAAAzFpcGrTr9vUOoqmxFxIJUBaA8UQHD7cCAArzkqESIUPN4XSjupkQnpF5wkqXR1uJclacwZd4kfteUQq9wb+mrw8MgDitFnER/pd3HR63L0qiIMZ/la3eyBr5daEflxUmXgFCJFtqHKQgXsAx1cvooCNQMazixWWiUK1liVc/z1KhPkIDmVQChgH6BXQkyqRSxLGlwR6ROhFTk/QAgLZOgyj7nYjMbPL01NjQE5D99XFumQABAABJREFUT4acgmRoI1Swmh1orO4M2nWFIkqvxaV3LgAAvPf0t7AHUSX8pcDQM4h//f4TAMDlvzkHhWOzQ3sgCjTWdKG5vgcKhQxTgujv2ruHqF35BcmIjtaIvn/FURJTMVqkmIrq5m64PV7ERGmQGk83Zmcoeoxm9JqskEokyE/l1xlZ2UHue4XJ9OureljSlkCnQNUbBuBhGEQpVUiK8L9hpNbEEq/oMPE6axGlZDsFnXQEiisZGiiJl55TvHiUGrmnjX6eipdUKvGVG3tNwghTUizpROzoE8eTlcoOo23rMIiy34nIYTN5GuqDR7xkMqlP9dq/sz5o1xUDF98+H4npsehu68d7f/su1Mc5q+D1evHive/D0DuIrMIUXPPAuaE+EhV++oaMlZo4qwARUcErM+5gU/InTApMZlh5BfGPjRkpjn/sYC0pM47KSxHkVTrcTNSu7KQYaHkqcUfa2VIlD8XraDe5ZxZQEq/qfkLYCmLi/H79XoZBrZGsyw+XGs9eRCtYIkRJvGJUbNnPTqccxbPkqY8HeUpgSVPPIP/yXpKePHl0GYQRL27Ya3uPOJ6sLLbzsLm1X5T9TsQI1rNRWxNc5alsCvmQ4EarnClQa5W494VrAADfvb0BR3bXhfhEZw+Wvb4We9YfgVKtwB9fv/mMGA3EweV0Y+13+wAACy8eH7zrujzYs5P8DU6bni/6/l09JrR1GCCTSjBmpDj5YAeqiYI2pkCYglbRRO5ZpVn8ypUOlxs13YTMlKTSDxU/2k1IW0kSHWk70seSvTj/17VaDLB5XFBKZcgKcZQEECZeAYOOVbzMLgfVoOwYNVv2oyRecVqWeFnpiVc869ESg3h1DghTqlLjxSVeGSzx6u03w2IVv7Q1ooDccOpqu8BQhtcKwbhppOOrYk8jnAKHkwcb4+eU4Jwrp4BhGLx8/0dw2s+s8w9HVJY34L2/fgsAuP3Jy5FdLE73XLCwc0MljANWxCZEYeLMgqBd9+CBZlitTsTGRqCgSPyfGad2FY5IRoRW+MxJhmFwsIZ0SI7JF3beQxzxyuZn0K/u6iUlT60GqfooqrVehsHRLtanlkjnL6vsI+uK4/1fV2Uga0bo4n2TWkKJ0J/gLEW08phUbqRQvWI54mWjI1Ac8erlQbwSothuQosVHp7dZknsG6/LIIx4pbFdiG0iEa+oSDVi2QT7pgCoXplZ8VAoZbCYHehoN4i+/6mQnZ+EmPhIOOwuHCo/c7obOdz6+GWISYxGS00X3g+XHAXB2GfGM7f9Bx63FzMvGIcl100P9ZGoseLLPQCAc5aOC2ozwLYt1QCAydPyBeVhnQrlB8h7c/xocUz7zV0G9JusUMhlKMqmV5k4eL2Mr9Q4KpMf8TrcRtaPTEukLnk2DxhgcbmglMmQSxklcZQlXkUUHY3VLPEq0IkzrkkowsQrQJBLpT7Va8DhPxmK07DKFSXxio9gy4VmetUqLoJ0E3q8DPrM/HxeyTGEeLX3CyNe6Yl6AECriF2IORnETNnQLH7noVwuQ14euQEePdIm+v6ngkQi8SkDO9YdDdp1xUKUXot7nyclx2Wvr8XutYdDfKIzE3aLA3+57t/obu1HSnYC7n3hmpBnFNGirakXe7fWQCKRYNElwSszer0MtmwiYa3TZ4ivsnm9DHbvbwQAjBuTKcqe+ypJdt/I3GSolHLe+9R19mHQ5oBGqeCd4XWwlVXM0uiJW0Un202ZmEClQHVbLei2WiABUERRajxqYK8XI86AcqEIE68AIlbFmtbt/pOZBC1rUqckXkmsT6ubB/GSy6Q+1YsLw6NFWhyrVPUJU6oyk0kgXkevCU6X/wPGT4fcLPIGrW8MjAG+hJ0nd+Rw8IgXAExfMBIAsHXN4TMyF2vKotG44NezAQAv3vs++gLUeXq2wu3y4Olb3kLVvkZExUTgsQ/uQGQAUtcDjR8+2QmAmOpTM4PXcXb0cBv6es3QRqgwboL4+V21jd3oN1ihUSswulgcf9eeo4R4TSgWZtTf30DKlaXZyZDzHMvEEa/RGfTE6yBLvEqT6VS7w71kXa4+1jfpxR8cGSC+sCI9f5VQTISJVwARq2bVKwrFizfxiiTEyWC3w+GmJywpOqHEi7Q1t/eZeK3nEKfTIkKjhJdh0NotTrkxL5sQr7qmwBCvkRzxOtQakP1PhbHTRkAboUJf9yAqDwb32mLhlkcvQe7IdBj7zHjy12/CYQsP0fYHXq8XL//uQ+xZfwQqjQKPf3QXMkUaRxNM2CwOrPqaZLpdePWUoF5700aiFE+dlg+lAPXoVNhV3ggAGFuaCYVCePmUYRiUV5L3+TiBRG5/PSFeZTn8fGJGmx31PcS6MTqd/u/uEEu8RqdQEq8eQqBGxfu/zuJyommQnDWseP0CEMcqXn08FK9uC113YLRKBRXrjegy03cWJuvYGAeeHi1O8Rqw2GCx8//wlEgkPtWrqUMcT5aPeDX0BMQAP5Id4VNX2xXUBHulUo5JswsBAJtWVATtumJCqVbgz2/fgki9FlXljXjm9v/A7eIfwvtLAMMwePWPn2Ltl7sglUnxpzdvQfF48RWbYOCnb/fBanYgNTMuqCOCvF4Gm9YT4jWTfQ+JjR17SdTLJJGy1Jo6BtBrsECpkKE0T5ix3ke8cvntU8GqXRmxOl8OpL9we7043MUSKErFq4JVvEZSGOuPGrrAAEjSRIZ8RiOHMPEKIBI0REXqtftPhJK0bCyD1UxFEiQSCVKiWPLEI0srLYYtFQ7wU5miNCrfG7C5x8BrDw45qaTcUN8mzgzEnKx4yOVSGAdt6OoRpsidDPEJ0UhNi4HXy6DiYLPo+58Oc88bAwDYuOIgPO4zk7Ck5iTi0Xdvh1KtwM7VFfj77z48I0unwQDDMHjtT59j+QdbIJFI8MAr12PSOcFLeRcTHo8XX3+wFQCw9LqpkAax26ziYDN6egYREanCpMniEz6jyYZDlcR6MG2iOPlgOw8To/6Y/DRB/q6ugUG09hkhlUh4K17lTYS4jcukX1/d0wury4VIpRIj4uhKywe72fJmov/lzYo+kntWGjt8FOEw8QogEtWERHXb/PddJbEmeZvbDZOTTj1Ji2bLfSZ6cpEeQ9a2DvAnJlmsMb6pZ4D3HgCQly4u8VIq5MjJJAbSytrA5G1xo0YOBLnDcPz0fOhitBjoM6P8DMv0GorSqfn481u3QCaXYt2Xu/D6n78IajzHmQCP24NXHvgvvn93IyQSCX738vWYd9nkUB+LN7atOYKOln5E6TRBze4CgLU/kZmQM2cVQakSv8y4s7weXi+D3Kx437xYodh1iNxbJo8S1iG5q4b4xEoykxCh5jc8fR9LvMZm0ROv/e2ECI1JTYaUohGk22JGh2UQUokEpQn+K2UV/eSePypWnDmZYiBMvAKIRA1HvPxXoNRyBfQq0g3ZaaEr+6VEs52FJvpyYTqreLXyVLwAIDOBlAiFKl65aYR41bWK14VYmEfedNV1XaLtORRlbDmhnPV1BAtyhQyzl4wGAKz9bn9Qry02Jp1Tigf+cSMkEgm+f3cj3n/muzD5YmEZtOHxG1/Hqo+3QSqV4L4Xr8U5VwbXEyUmGIbBl+9uBgBccPUUqLX8CAAfOJ1ubFpPuhnnnzMqINfYuouEsk6fKI6a5nZ7sJftaBRKvHbXEJ/YhBH8fGIujwcHWwl5GpdFH+K6v4MQobEpdArUgR6ybgSlsf5Qf1jx+kUhwUe86IhQMjt/qoPSq5XKEq9WIx/F6xjx8nr5fdhlJRLi1dglzJs1Ip14spo6B+BwitPZWMQmzB+p7hBlvxNRNpbcDOtqujAwIM6Ab38x/8KxAICta45g0MAvDmS4YO4lE3HXM1cCAD77xyr8+6HPztgSqljoaOrFA+e/gN1rD0OpVuDhd27DomumhfpYgrBvex2qKlqhVMlxQZBN9Tu21cJstiMuPhKjy8SJeRgKp8uNneVk/uM0kcYQHahph9XuQkyUBvkZ/LOoGIbBrmpih5iUz68z8kh7N2wuN3QaNXLj6VPgy9tYf1kqHRHa30Xu3TRlRpPTjjp2RmNpXJh4/SKQoiVEqNNKR7zSokjZr81MR6Ay9Cx5MtKrVqn6aMhlUjjdHt6djbnJ5E3YIJB4JcZGIjpCDY/Hi4Z2ccqNIwvJm+5odQc8HvH9Q7FxkcjLJ/L33t3BnZ9YMCoNuYXJZOzK9/uDeu1A4PxfzcIdT10OiUSCH97bhEeufRVm45lNKPni4LZq/HbJs2iq6kBskg7PLfsdpi4eE+pjCQLDMHjvldUAgHMvn4SYeP8HHYuBlcv3AwDOWTQaMp5RCqfD7n2NsNqciI+NRHG+OB/2Ww8SIjd1dI6goNemHgM6BgahkMkwbgS/kUN7GoliNj47jfosvRYLGgcMkAAYm0b3synvYn1lSf6XNw/2d4ABkB6hGzbGeiBMvAKKZJZ49TmscHj8V27SIlniNUhHvDJ1hHi18CBecpkUGazq1dTHz6OVm8x6s7r6eatmAGkUKGCzt6qbxYmAyM6Ih1ajhM3uCkiQKgBMZJ9udwd5cLVEIsGSyycCAJZ/sfusKM9ddMtcPPzOrVBplNi3sRK/O+95tDd0h/pYQYPX68VXr63Bn674B0z9FuSPycQrK/+AwnHZoT6aYOxYfxTVh9qg0ihw5a2zg3rt3t5B7NlF3p+Lzx0dkGts2FoFAJgzvVC0NPxtBwjxmj5GWPfq9kriEyvLTYVGyW+W564GQrwm5dCXKveyaldBQjx0av8Hobu9XhxgjfU0xOtAL6uuxQ2vEVph4hVA6JUaqGTEuEmjevkUL0rixSle7aZBuDz05ZnseDbGoc9AvRYA0uN0UMhksDvdaBdg0geAwkzSLlzVJM6HrUwmRQmbc8R1G4mNiZNzAQB7dtUHRFU7HeadXwaVRoHmum4cPgNHCJ0M05aU4cXvH0B8qh6ttV24b8lz2LXmUKiPFXB0NPXioctewduPL4PH7cXspRPw3Nf3Iz5FH+qjCYbH48X7/1wDAFh63bSgq12rlh+A18tgZGk60jPED2t1ON3Ysos0ucydLk4afkevCfVtfZBKJIL9XTtY4jW1iF+J1e3x+joaJ2TTE689rWTt+DQ6IlTV3wur24UopRL5Mf7/3vb3scQrXthAcbERJl4BhEQiQaqW7TS0+q9CpUexytUgnXKVEBEBjUIOL8OgjYfPiyNeXDAeLeQyKXKSyB617cJUpcJsQryONohnhh9VTN58BwM02mfkqHRERKpgNFqDOj4IACKi1Jh7LilBffPR9qBeO5DIG5WBV1b+AUXjc2A2WPGX6/6N1/78Oaxm/+efninwer349u31uHPOUzi4rQYqjRL3vnAN/vDaTUE1nwcSa7/bh8bqLkRGq3HZr2YE9doetxc/fLcPAHDeBWMDco0de+thsTqREBeFkYXifNhvKidEbkxBKqIj/FeJToTT5cbOamLQn1bEj8AdauuExeFEtEaFwmT6UUO7Wlhjfzrdz2Z3B1k3NikVMj9jRxiGwb5esi6seP3CkB7B5mNZ/CdCWdF6AECzyUB1LYlEguwYQnwaBujLhXkJbDdhN39fFTf3q1og8RqZy3YhNnfDJZK5euwoYibdV9EckHKcXC7DlKn5AICtm6tF3//nsPR6YrjetuYwOtuERXoMJ8Qm6vDsst/6xgt9958NuGP2k9i5+swMjT0ZGo624Q+XvIzXH/4CDpsTo6fl49/r/4wl180442Yvngp2qxPv/+MnAMDVt89FlD644422ba1GT7cJOp0Wc+aWBOQaP208AgBYMLtYtDLj+r2EeM0Zny9on/L6NticLsRHa1GYxi/BfVstMeZPyc30mwBxMNntONpNrCOTM+jUsl0s8Zqc4v+6hsF+9DtsUEplGDmMoiSAMPEKONJY4tVqNvi9JiOarOm1WWFx0aXAZ8foAQAN/f5fj0NeIjHH1/FUvACgMI31ZrUJ82alJ+oRHaGC0+VBbYs4nqySghQo5DL0DVjQ2h4YYjKdHVy9dXNV0L1W2flJGDs1D14vg28+2BbUawcaSpUCd/31Sjz92T1IzoxDT9sAHrvhNTxz29voF2m0VCjQ22HA33/3Ie6e/1cc2lELtVaF3zxzJZ758j6kZvPvXhuO+Or9LejrHkRyegwuuCb4URjfLtsDADjvwrKAZHcNmu3YzjbWLJxdLMqeAyYr9lcR9Xz2OGEdkluONAIAphfzN+hvqyOlymkj6EuVu1ra4GUY5MTEICnK/xIzwzA+4jWJgniV95Kf2+i4FJ/lZ7ggTLwCjLRIlnhZ/P9w0KnUviyvZhPdh0pOLKt49dOTp7wEQrx6Bi0w2viVcgpY4lUlkHhJJBIU55CnlMP14kRAqFQKlLDdjeUVgUmYnzApFwqlDO1tA2ioD8xsyNPh8l/PAgCs+Go3DH30EwyGO8bNLsZrGx7BZXctgFQmxabvynHr9MfxwbPfw3gGvV5DzyDe+stXuHnqX7D6k+3wehnMOH8sXt/wMM6/aXZQU9yDgd4uI774D8nt+vXvFgVkNuLp0FDfjf37miCVSnD+hYEJa924rRoutwc5WfHIyxZnJuDG8jp4GQZFWYlITRAWxLr5MDHozyzJ5rXebHfgYAsxuE/Loy9V7mgmZc4pmXRqV71xAL02K5QyGVWUxN4edq5lvDgDysXE2fXuHobIjNADAJrNdApLto7NxDLSrcuNJeSpto+eeEWqVUhhZzbWdPFTmYrSyQ2nuccAs03Y3MLSEYQkHaxpF7TPUIwbTZ7U9h4IjAFdq1VhwgRist+4/khArnE6jJ2ah4JRaXDYXPjinc1Bv34woNYqcfOjl+CVlX9A/phMWAft+OTvK3DjhIfx+iNfoKdNnBmfgUDD0Tb86w+f4KbJj2LZG2vhtLswcnIeXvrh//Dnt29FUqb4hu/hgP+8uAp2mxMlZZmYuSgwoaWnw5ef7QQAzJhViMSk6IBcY/laUvpeNEe8MubaXcSyMHeisDJjY/cAGrsHIJdJMYWnv2t7XTPcXi+y42OQHktPArc2kYfdqVl0atn2NrJubCKdcrWrm6ybmOhfXpnD48Lfj6yiOhtfhIlXgJEZxaa5U5QaASBXzxrdDXTEa0QcWy7koXgB8Bkmqzv5Ea+YSA1SYgh5O9oqrCNxTD4xYB4QkXhNLMsGAOw92BywzsM588mNd8O6o0EvN0okEtxw9wIAwPef7EBfAGZTDheMKM3Ayyt+jz+9eQvySjPgsDnx7VvrcdPkR/HSfR/g6N6GYRGt4XK6seHr3fi/i17EXXOfxo/vb4bd6kD+mEw89cndeP6b+1HMkvWzERV7GrD+xwOQSCS488/nB92z1tc76BsRdFmA0v6bW/txqLIdMqkEC+eMFGXPAZMVe44S8rBgkrAOyY2HSAl0woh0RGlUvPbYXN0IAJiZn029tmvQjJrePkgATM2iC27d3s42BKT5T9h6bGY0DPZDAmBCgn+K12FDG75o3k11Nr4YXoXPsxCZkXoAZGyQze2CRu5fdkoOq3g1GOkIVF5cLCQA+q029FmtiNPSGVgLkhOwoaoBVTyJF0BmgHUMDOJIcxcm8kxHBoCReWSWV0evCT0DZiTECG89L8pPQWSECoNmO6rqunwRE2Ji6vR8KJVytLX2o7a6E/mFwU1MHj8jHyVlmTiyvxmfv70Jdz50flCvH0xIpVLMvHAcZlwwFuUbj+Lzf6zCwW01+OmzHfjpsx1IyU7AnIsnYOYFY5FdnBa0D32bxY4DW6qxa80hbFu+31cGlcqkmLZkDM7/1SyMnl5w1hjnTwWn041/PP4tAODcKyYivyT4bf3ffr0HbrcXI0vTUTIyMNdfsY4Qu0njchAfK05Exvq9tfB4SZkxg+0W54uNFWSE0ZxSfj4xhmGwuaYRADCzIJt6/TZW7RqVnIQYjYbqujtZ4jWVgnjt7iFrivSJ0Cn9u96+geDF8Jyxild/fz+uvfZaREdHQ6/X4+abb4b5NCN2+vv7cc8996CwsBAajQaZmZm49957YTwhbFQikfzP16effsr7nHqlBtEK4tdqoig3csSrzkBHvDQKBdJ1REqv7aVXvTjFq7KTvz9pZCZJcD/UJGwgdaRGhREZ5Dz7q8WJZ5DLpL5y487ywASdarUqTJlGZrSt+Sn4uVMSiQTX30NUr+Wf7UJn6/AtvYkFiUSC8XNK8Oyy3+GlHx/EnEsmQqVRoqOxB5/8fQXumvdX3Dr9cfzz9x/jp892oLWuS1Q1zGax4/CuOnz9xlr86cp/4Iri3+PxG1/Hig+3wNhnRlyyDtc9eD4+2PsU/vz2rRgzo/CsJ10A8Mnr69FS34OYuEj86r6FQb++1erAd1+XAwAuvzIwA8Xdbg9WssRryXzxyqg/7WDnSU4Wpnb1D1qxr55UDWaP4qesVnX2ostkhlohx0Qe+V2bGwmpmZ5NV2asHuhFr80KtVyOMRT+rp1ddGVGACjvCx7xOmMVr2uvvRYdHR346aef4HK5cNNNN+G2227Dxx9/fNLvb29vR3t7O1544QWUlJSgqakJd9xxB9rb2/Hll18e973vvvsuFi9e7Pvfer2e9zklEglyo2Oxv68d9aY+FOn9M12OYEPiagf6wTAM1U26ICEeLUYTqnp7MZnSyFicwgaXdvbA5fFAIZNRrQeA0dlE4TnQKNwUP64oHdXNPSivbMU5kwsF7wcA0ybkYdP2GmzbVYebrpouyp4nYuGS0di0oRJrVh3CLbfPg0JB/3MUgrLJuRg7NQ/7ttfhvVd+wh+fvzKo1w8lisfnoHh8DmwWO7avPIgt35djz/ojaKvvRlt9N5Z/sAUAEB0bgcKx2UjNTURiWiwS0mKQmBaL+FQ9lCoFpHIpZFIppHLyfGrqt8DQOwhDjwkDPYPo6zSg4XAr6g63or2+53+IXHJmHCbOH4XJC0sxZkYh5EH+Gwg1ao604bO3NwEAfvPwBYjS+a90iIXvvy2H2WxHRmYcpooUaHoitu+pR9+ABTE6rWhDsbv6B1FeRczhCycXCdprQwUx6BenJyI1lp+/bUMleUidmpcJlYKONngZBpsbCKmZlZNNtXZzC1k3KSWdyt+1o5usm5Lkn5/N7fWgvD9MvE6Lo0ePYuXKldi9ezcmTJgAAPjnP/+Jc889Fy+88AJSU/83LG3UqFH46quvfP87Ly8PTz/9NK677jq43W7I5cd+FHq9HsnJ4uV+5EbHYX9fOxpM/isPOfoYSCUSDDod6LZakBThv3xdlJCAtbX1qOqmV60yY/WIUClhcTjR0DOAAh4heSMzkyGTStBlMKNzYBDJrOeLD8YVZeDT1ftQXtnCe48TMXVCLiQSoKquC929g0iM53++U2HixDzExUWir8+M7VtrMGuOsJsnLSQSCW5+YDHuufzf2LD8IC65cToKRg2/7p5AQhOhxrxLJ2HepZNgNduxb1Mlju6ux9G9Dag50ARTvwW71x4G1h4W5XpxKXrkjUzHmBmFmDh/JNJHJP0iVK2TweV048U/fwWvx4tZi0sxY2HwDfVOh9tnqr/q2qkBmcsIAN+tOgCAqF1iPWCt3lEJhgHKCtKQEi+sGWDNAZIDNn8Mf1K4vooQr7lF9IrZoc4uDNhsiFQqMZZyMPaWVkKGZqb73xDQYzOjxtgLCYDJif4pbJWmDlg9TkTK+fnfaHFGEq/t27dDr9f7SBcALFiwAFKpFDt37sTFF1/s1z5GoxHR0dHHkS4A+M1vfoNbbrkFubm5uOOOO3DTTTed8gbqcDjgcBzr3jOZ/tfMnBNNDO/1Jv+DSVUyObKj9ag3DqBmoI+KeBWwQaiVPfQ+LalUguKUBOxpbMPh9i5exEurUqAgNQFHW7txoKEdyTH8laqxhWmQSICG9n70GiyI1wsfdBqjj8DIwlQcqmzHtt21WLpE/BRrmVyKhUtG45OPtmHFj/uCTrwAYERxKuZdMAZrv9uPt15YiefevfkXSwS0kWpMP7cM088tA0CIQf2hVtQcaEJXaz962gbQ09aP7rZ+9HcaTzprVCqTQhcXiZiEaOgTohCTEI3MghTklaYjb2QG9AniE/gzFZ+8sQGN1V3QxWhx158vCMkZlv+wDwP9FiQkRmPegsAQv44uI3btIzEN5y8Ub/bjim1HAQBLpgnLAzNZ7dhZzRr0y/h1RvYMWlDRSmwjswvpZ0VurG8EQMqMNBUUp8eDnR3kgXtGerbf63ay3YxF+kTEqPzzOO/tI2csi8nETr+vxB9nJPHq7OxEYuLxJTu5XI7Y2Fh0dvrnK+rt7cWTTz6J22677bh/f+KJJzBv3jxotVqsXr0ad911F8xmM+69996T7vPMM8/g8ccfP+21RkQT8lJjoiNC+bHxqDcOoKq/FzMoGH9RAhti2tsLj9dLnTA8MjWJEK+2Llw8jl+HzpjcVBxt7ca++nYsGsefeOkiNcjPSEB1cw92H27CkunitGrPmDwChyrbsWlHTUCIFwAsPncMPvloG/bsqkdHuwEpqfqAXOd0uPGec7B51SFU7G7AppUVmL0kMIOBzzQolHIUjss+6dBphmHg9XjhcXvJ//V6wXgZaKPUZ12+ViBwZH8zPn1rIwDgN49cCH2s8IclWtjtLnz84VYARO0KVKn/mxX7wDDAhDFZSE8RZoDnUN3UjdqWXijkMswTGCOxvqIObo8XucmxyEmK5bdHJTHml6YlIYEi+JTDhnpCTGnLjHs622BzuxGv0aIw1n8BYFtnIwD/y4wAsLuPnHFsrLBZmP5iWN1F/vjHP57U3D70q7KyUvB1TCYTzjvvPJSUlOCxxx477r898sgjmD59OsaOHYs//OEP+P3vf4/nn3/+lHs99NBDMBqNvq+Wlv8tieXryB9NnbEPXgpDL/fHVtVPVzLMjtFDq1DA5nLzGh1Umk7KrAdb+Zvjx+eR7qHyOuGm+Cml2QCAHYfEq8HPnkr8HvsONsNgsoq271Ckpcdi/IQcMAzww7flAbnGzyExVY8rbiGhqq8/8yMGjbaQnONMgkQigUwug1KtgDpChYgoDSJ12jDp8gM2iwPP//ELeD1ezD1/DGYtKg3JOb5dtgf9/RYkJ+tw7vmBebCy2pz4fvVBAMDlIoay/rCF5P/NHJsLXaQwX9zyPeTzcsl4/or7miOEeM0voS9V9pgtONBBPkfm5tGpZRtbWMKWkQ2pn0o9wzDY0knWzUj273our8eneI2PzaY6I18MqzvJAw88gKNHj572Kzc3F8nJyejuPj4jyu12o7+//2e9WYODg1i8eDGioqLw9ddfQ6E4fbzD5MmT0draelw5cShUKhWio6OP+zoRmf/P3llHR3G2ffhaiYe4e0KAIMHd3V2KluKFUqjQljql1IBChdIWiru7u7sETyAJcSHutrvz/TEJL+1Hy8xmk9D3zXXOHk6bPM8My+7Mb2753Za2GCtV5GmLiMlJ/+c34Rlq2ouRq+AUecJLpVRS00lcey9BvpdW3WLhFZyQREGRRvZ6gIbFwuthXBKZuaUbaNyiWHhdvhv53BSQPri72lLNzwmtTuDc5VCD7Pk8+g4QL8gHDwRRWKDfe1laXpnQDk8/R9JSslmx8FCFnEMl//0IgsCiOXuIj07FydWGqRWUYszOymfTenFk1uhxbcss2nX45D2ycwrwcLOlWUPD+LAVabQcuiimGXu3Lp0fWEpmDleKh2L30DPrkJVfwKXw4lSlHsKrJNoV6OKMk6W8aNnpKHFtO0/pgi0yO42YnAyMlEqaSqzvupceS662EBsjc/ytDDNx4EW8VMLL0dGRgICAf3wZGxvTokUL0tPTuX79+tO1J06cQKfT0azZ37cMZ2Zm0rVrV4yNjdmzZw+mpi+e9B4UFIStrS0mJvoX3amVyqd1Xo/SpacbSyJeD9NS0OrkmX3WchY/QHcT5Qsvd1sr7CzM0Gh1PIjXzwTVwcoCbydbBKH0Ua+61dwwNzUiNTOXkMjSmbI+S/uW4sXo5LkQg+35V5q3qIajkxWZGXmcOlH+TvYAxsZq3vqiPwAHt13j1pWysdGo5H+bQ9uucWJvEEqVkg/mDsHSqvy7GAG2bLpEVlY+3j4OdOpSNrVdOp3Atr3i/Wdw74YGG4h9Liic9Kw87K0tnkb69eXwzYfoBIE63i54OtrotcfpkMdiqtLRDj9H+anKE2HitaZjVXnCNCE7i+BUsUBeTmH92XhRrDV08MDCyFjSmsvJYkSviYMvSkX5SKKXSnhJpWbNmnTv3p2JEydy5coVzp8/z5tvvsmwYcOedjTGxsYSEBDAlStXgP+IrpycHJYvX05mZiYJCQkkJCSg1WoB2Lt3L8uWLePu3buEhoby22+/8c033zBt2rRSn3MNa1EIBWdIFw7eVjaYq43I12gIl+nnVadEeCUkyloHYqqlnqfYfXIzSn9LiMb+YtTr6qMYvfcAMFKraFxLfHo5F2Q40dChtSi8btyOJC09x2D7PotKraRP/4YAbN96ucKc1Os08qHnK00AWPjpDnJzSjfOqZJKniXkdjS/fr0XgNemdaZOI58KOY/kpEy2bxHLo8dOaFdmnYznr4QSHZeGpYUJ3TsaTtztOCmmLnu3roW6lOe+76oYOevZSP8a28N3xZFFXfSIduUVFT21kejoL094nSyOdtVzcsXOTLoJ+Ok4UUS1cZV+vMvJ4j2lqX35TY/4VwovgPXr1xMQEECnTp3o2bMnrVu3ZunSpU9/XlRUREhICLm5Yv3OjRs3uHz5Mnfu3MHf3x9XV9enr5K6LCMjIxYvXkyLFi2oX78+S5YsYeHChcyaNavU5xtgW+yPlSZdeKmUyqfpxrvJ8iI9dV3FdOHdxEQ0MqNlAI18RNF0PVL/aFXT6qJYuvKw9AOp2zYQHZfPGlB4ebjaUrOaK1qdwIkyjHr17tsQU1MjwkKfEHSj/Lxi/sqE93rg7G5LYmway74/WGHnUcl/F+kp2cx5ZyNFRVpadq71tKawIli5/DQFBRpqB3rQqo1hfP+ex8ad4gP9gB4NMDeTFll5EdGJaVy+G4lCAf07lK4JJjwhhXtRiaiUCrrrWd+VU1D41K2+e6B8D7TzEVHkazS4W1lRq7j0RSrHo4rryryli6ECrYaLieL1tb2bNIf+HE0Bt9LE+1NLR8N4sEnhXyu87Ozs2LBhA1lZWWRkZLBixQosn8kh+/j4IAgC7du3B6B9+/YIgvDcl4+PDwDdu3fn5s2bZGVlkZ2dTVBQEK+//rpBimprFhunBqfLE1CBjsUu8MnyIld+drZYGBuTV6QhNFm6jUUJjbyLi+MjY/WO0jQtHhf0MC6ZlKzSFbC3queLQgHBEYkkpf39hAK5dG4ntmsfPV12aUArKzO6FXcTbt18qcyO8yLMLUx4d85AAA5sucq1c48q7Fwq+e9Aq9Hy7XubSU7IwMPXgRlfD6owy5Kw0ESOHBQjRpOndi6z87jzIIa7wXEYqVUMNGDh/s5T4pDtFoE+uDvKH0L9LCXRrlY1fbCvIm9sXAnHH4RRqNHi42BLdWf5tkJHH4m1s12qVZX1b5Gv0XC+2L+ro7f0EUdXnkSRpy3Cyczy6f32RVxNeYxG0OFhbouHhX5dn/rwrxVe/zZKHOvDs1LJ1xRJXlfbQRRed5LkCS+VUkmgi7g2KE5+urCmqxOmRmrSc/MJS9Jv5IxdFXOqu4lf2JIiT32xt7agtp8YxTtzM6xUez1Lx9Y1UCoV3H8YT3Sc/A5QqQwc0hSFAq5cCiPisf7jmEpLvWZ+9B3ZAoCFn24nI61sUqyV/G+w7PtD3LoSjqmZMZ/9OBILyxfXzZYFgiCw5NfjCAK061CTmmU4E3L9djHa1b1jbewNMD8WIL+wiL1nxLFDAzvUK9VeWp2O/cXdjH2a6m+/c/COmAXoESh/pqhGp3ta39XJX958yIuxUeRpNLhYWFLLXnqk7FRxmrGdq3ShdzFJFIfNHcov2gWVwqvccDKzxN7UHJ0gEJIu/cZbMp/qblKi7AL7hu5indYNPYSXsVr1tM7r6mP9a7SaB4iFkReCI/Teo4R2DcUvx6nrhutCtLe1pEl9H4Cn89bKAncPO1q3FUP+64tH1lQU497piqefI6lJWcybuRWtVn4qupJK9m++zM61Yvfge98Mwtu/fDrCnse5MyHcuPYYI2MV41/vUGbHCX38hAtXw1AqFQzr38Rg+x69FEJGdj6uDla0rCffpPRZLodEk5CWhZW5id6zGVNzcjlXnGbsVVd+qvJSVDRpefnYmpnRxFOeCD78WIzEd/HxlyygBEHgRKx4X+jgLl3oXXgiHquVU6Xw+q9EoVBQx7ZYRKVJ98eqamOHhZERuZoiQtPlpQwbuYuNBtdj4mStK6GZr5gqvByuf7SqVU1ReF18EFnqwvIOjUUzwWsPosnMKZ1FxbOUDLY9dOJemYqQUa+1BuDUiftERlRc1MvUzJiPvh+GiakR188/YsNvJyrsXCr5d3Lp5AMWfyUW07/6ZqcKGQlUQl5eIb8uOgrAK8Oa4+ZmGCPT57F2q1gq0KFVDTzdDZOaEgSBLceCABjUsV6pi+p3XhIfIHs2ril7rmIJh+48RKsTqOPurFc348FgsSi/e3V/1DJKdbQ6HUcjRAHVzVe6eWx4ZgqR2WkYK1W0cZEmNqNyUojKTUWtUNHMQV5UrrRUCq9ypLadKLzupUoXXiqlkkBHcd2tJ/IMTRu4uaIAItPTSc6Rn1Jq4ivO9rv6OEZv0dTAzx1TYzVJmTk8ipM/wuhZvFxs8fdwQKvVGTTd2KqpP1UsTUlKyeL6rbIrfq/q70zrtjUQBFi7qmKjXn41XJg2qx8A6387yZUzZddcUMl/F8G3o/n2vc3odALdBzVmxOSyizBJYd3qcyQ9ycTFxZrho8pm6D1AZEwKpy6I35NRg5sbbN/bj+IIiXyCibGafu1KJ2DTc/I4eVu8NvZvpr8P2N5bYqqydz350a4irZYjxfVdPQPkFeVfS4glJT8PaxNTmrlKny17vDja1dzZW7KNxPniaFcDOy8symlGYwmVwqscqV0c8bqTKi/1V5JuvJEgL3JlZWpKdUexxup6rPyoV6CHC2ZGatJy83iYqJ9oMjFS06S4yP7s/cd67fEs7RuLIeHjVx6Weq8STIzVdG0n1kLsLh54W1a8OqYNAKdP3icsVL7VhyHp3LcBvYc2BeC79zcTHV5xUbhK/h1EhCby2eTVFOQX0aRtdaZ93rdC53+GhyU+HYQ99a2umJr+syF2aVi58QKCII4bq+ojr0vvn9h4RJxq0b1FQKmd6vdffUCRVksNd0dqeuqX+o1ITuNWdDxKhYIegfI7Qy9EimlGO3MzmnhKF08Ah4rTjJ28/WTNdTwWK94POrpJTxmefSKuaeVYurFM+lApvMqRuvZizVRIepKsAvtGzsUdhonyxVMTD3HtlWj5dVrGahWNi6NeF0L1t4RoW0usWThzr/TCq3NT8UJw+W4kGdmGG3/Tt7tY0Hr+SiiJSf9/0LmhqOrvTPuOtRAEWPHHqTI7jlRe/7AXtRp4k5tdwBdvrq0cKVTJ35IQm8YnE1eSlZFHQF1PPv5+GCp12bjCS0Gr1bFw3gG0Wh2t29agRSv5lgdSeRSeyIlzYhRo/AjDRdVikzI4dU2M1gzr2rBUewmCwLbzYmfkoJb6j2rafVPs8G5dzQfHKvLnbO59IL5PvQJqyEoz6gSBg+GiGOrhJ/3fMjk/h+tJ4v2ts4e0dbmagqfzGds6l53tyN9RKbzKETdzK+xNzdEIOu6nSY92NHQRBdvDtBQyCuTVNjUtfuK4HKVfgXzLqsXF8aH6p+DaFhd43n4cT1opxZKfuz3+ng5otDqDFtn7ejnQINALnU5gz6GyjXqNGd8OpUrB5Yuh3LlVeo+z0mBkrObzn0bg5GpDbGQK38zYiFajrdBzquTlIzUpi48nrCTlSRbe/k7M+W00Zhblm575K3t2XSf4QRzmFia8+VbXMj3WsvViaUDntjWp6mO4JoLNR26iEwSaB3pT1UO+ZcOz3AiLJTwxFVNjNT0b6+fdpdXpngqvfg1qyl6fV1TE0YfidblPTXmC5mZiPAk52VgaGdPGw0fyuhOxoQhAHTsX3Cz+/8i+53ExKYxCnQYPc1v8LA0XvZRKpfAqRxQKBXXtxIL3WynSo1cOZhb4WNkA8qNeTYs7SkKSkknPk1+Q3tJfNEG9FhGj99xGF9sq1HB3RCcInL1XegPUrs3Ei8qRS4atSxrQsz4Ae4/eplDPv6sUPDzt6NlLPNYfv5+oMDf7EmzsLfnil1GYmhlz82IYi77cU+HnVMnLQ0pSJh+OW05cVArO7rZ8vXQMVWz084YyFImJGaxYegqACa93wMFR2g1XH+48iOHitXBUSgVjhxsu2pWVk8+eM2KEakS30g/Z3nxOfGDs1TiAKmb6ieLL4dEkZGZjZWpCxwD5BecnwsLJKSrCw9qKBm6ustYeDBev5528q2Kqlt4UcDRGjJJ1lRjtAjj9RDxWO+eACkmVVwqvcqZecboxSIbwAmjoUtyhKLPOy8HCgqr2dgjA5Wj53Yn+TvY4VbGgQKPlWoT+LvYdAsUv8fFbpY9SdWkuPkldexDFk9SsUu9XQutm1XC0r0J6Ri7HzwQbbN/nMWpMG0xNjbh/L5azp8v2WFLwC3Dlg7lDUCoVHNp+jWULDlWKr0p4EpfO+6OXERWehIOLNd8uG4uDc+nMPUuLIAgsnHeAvLxCagd60Ltv6VJ0LzrWb6tOA9CzcyCeBuyY3HIsiNz8Iqp62NOsjvR5hM/jSUY2x4PEa+uQVvr7gO24fg+AnnVr6NURuete8YDvmjVkCRqdILA/TBRQPatKF1DZRQWcjRcf5qWmGbWCjjOJ/xFeFUGl8CpnGjiIqb+byfJETDNXsUD9Srz8lGELL3HthUj5wkuhUNCmenGN1kP9a7Q61xcLGC8ER5KTX6j3PgDujtbUq+6OIMDBiw9KtdezqFVKBhU7UW/efbVMhYeDQxWGDBM7o5b+doLCgrKLsEmlZadaTC8epr195Tk2LjlVoedTScUSH53Ke6/98TTS9f3qCbh52Vf0abF/z02uXw3H2FjNezN7G2xA9fM4e+kRd4PjMDFWM3aY4aJdufmFbCouqn+td9NSR122nruNRqejYVV3vYvq03PzOHpfFG+DG8vvrkzJyeVMeAQA/WvLS1NeT4glPieLKsbGtPOU7mN2MjaUQp0W3yp21LCWljIMSo0irTAHKyMzGtqVTvDqS6XwKmfqO7ihAGJyMkjKkz76pmlxa21QYjz5Gnk36VY+YrrwYqR+9URtq/sApRNe/q72eDvZUqjRGqTIvndrsQtx/9n7BhVIfbrWw8zUiPDI5DK1lgB4ZXhz7B0sSYhPZ9vWy2V6LKl0H9SY12f2BGDNomPsKjbIrOR/i+jwJN4bvZQncem4+zjw/ZqJuHiU30iVvyM2JpXfFx8DxCHYnmUoBDUaLUvWnAFgaP8mONgbxqUexPFAGdn5eDhZP20Y0pfCIg1bz4ujkka0ra/3PnuDxI7Imq5O1HJzlr1+X3AIWkEg0MUZf3t5/y57Q8WofzffarLSjIeixchVd0/pKcMTCeLDejvnGhgpK6Y5pFJ4lTNVjEyoVqzMb8iIevlY2+BobkGhTsutJ/LsKJp5eqBUKAhPTSM+S35qrkVVL9RKJZEp6USmpMteD2LkrEtx1OtoUOmtIDo1rY6JsZqI+FTuhMl35v87qlia0rOT2BG0efc1g+37PMzMjJnwekcANqw5T2JCRpkeTyoDRrdi1FTxvH7/bj8Htlyp4DOqpDwJuRPD+2P+eFpIP3/VBBxdKja9CKIQ+u7rPeTnF1G/gTeDXmlWpsfbe+Q20XFp2FibM3yA4Vzq8wuLWH9QvLa81rtpqQ1TD90IIS07D2cbSzrU1c+BXRAEtl0XjVcHNdLP/2vnXbEof4DMaJdGp+NAcTdjH3/pqb9cTeHTMUE9vKStEwSBEwnieXZwlt88YCgqhVcF0MhRjF5dS5Ke+lMoFE8N5S7FyUsZWpmaPp3beO6x/CiOpakJjXzEIv1TwfoXx5cIr7P3HpOdV6D3PgCWZiZ0birm9HedvFOqvf7KkL6NUCoVXL7xmEfhZeu11blrHerU9SQ/v4hFP748dVUjp3Rk0BjRaf/n2bvZs/5iBZ9RJeXBuaP3+GDMMtJTcqha05V5qyZg51ilok8LgDUrz/DgXiwWlia8/3GfMk0xZmXns2LDeQDGDG2BhbnhOjh3n7pDcnoOznZV6NlK/1mKIAqJNSfFlOWwNvX1FnE3IuN4lJiCqZGaXnqYpoYkJXM38QlGSiW9ZHYznouJJDkvF3tTM1q6eUledyI2lDxtEV6WNtS2lRahC86MJy4vHVOlES0cy3dM0LNUCq8KoImjWHN1LUlevVYLd/FDeSFWfsqwja+Yyz7zOEL2WoCOAaIlxMlg/R3ja7g74utsR6FGy8k7pXeeH9C+LgBHr4SQZcARQm4uNnRoJV48Nuwo22iPQqHgnfd6oFYruXQhlHMviYO8QqFgwnvdGfiaWNfy6zf7WPfr8ZdGGFZiWARBYOuKs3z19gbRHLVNdeavnoi1rXwfp7Lg5vUINq4T097vvt8L5zIu8F+x4TwZWXl4e9jTt3t9g+2bX1jEqn1XARjbtxlGpfRBuxQSxaO4ZMyMjRjcSn/vro2XxY7I3nUDsDaTP+h82x2xKL+jvx/25vI6Xnc9EiNQffwDZJmm7o0U1/X2riU5zXg0XjzPNs7VMVdLc7gvCyqFVwXQxEkUXvdSE8jVSC80L3kauJkYL8uAFaCtrw8AFyKj0Mgctg3Qvlh4XY+MJT1XP5GjUCjo3lCMUh26UXqBEejvip+7PQWFGg5eMFyRPcDIQWIa4+T5EGLi0wy691/x9nFk6IgWAPzy02Gysw0nIkuDQqFg4vs9eHVqJwDWLT7Bb9/sQ6fH56eSlxdNkZafv9jF8gWHAOg7ojlf/DIK8wr26SohIz2X777ajSBAj971adehbFNEYRFJ7Dp4E4C3JnYsdSrwWXadukNKRg4u9lXo00b/kT4lrDlxHYD+zWtjZS5fMAEkZeVw5L7oGD+sWV3Z6wu1WnbfF6+/g+rI+zvlFBU+HYrdr5r06F9mYT6ni9OMvb2lrRMEgaNxYjq1k0vpIo2lpVJ4VQDuFta4mluhEXRcT5JX5+ViYUmhTsvVeHldkXVdXbA2NSEjv4Db8fJmPgJ42tlQzdkerU7gdIj+6cbujcQw9sXgSFKycvXeB0RhMKCDeKHYcfK2QaMx/r5ONG/kh04nsGZL2afZRrzaCnd3W1KSs1n2+8sztFqhUDDyjY688XFvAPZsuMQ3726iIF+e8K/k5SQ9JZuPJ67k4LZrKJUKJn/Uizc+6VOhjvTPotMJzP1mDykp2Xh52fPGtC5lejxBEPhhyTG0OoH2LavTuL6PwfbOLyhidUm0q0/po12P4pK5EByJUqFgVPsGeu+z9eodNFod9Txd9SqqP/YojNTcPBwtzGnr5yNr7cHwh+RpNPhY2VC/eDSeFA5Hh1Co01LN2oEAG2ldnA+zEojKTcVYqa4Qt/pnqRReFUQLZzH1dylRes2VQqGglbu47lyMvFottVJJax9x7ckw/boKu9QSa7QO39W/ON7HyZbaXs5odYJBol49W9bE1FhNeGwKN4L1c+f/O8YMFaNQR07dJyom1aB7/xUTEyPe+aAXAPv23OTm9YgyPZ5c+o5swYfzh2JkpOLc0Xt8NH4FGWnyB69X8vJw93oEUwf/wu2rjzEzN2bWolH0H9Wyok/rT2xYe54rl8IwNlbz6ewBmJmVbXro0Il73L4fg6mJEVPHGXb495ZjQaRk5ODqYEVvA0S7VhwTRVznev54ONjotUehRsumK2KacWTz+nrtsemW2FE5pG4dWSOCALYGixGowTXqyLLU2BUhruvrI/19PFwc7WrtVK3ch2L/lUrhVUE0LxZeFxMjZK1r4yGuOytTeAF0qFpcpxWmX8SqWx1ReJ0PjSIrX//i+D5NxTDvviv39d6jhCoWpvQoLlDdeiyo1Ps9S60abrRsUhWdTmDlpvMG3ft51G/gTZ/+ohnkgrn7yMstnd+ZoWnfsy5f/zEWSytT7gdFMe2VX3l0X39T3UoqBp1Ox5ZlZ/hg7HJSnmTh5efIjxun0Kx9xZhJ/h1XLoWyeoVoXjrtnW74VZUfjZFDRmYev648BcDYYS1xNqAbfnZuAWv2i0Jp0oCWpY52xaRkcLj4wXVsZ/07Lg/ffUhydi6OVSzoWlv+sOiI1DQuREajAIbWlVdjFpmRzuX4GBTAwBrSU3/xuZlPAxb9vKUJL0EQOBwnNmF1c9O/Fs5QVAqvCqIk4nUnNZ6sIukiplWx8Lqf8oSkXHkRh7a+PigVCoKTkonLlG8rUc3ZAT9HO4q0Wk4+0L84vntDcXjq/egnhMYn671PCUM6iU7Np2+EkphiOCd7gAkjxc6+42eDCYt4YtC9n8fEyR1xdrEmISHjqV/Ry0TdJr4sXPc6bl72PIlLZ8aopRzbfbOiT6sSiaSn5jBr6lpW/HAYnVZHxz71+WnTFLz9DTd/0BDExqTyzZdiXVfvfg3pUTxiqyxZsuYMGVl5+Ho7MKRv6Uf4PMvaA9fIzMnH182O7i1LL3BXH7+GVifQvIYXtbz0E6SCILDuovjdHd60HsZ6iMFNt0Qx087PF3dreUJ1W4gYgWrj6YObpfS1eyPuIyA2qXlY2khacz8jjpjcNExVRrR1qtg0I1QKrwrD3cIab0tbtILAlUTpXYqO5hbUdhAvkmeiI2Qd087c7On8rGOh+gmnkqjXwVKkG20tzWhdyweAvQaIevl7OtIowAOtTmDb8aBS7/envX2dnnY4Ll171qB7Pw9zcxPemynWU+3fe5Mzpyp+nNBf8arqxM+bp9CkbXUKCzR8//E2fpq1k8KCyrqvl5mrZ0N4Y+Airp55iJGxmrdm9+f9bwdX+LDrv5KTU8BnH20lOzufmrXdmTq9bAdgAwTdjWbfUTFl9t6ULqgNWOOWmJLFhsNiEfyUwa1RyUzH/b/90rLYeVHszpvQtane+9yIjONObCLGahWvNJUfBcov0jztZhxWT956jU7H1mLhNaSGdJd8QRDY8VgUe/1kpBkPFUe72jrVqNBuxhIqhVcF0tLFB4BzCfJqrjp4FacMo+SnDLtUE2cmlkyQl0vPQFGEnH8USXpunl57APRrLn5p9lwR3ZJLy7BuYopux8nb5JZyJNFfmTCqDSqVkovXwrl5Rz/3fzk0aOTztMtx4bz9L42x6rNYWpnxxS+vMmpqRxQKBQe3XeOdEUuIfpxU0adWyV/Izsxj4afb+WzyGlKTsvD0c+SnjZPpMbhJhQwI/ie0Wh3ffLmLqMhk7B0s+WLOIIyMyrbQv6BQw/zFhwHo060ugTU9DLr/r9vOUVCooX51d9o1lD94+q+sOH6NIq2WRlXdaeyv/7muOi+Kwb71amJnIX/o+f7gENLz83G3sqJDVeljfgBORz8mIScbW1MzuvpK99O6l5bIw4wkjJUqyd2MWkHHwVhRVPd0l9+1WRZUCq8KpLWL+GHVV3idiY6QbQ3RpZr4Ib8SHUNannzhVNXJngBXRzQ6HUfuPZK9voQ2tX2xr2JOalYuZ+6WfoRQ6/p+eDrbkJVbwN6z90q937N4utnSp6v4hf1t9ely8bIaO6EdAbXcyM7O5+vZO9FoSi9ODY1KpWTUG534eukYrG3NCQuO583Bi9m9/mKl5cRLwuXTwbze7yeO7LwhdgGPbsWiLW/gF+Ba0af2XFb8cYrLF0MxNlYz++sh2DuUvXnryo3niY5Lw97Wgsmj2xl07wePE59a3bw9ol2phW5iejbbz4vRm9d7NNd7v4jkNE4UezK+1kr+kHFBEFhzIwiAEQ3qyo7ibXwgCqGB1WthopI+Imh7uLiuq0d1rIyl2WdcS4kgqSCLKkamtHKUX8dWFlQKrwqkpYs3SoWCsMwU4nIyJa+r7+SCnakZmYUFXE+QV9zsbWtDTSdHtILA8VD9iux71RWjXvtv6d+VaKRS0beZ+MSy/ULpnedVSiUjuot1GRsOXTe4UBkzrCVmpkYEP0rgxLmyNzlVq1V88vkALCxNuH8vllXLz5T5MfWlYUt/Fm9/k4Yt/SnIL+K3b/bx8YSVxEeXbSdoJX9Peko28z/ayqw31pLyJAt3b3u+XzOR12f2xLSMOwP15fDBW2zeIFq3zJjZi4CabmV+zPshcWzaJRa9z5jSlSqW+nlhPQ9BEPhpk9gc0L1FALV8pdsl/B0rj12lSKulgZ8bTat56r3P2os3EQRoW92Xqk7y510GxSdwL/EJxioVQwLlDdROzMnmZKR47xleU3oEqlCrZU+k+FA90E/6uv2xYtdmV9c6GMsQeWVJpfCqQKyNzahrJz55no2XLoJUSiXtvcRo2bFI+bVaXYujXodC9ItY9ShON16NiCE2Tbpg/CuDWoh1AReCI4hOStd7nxJ6ta6FnZU58cmZHL5kWHFkZ2PB8AFiPcWSNacpKId6Jlc3G2YUW0xsWn+Bi+dLP+OyrHBwtuarJa/xxid9MDE1IuhyOJMH/MyudRfQaiujX+VFUaGG7avOMa7nQo7vCUKhUDDwtVYs3v4mtRt6V/Tp/S2XL4ayYN5+AIaPakmnLvJu5vqQX1DEVz8eQKcT6NKuJq2bGXaEzIlrj7gRHIOJkYo3hrQu9X7xqZlsK452TenRQu9oV0p2LjuK5zKOba1fE8Hqa2JRfu+aNbAzN5O1dtOD22gFgSYu7vjbShd9x2MfkVaQh5OZ5dNs0YvI1RQ+NU3t7V5P1nmWJZXCq4Jp5ybm/E/HyxNQnb2La7Ueh8pOffUIKLaFiIgkI1++S7qbjRXNfMWnrb239HeM93S0oVVNHwQBtpy/rfc+JZgaGzG8uxg2X7XvMloDp7uGDWiCo30VEp5ksnHnVYPu/Xe0bV+TAYPEdvG5X+8lLrZsXfRLg1KppO+I5vy2YxqBTXwpyCvi92/38/bw37gfVPa1cf/rXDkTwuQBi/hj/kFyswuoVtuNHza8zqQPXt4oF8CD+7HMmbUDnVagS7dAxk1sXy7H/X31aWLi0nC0t+TtSZ0Nund+YRE/bxKj1K/2bIKLfemtKf44cpkirZbG/h40ra5/tGvNhRsUaLQEujvT1Fd+jVhCVjaHHooP7a81kmfcqtHp2PRAFI8ja8kTQlvDxcjVQN9AyX5hJxLuk6stxMPclgZ2L8+DR6XwqmDau4oC6lxCBEU66emxtp6+GCtVRGSmE5qWIuuY/vb21HB0oEin49gj/bob+zUQx3bsCXpQqpqnoW3EL9+uS3fJKyx9FGlQx3pYWZgQGZ/GyWv6NRD8HaYmRrwxRqwBWbf9MvGJ5VP0PumNTtSq7U52dj6ff7yV3NzSDRgva9y87Zm7YhzTPu+LRRVTHt2L492RS5j/0VZSkvSPkFbyfB4/TOCzyav5fMoaYiOSsbG34J05A/hp0xQC6up/gy4PoqNS+GTmZvLzi2jSzI8ZM3uVS8H/1aAIduwXozYfTu9h0BQjwPqD14lPzsTJzpLRvfT32SohKimdXZfENNvUXi31fo8y8/KfzmWc1L6ZXvusv3kLjU5HEw93ajvLsyE5ERlOfE4WdqZm9KhaXfK6+NxMzhRnhYb4SRdse2OCAOjj0eClaiSpFF4VTKC9K/Ym5mQXFXBDxtBsS2NjWhYPzT4SIV9g9KghRr32B+uXvupSuxpmRmoiktO4FR2v1x4ArWv54GZnRWZuAQevlz49aGlmwtAuYtRrxe5L6HSGLYTv2CaABoFeFBZq+HlZ+Yz2MTJS8fmXA7GzsyDicRLffrn7pU/fKZVKeg1txvL979BtUCMUCgXH9wQxvscPrP/tBHk5L7d4/Dfw+GECX72zkSkDFnH17EPUahWDx7Zh+YF36TawMcpS2haUNUlPMvnwvY1kZuRRI8CVz2cPMqiNw9+RkZnHdz8fBGBgrwY0MeBYIICElExW77sCwPShbTE1MSr1nr8fvIhWJ9Cqpg8Nq7rrvc+GS7fILijE38meDjX8ZK/PKyp66lQ/prH8MUXr7gcBooWEnKL6rWG30AkCzZy88LWyk7QmIS+Dy8miWOvjUV/uqZYpL/c3819MQl66pN9TKhS0dRW/ACfi5AmokjbcQ4/l12r1Cii2hYiIJCVH/sxECxNjuhQ7He+8oX8XoUqpZFhx1GvD6ZsG6Rgc2rUBFmbGhMYkc/K6/p2Xz0OhUPDOpE6oVErOXwnl7CXD7v93ODha8cXXQzAyVnHxwiOW/na8XI5bWmzsLXnny4H8uHEyAfU8yc8rZO0vxxnT7Xs2/3Ga3EoBJptnBde5I8UmlN3q8Pvu6Ux4rzsWBo7elAXp6TnMfHcDiQkZuHvY8fW8oZiZl306VBAE5i0+TFJKNl7udkx+zbBdjADfrz1JfrF9RJdmpTfrDIlN4sB10c/vzV76j3TKzi9g1QXRQmJSu6YolfIjQNvu3CMtLx9Pays6+cuzxghPT+VMdAQKYISMNKNGp2NzWBAAQ6vWl7xud/QNBAQa2/vibm4raY1WKJ8H2krhVUZcSJIuojp5iALmeKy8m3hXX3+UCgV3khKJzpSX9vK1syXQxRmtIHAgRL+o16BGYgHsgTsPyS1FmnBAizqYGRvxKC6ZK4+i9d6nBCsLU4YX+3r9sfOiwaNePl4OjCgutP9x6TFyy2m0T63a7nzwUV8Atm+5wp5d18vluIagRqAHP6x/nY++H4qblz0Zabms/PEIr3WZz8YlJ8nJll9r+L+EIAjcuBDKZ5NX/3/BtWs6nywcjoePQwWfpTQy0nN5/+0NREWl4OhYhXk/jMDGxqJcjr3n8C3OXnqEWq3ksxm9DRKNepZT10M5czMMtUrJh2M6GyS9tXDXGQQBujWsrrdLPcCGy7fIzCvA18GWHoHS03wlaHQ6VlwVrznjmjSSPZdx9V0xtdvJuyre1jaS152KCyU+Nws7EzN6eElz/dcJOnZF3wBggKc0u4zY3CQmXPlG8nmVhkrhVUZcSpJeO9XaxRe1Qkl4ZiqPM6W34DuYWdDERQw7H9Yj6tWnpvgh3vtAP3f0xj7ueNnbkFNQyKE7+nfcWZmbPjVUXXfyht77PMvwrg2pYm5CeGwKx68avhtw9CvNcXOxJiklmz/Wl72jfQkdOtVizHjxKf2Xnw5z9Yr+o5vKG4VCQbsedflj71u8/90Q3H0cyMrIY/XPx3ity3xWLDxMwkvcPFARFOQXcXjHNaYMXMTHE1dy9exDFArFnwSXT7WynWFoSDIz8/hgxgYehz/Bzs6C+T+OxNnZulyOHRbxhEXF5QGTXm1LDQPPfszJK+T7deL+o3o2xs9dvk3DXzn/IIJLIVGoVUqm926l/7kVFD41TH29fTO93PMPhzwiOiMTWzNTBgfKG/KdWVDwdETQ2EB5vmHrH4mCbbBfPcnpyaspEcTlpVNFbUpnV2nnejTxCulFhh0593dUCq8y4lpqBIVajaTftTI2pamTWK8lN+rVw098cjkQLl9c9K5ZHaVCwY3YeCLT0mWvVygUDGoofqg3F0+415cRbeujUMCZe495nFh6/6cqFqZPfb2W7LiAxsA1USYmRrw7uQsAOw/c5H5InEH3/ydGjm5Fl26B6LQCX362g4ch+tfYVQQqtYpOfeqzdM9bzJz7Cp5+jmRn5rNl+RnGdlvA52+s4fLp4Je+jq2sEASBh3dj+PWbfYzqOJcfPttJxMNETM2M6TuiOcv3v/OvE1xQHOl6Zz1hjxKxtbPg+59G4eFZenEiheycAj6bu4fCIi0tGvvxSt/GBj/Gkh3neZKajZujNeP6NCv1fhqtjoW7xM7IYW3q4+Fgo/deGy4FkZ6bj7e9zdPpI3IQBIHfL4ud3K82rI+ZkbxI4ZbgO+QUFVHd1v5pbbIUIrPSOFPc8T/Mv77kdTujrgHiQGxT1YvPVSvoOJZYPp3qUCm8yox8bRHXUiMk/36X4nTj0Rh5AqqHX3UUwI3EOOKy5XWMOVla0sJb7HrafV8/W4iBjeqgVim5E5vI3dgEvfYA8HaypX0dsWZgzQnDpNCGdW2ITRUzohLS2HvmrkH2fJamDXzp2r4WOp3Ad4sOUVgkTWiXFoVCwTvv96RBQx/y8gr58L2NREb8+0b1qFRKOvSux++7pvP5zyNp0KIqgiBw5XQIs95Yy9juC1j101EiQhMr+lTLheTEDLYsO8Pr/X5m+tDf2LP+IlkZeTi52TB+RnfWnfiANz7pg5t3+YgVQ5KensN7b/9HdM3/YSRe3uWTGhUEge8WHSQmLg0nhyp89FYPveqb/ok7oXFsPlrcJflaJ4OkMHdeuktofApW5iZM6qa/kMvOL2DFueJZkR2ao1bJv+2feRzBgydJmBsZ8WrD+rLWanQ6Vt4pTlHWbSQr/br+0Q0EoJ2rHz5VpBXVpxXmcCxBnAE8yEuaT1lQ2kOSCtKxUMsfnaQPlcKrDDmTKL1Lr7OHGLm6lhRNcn6O5HXOFpY0cRW9WPaHye8KHFhbdI/feU8/Wwh7S3O61RbPfdPl0nlxvdZJ/JLsvfKApIzsUu0FYGFmzPi+4gVryc4LBp/hCDBtfEdsrM2JiE5h9aaLBt//7zA2VvPF14OpEeBKZkYeH7yz4aX2+PonVColLTvV4ttl41i2/x0GvtYKSysznsSls2npKSb3+5nJA35m0x+nSYj573LDj4tMYeuKs7w7cgmvdprPih8OExX2BGMTNe171mXO76NZeWgGQ8a1wdJKnlHly0JqSjbvvbWex+FPsLe3ZMFPo/DxdSy342/Zc40zF8W6ri8/6IuNlWFvrkUaLV+vOIogQM9WtWge6FPqPbPyCli87wIgmqVaW+jfMLHmwk0y8vLxc7R7OnVELr9dErs0h9evi62ZvM/hwfCHxGZnYW9qRv9q0uYrAuRpip56d42qLt3odW9MEEU6LTWt3ahlI60D9HDCZQDaOtaXfJzSUCm8ypDTicGSxYy7hTV17FwQgGMyo159qopfpn2h8oVXl2r+WBgZEZ2ewdUYeeOHShjeTBzfsP92MOm5+hdJN/Bzp76vK0VaLetOGabWa2DHeng4WZOakcu6g9cMsuezWFuZMWOKmHJcv+Myd4P1ew/1wcLChG/mD8PH15GUlGzef2c9TxL/3T5ZHj4OTPqgJ+tPzmTmvFdo1j4AtVpFxMNEVv14hDHdFjBlwCKWfX+IGxdDKSyHCQKGJD+3kBsXQlnxw2Fe7/cT43ouZPmCQ9wPikIQBOo08uGt2f3ZePojPpw/lCZtaqDSI0LxshAXl8bbb64h4nES9g6WLPh5VLlFugBu34/h91Xi2J6p4zpQq4bhxxCt2X+V8NgUbKuY8fYIw3RJ/nH4Mmk5efg62zGktf6DndNz81l9QbyWTu3YXK/arqvRMVyLicNIpWJcY3n1WYIgsOyWeN19tU4DTNXSLST2Rt4nozAfTwubp36XUo63ozjNOMhLWjo5syiHC8li0KCTk+FT0M/j3/uNfskxUaqIy0snNOuJ5DXdPcVi94NR8ordu/uJtVq3khJ4nC4v6mFubESPADFitfW2fum4Bl5u1HBxpECjZfv10qX0xnURuwU3n71NWrb8Id5/xUit4o0hbQBYd+AaiamGL55s16L605TjVz/sL7cuRwBra3PmLRyBu7stiQkZvPf2OpKe/LvFF4CJqREdetVj9uJX2Xj6Q96a3Z/6zfxQKBQ8fpjAtpVn+XjCSga3+IqPJ65k/a8nuHbuEVkZpf/MGJL0lGyunAlhxcLDvD3idwa1mMPHE1eyZdkZIkOfoFIradjSn6mf9mHt8Q/4fs1EegxugkWVl98S4kU8ConnrTdWExebhourDT8sGl1uNV0ASSlZfD5vD1qdQKc2AQzsKd936kU8ikpi+e5LAMwY1QEby9JHJSMSU1l/Wkxbvtu/DUYq/b3N/jhzhaz8Aqo7OzzNTMjll4tiNGhQnVo4V7GUtfZKfAy3khIwVqkYVVu6hYQgCKwOEWuuRlZrKFkwXk15zOPsZMxUxvRwC5S05njiNYoELVUt3alaRX+PNDn8a4VXamoqI0eOxMrKChsbG8aPH0929j+np9q3b49CofjTa/LkyX/6naioKHr16oW5uTlOTk68//77aDTya3ea2IveXCcTpddO9SgWXhcSI0jNl+6t5WhuQWsPcRzCzkf3ZZylyCt1i20hQh7qNUJIoVAwqkV9QCziLE0he9vavgR4OJFXWGSwqFenJtWoV92d/EINi7eUTQfiWxM74eJkRVxCBj/+caxMjvF32NlbMu/Hkbi42hAXm8Z7b68n+b/IIb6KjTk9BjfhuxXj2XT2I2bOe4Uu/Rti71SFwgINNy6EsnbxcT59fRVDWn7F+F4/MP+jrWxZdoaLJ+4THZ6EpsiwQ9P/Sk52PmEP4jhz+A6rfjrKZ1NWM6L9dwxr+y2fT1nDluVnCL4VjVajw8nVhk596zNz7itsPvsx3/wxlj7Dm+PoUj7dfeXB9avhvDt9HWmpOVT1d+KnxaNxc5fmpWQI8guK+OSbXaSm5eDr7cD7U7sZ3Lm8sEjDrKUH0Wh1tG1Y1SCeXYIgMG/HaTRaHW1q+dK2tnyT0xLi0jNZfykIgHe6ttarru1GbBznI6JQK5VMbi7fgX9JkCieBteog4OZdMuQy0+ieJD+BDOVEUP9pQu2zRGiSOztUQ9Loxc/vAiCwIF4sUSkh0sLyccpLS/HqG49GDlyJPHx8Rw9epSioiLGjh3LpEmT2LBhwz+umzhxIl9++eXT/zY3/0++X6vV0qtXL1xcXLhw4QLx8fGMHj0aIyMjvvlGnr9Ha6fqXHwcxcmEB0yq1l7SGl8rO2rbOnMvLZGjMQ8ZKqOLY1D12pyJjmDXo/u801jeSIkGbq5Ud7DnYXIKu+8HM1pm8SRA77oBLDx8jviMLI4/CKVbHf2erhQKBa93b8Y7y/ay8XQQozs0KlV9Q8me745oz5jZ6zl0MZghnesT6G/YlEMVS1M+ebsXb326iUMn7tGsoR+d2kjznDEEzs7WLPhpFDOmryU2JpW331zL/B9G4upmU27nUB5Y21rQoVc9OvSqhyAIRIY9IehSGCG3Ywi5E0NcVAqxEcnERiT/aZ1KrcTF3RYHZ2vsHKtg62BZ/GcVzMyNMTE1evoyMlGj0wpoNVo0Gi2aIi1FhVqyM/PISMshMy2XjPRcMlKzSYhJIyEmlYy05z8oKRQK3H3sqVXfi8DGvgQ28cWlHAVIRXD8yF3mfbsXrVZHg4Y+fPH1YCwsTMrt+IIg8N3PhwgOTcC6ihnffjwA8zKYVbls1yVCo5OxqWLGx2O7GETYnboTzvkHERipVLw/sHRpy0XHLlCo0dLU14O21X302mNxcbSrf+2aeFjLezAISU3iRFQ4CmBSPXkpvFXF0a4BvnWwNpYWRUzMy+BkopgtGuotrRnhfmYEUbkJmCiN6OjcCG1u+ZQu/CuF14MHDzh06BBXr16lcWPxH3TRokX07NmT77//Hje3v7+pmpub4+Li8tyfHTlyhPv373Ps2DGcnZ2pX78+c+bMYebMmXzxxRcYG0v/8rZ2qsb3j49zPyOO+Lx0XM1sJK3r4VWTe2mJ7Iu6L0t4dfURa7WiMjO4lhD7tOBeCgqFgqH1Aplz/BSbb93h1Qb1ZF9ETIzUvNIkkCWnr7D24k29hRdAh8Cq1HB3JCQ2ibWnbpTKrbmEmr7O9G5dm71n77Fw/SmWfzbc4J1N9Wp7MGpwc9ZsuciC345Qq7orruXkUQTg7GLNgp9f5f131hMXm8bbb67mu++H4+snb57avwWFQoGPvzM+/v+xVchMzyXkTjQP78YS8ziZmIgkosOTyc8rJDYyhdhIeXNN5WBta46Lhx0+1Z2pGuCGf01XfKu7YFaOoqMiEQSB9WvOs2q5WFPVvmMtPvi4D8bG5XubWb35IifOBaNSKZnzUT/cXGwMfoxbD2NZs18UBx+N6YydAQr2cwuKmLfjFACjOzbE20l/gR4cn8SeW2K2ZUa3NnqJwlvxCZwOj0ClUDCleVPZ60uiXT38quNjLf3vEpWdxrFiW6UxNaRH2bZFXUMr6Ghk50M1K2lWKwfjxQaGto4NsFCbkUml8PpbLl68iI2NzVPRBdC5c2eUSiWXL19mwIABf7t2/fr1rFu3DhcXF/r06cNnn332NOp18eJFAgMDcXb+zz9at27dmDJlCvfu3aNBg/9fI1BQUEBBwX/GnmRmiikeOxNLGth5cSM1khPxDxjpJy2M2curJt/fOsXFxEiS8rJxNJOWUzczMqKHX3W2hdxjW8g9WcILxCeaeafPEpKUzM24eBq6y48IDW9Wj+XnrnEjMo7bMQnU9Xi+wH0RYtSrOe8u38v6UzcY2a4BtgaonZgyuDUnrj7iXngCe8/epV87aTUAchgztAXXb0VwLySeLxfsZdE3w8tl/lwJzi7W/LDoVWbO2EjE4yTeeXMtX819hTqBL/ewZENhZWNOkzY1aNLmP2kfQRBITswkLjKF1KQsUpOznv6ZnpJNfl4RhflF5OcXUZBfRFFBEUqlEpWRCrVaiUqtwshIRRVrM6xsLLCyNcfKRnw5u9vi6mGLi6fdv2JUT1mRl1fI/O/2ceakeLMfOKQpk6d2NvjDzYs4evo+KzaeB+DdyZ2pX9vwn/vsvAI+X3IQnSDQo2VNOjSuZpB9lxy6SFxqJq62VZjQVX/7CEEQmHfwNIIA3etUJ1DP6/DCs+L72L92TbxtbWStjc7MYE+oGH2aVE9einL5gyvoBIF2rn74W0trxCjUatgaKQq9oT7SRGJmUQ6nk4IA6OlafmlG+JcKr4SEBJyc/vwUr1arsbOzIyHh772kRowYgbe3N25ubty+fZuZM2cSEhLCjh07nu77rOgCnv733+377bffMnv27Of+rLNLbW6kRnIs4Z5k4eVdxZb69m4EpcSxP+qBLMU/uEYdtoXcY19YMLNadcDcSHqEztrUlD41A9h25x7rbt7SS3g5WVnSu24Au27eZ9W56ywc1kv2HiV0rFuVAA8ngmOesOr4Vd7p11bvvUpwsLFgwoAW/LTxNIu3nqN9I3+sDSDonkWtVvH5jD6Mf2c190Li+X31ad4c39Ggx3gR9g5VWLjoVT77cAv37sbwwTsb+PzLgTRvaZgbxL8NhUKBo4v1f1UN1ctEYmIGn3+8lbBHiajVSqa9051efQxfyP4i7jyI4bufDwEwrH8T+nSVXhskh+/XniQ+ORNXByveH22Y73ZIbBJri6d2fDSkI+al8AE78/Axl8KjMVKpeLdra732uBQVzfmIKIyUSqa1ai57/e9BV9DodLR296a+s6vkdan5uU8tJCbWlH7cw/F3SCvMwdnUio4u0iwrjiVepVBXhJ+FGzWtfCQfyxC8VMX1H3744f8rfv/rKzhYv/E2AJMmTaJbt24EBgYycuRI1qxZw86dOwkL03/sykcffURGRsbTV3T0f2YNdnIVPwA3U6NIzpfeTdfXR3SD3xshr1C+masHXlbW5BQVcTBc/gihkfXFtuWDIY9IyZU/OBtgTCvRb+XIvUdEp6brtQeIN8uSFOOmM7cM4usFMLRzffzc7UnPymPxlnMG2fOvuDpb89H0HgBs2XOdE+f0/8zqi5WVGXMXjqBZC38KCzV8/slW9u+9We7nUcl/N3duRzN14grCHiViY2PO/B9HVYjoiolP4+NvdlGk0dKmebUyGX4NcPRyCAfO30epUPDl6z2wNCt9Glmr0zFn0zG0OoEu9avRro7+BfUarY75h8QGoldb1MfDTv7DhiAIT6NdQ+sFyq7tSsjOYmuw2N0+rZE80bbu0XXytRrq2LrQwtlb8vmufyx2lg71aYqR8sUZBkEQ2B8n/h17ubUyeOPFi3iphNeMGTN48ODBP778/PxwcXHhyZM/2zRoNBpSU1P/tn7reTRrJoZzQ0PFgdYuLi4kJv7ZJbvkv/9uXxMTE6ysrP70KsHFzJo6Nh4ICBxPkC6iennVRKlQcDMllsgs6fYQCoWCwTXEDsUtwXckrysh0NWFQBdnirRatuhpLVHdxYHW1bzRCcJTt2R9aV3Lh3o+ruQXafjj8JVS7VWCWq1i5mudANh1+g43gmMMsu9fadO8GiMGiiHvuYsOEVYBzvKmpkbM/nrw0/FCP8w/wK8/H0Gr+d8cxVOJ4RAEge1brvD+2+tIT8+lajVnFv8xjsC65Z/STk7NZsasrWRk5hHg78Jn7/YqkxRnXFIG360SO5bH9GlKveqGsR7Ycu42dyITsDAx5oNB7Uu119ZrdwhPSsXG3JRJ7eTXZQGcCn/Mjdh4TNVq3mghf4/fg65SqNPS1NWDZm7SPw95miLWPhTvGRNrNpMshm6mRfEgIw4TpZqBEr27bqY/JCYvCTOVCR2dpJuzGoqXSng5OjoSEBDwjy9jY2NatGhBeno616//58Z+4sQJdDrdUzElhaCgIABcXcVQaIsWLbhz586fRN3Ro0exsrKiVi3pjrvP0rV4QOeROOlCxtHMklbOPgDsipAngAbXqI1SoeByfAzh6fJdvl9tKIbn19+8hUan3w16Ylvxy7rj+j2eZOofqVIoFLxZPBh2+4U7RCWl673XszSo4UH/4vqur1ccIb+wbAoqJ4xqQ6O6XuTlF/HJtzvJzCp/jym1WsUHH/fhtXFiqnbHtqt89MEmMjNfLr+rSv49ZGbm8fnHW/ntl6NoNDradajJj7+MLrdh18+SlZ3Pe19sJT4xA3cXG777bKBBxvX8lcIiDR8v3kdWbgF1qrowoZ/89NvziE/N5Oe9YuR9ep9WOFnL88l6lvTcfH4+JhaLv9mxBVZm8msOtTod80+L5zO6YX2cLOWdT2JONhseiKnC6Y3k1U1tDbtFSkEunhY29PCqKXnd2vDiyJV7PWyNpVlW7I4Vo4KdnZtgri7/2syXSnhJpWbNmnTv3p2JEydy5coVzp8/z5tvvsmwYcOedjTGxsYSEBDAlStipCQsLIw5c+Zw/fp1IiIi2LNnD6NHj6Zt27bUrSum2Lp27UqtWrV49dVXuXXrFocPH+bTTz9l6tSpmJjoF1Lu6iZGoK6nRvIkX7q30gBfURjsfHxH1igfN0sr2nn6ALD5gfyoV6+AGtiZm5GQlc3RR6Gy1wM09nGnobcbRVotK0sZ9Wpa3ZNWNX3Q6HT8tMdwHlzThrbBwcaC6MR0lu+6ZLB9n0WtUvLF+31xdbYmLiGDL+bvNfiwbikoFApeHdOGWXMGYWpqxI1rj3nz9ZX/yvmOlVQs9+/GMHn8Mi6ef4SRkYppb3fj0y8GYFYGdg0vIr+giA+/2kF4ZDJ2thYsmD0EOxvpXlFy+HnzGe4/TsTKwpRvpvY2SMOMIAh8veUEuQVF1Pdz45XWpatJW3T8Ahl5+VRztueVJvq53e+5H8zD5BSsTEx4XQ/frt9uXqFQq6WJizutZAzDLtJp+SNYtK6YWKsZaomGqdE5qZxMEEs5pNZRx+clcznlHgB93dtIPkdD8q8UXiB2JwYEBNCpUyd69uxJ69atWbp06dOfFxUVERISQm5xrZKxsTHHjh2ja9euBAQEMGPGDAYNGsTevXufrlGpVOzbtw+VSkWLFi0YNWoUo0eP/pPvl1xczWyob+uFgCAr6tXVszrmaiOistO5niwvHTa8pvgF3hZyl0KtPONIE7Wa4fXEL+2a60Gy1pagUCiY3F6MPG6+epuUbP3qxUp4p18blAoFx26FcjPcMCN5qliYPk05rjt4jeCIshnEbG1lxjcfD8DM1IhrtyL5fdWpMjmOFNq0C+CnX1/D2cWauNg0pk1exZlT5V9/Vsm/D51OYPPGi7wzbS1PEjNxd7fl59/G0G9g43KvjwHQaLTMmreHOw9isbQwYcEXg8vENgLg+NWHbDkaBMAXk7rjYm/1zwsksv9aMGfvP8ZIpeKL4V1KlR59EP+EzVfEsTef9Oqg1yDsAo2GH8+JZqKTmzfB2lReJOjZaNfbMr0k90XeJzYnA3tTcwb7SheNGx5fRECglWM1/KtIs5DYE3cOAYFGtgF4mUtbY2j+tcLLzs6ODRs2kJWVRUZGBitWrMDymbCoj48PgiDQvn17ADw9PTl9+jQpKSnk5+fz6NEj5s2b96eaLABvb28OHDhAbm4uSUlJfP/996hlzJd6Ht2KRxcciJU+RNpcbfx0hNCOcHmRq47efjiZW5CSn8eRx/KL7EfUr4taqeRqTCx3E/QTJK38vQl0dya/SMPKc6WbkVjNzYH+zcWU7fwdp9Hp5A/zfh7tGvrTuWl1tDqBL5cdpkhTNu7mVX0c+eit/xTb7zl8q0yOI+lc/J1ZvHQsdet7kZtbyJefb+fHBQcp+JfNPKyk/IiLTWPG9LX88dsJtFodHTrV4tdl46lWXT+bgtKi1er46ocDXLwWjomxmrmfDaSqT9l41UXEpfLVsiMAjO7VhNb19S98f5bE9Gy+23YSgNe7N8PX2U7vvXQ6gTl7Toj2FoHVaeqnX53d2hu3iM3MxNnSktEN5TdILL5x6Wm0q6WMaJdOEPj9vij4xtZoiqlaWqo4ozCXndFiJ+goP2lej3naAg7HixmOfhUU7YJ/sfD6N9HNrQ4qhZJ7GbFEZEtP7wzyEwXbvsj75Gmk3xjVSiXDaopr192Xf5N3rmJJr+L5jX9c0U80KRQKpnQQ6yA2Xr5V6qjX1F4tsTAx5l5UIvuuyh+L9He892pHbKqYERqdzIo9ZZNyBGjfsgZjh4sXh4W/H+XCVf07aUuLjY0F8xaOYOgIMTS/b/cNpk5aScTjytRjJf9BpxPYvfMak8b9wZ3b0ZiaGfHO+z35+PP+5epE/yxarY5vfz7IiXPBqNVK5nzYj8Ca8jwLpZKbX8jMRXvIyS+kYYAHkwe1Msi+giDwxYYjZOUVUNvLmTGdSzeYeceNuwRFx2NubMQHPfTr5kzPy+fXYpf6t1u3wNRIXrAhJiuDjQ/EwMK7TeR1CR6ODuFRRjJVjEwYVU36EO7NkVfI0xZSvYozLRykDdE+knCZHG0+HmaONLGTXkdmaCqFVzlgb2JJS0d/APbFShdCzZy88bSwIVtTKHtw9rCadVEqFFyKi+ZhavKLF/yFiU3Fi8HBkEdEpafLXg/QroYvge7O5BVpWH62dFEvBysLJnUX05c/7z1PTr5hBlHbWZnzwWgx5bhq7xXuh/+9D1xpGTO0JT071UGnE/hi/l7uP4wvs2O9CLVaxcTJHZm7YDi2dhZEPE5i6qQV7N97U1ZNYSX/nSQmZDBzxgYW/XCY/Lwi6tb3YunKifTq06BCUosgiq7vfj7IkVP3USkVzHqvD80bGSYC9VcEQeDrFUd5HJeKg40FX03ppVf67nlsPX+bC8GRmBip+PrV7qUagp2Wk8eCw2Ix/LROLXG20q84/5cLl8gsKKCGowMD68hvJFt0/RJFOh2t3L1oISPaJQgCv94Ti+PH1GiMlbG09GaetpANj8Uo2Tj/tpI+k1pBx86YMwD0d2+HUlFx8qdSeJUTvdzFuqv9MbfQCdIKrJUKBUOqivnuzWFBso7nZmlFZ2/xKWDNXfn+TQFOjrTxFW0hll/Vb1i1QqFgaicxqrLpyi2SsnL02qeEEW3r4+lgTVJmDsuOGMZeAqBz0+p0bVYDrU7g8yUHySujtJtCoeC9N7rStIHP08Lg6DjpdiFlQaMmfixdMYFGTfwoKNDww/wDfP7xVpKTpfvOVfLfg1ajY+f2q0wcs5Sb1yMwMVEzdXpXvv9xFG5uFTdjUqvVMfeXQxx+RnS1a6H/WLIXsf7gdY5eDkGlUvLt1N44GKhoPyopnYW7xCaht/q0LlWKEWDB4bNk5OVTw8WBkc3r67VHeEoq626KAYGPO7RFJbGw/en69FS2hYj1y+82kWfYeiI2lHtpiZirjWSZhe+OvklaYS7u5rZ0KXYOeBGXU+4Rn5+MpdqcLi7yGwcMSaXwKifauwRgoTYhLi+dm6lRktcN8hMjV1eTognNkBe5eq2OmKff8fA+GQX5stYCTCqOem27c5fkHP1EU5tqPtTzLPbiOlM6sWRspOa9AWIofc3J60Q8MZxoeX90R5xsLYlKSGPBupMG2/evqNUqvvygH9X8nEjPyGXGrK0kpxjGHFZfbO0s+Xb+MCZO7ohareTi+UeMH72Eg/uCKqNf/0PcvxfLG6+vYPFPR8jNLaR2HQ+WrJjAgMFNyn30z7NotDq+/vEAh07cQ6VU8Pl7fWjfqsaLF+rJuaBwFm0RIyPvDG9nML8ujVbHx2sOkldYRGN/D4a3LZ3R7LXHMey4IXbnfdano94RuW9OnkGj09Ghqi+tfKSZlj7L/Ctn0QoCnbz9aOQifeKJIAj8eEd8n1+t3hhbE2nzLot0WlaHFVte+LVCLcEwFWB7jHhd7+naAlNVxc5PrRRe5YSZypiurqK1xO4Y6REoV3MrOrqJacqNofIiVy3dvahh50Cupkgva4nmXp7Uc3WhQKNl5TX9XM8VCgXTO4u1TZuv3CE2LUOvfUpoV8eP1rV80Gh1fLftpMGEgbWlGV+83h2FAvacucvRyyEG2fd5mJsbM3/WYNxdbEh4ksF7s7eSlS1fGBsSpVLB0BEt+PWP8dQIcCUnu4AF8/bzwbsbiI9Lr9Bzq6RsycjIZeH8/UyfsoqwR4lYWpry1ozuLFz0Kh6e9hV6bhqNljkL9nHszANUKiWz3utDhzIUXWExyXz22wEEAQa0D2RI5/oG23vZkcvciUygipkJX43qVioxW6jR8MWe4wAMaRxIQ2/9xOHJsHBOhT/GSKnkkw7y68NuJMZxMPwRSoWCD5rJK1Y/EvOQe2mJWKiNmRgg3X/zYOxt4vLSsTexpL+ntJqw4MxI7maEo1aoKrSovoRK4VWO9PUUn3COxN0lV1Pwgt/+DyOKCw63h98hX0aRvUKhYFyg6Mq7+u4N2Yaoimem0q+7eYuMfP3EQYuqXjTz86RIq2XR8Yt67fHsOc0c1AEjlYqLwZEcC5Lftfl3NK7pxZje4gXgm5VHiU0qnUj8J+xsin2HbC0Ij0zmvS+2kZMr/TNRVvhVdeLnX8cwaUonjI3V3LwewcQxS9m84SJFRWXT9VlJxaDV6Ni98xpjR/3Ogb1BAHTrUZeV6yfTp18jVAaqadKXgoIiPv1uNyfPh6BWK/nyg75lGulKz8pjxo+7yckvpFGAB++/2tFg9Wy3Hsex9LBYvP7JKx1xtSudJcWS01cIT0rF3sKcd7vpN4+xUKvl6xOnARjTuAE+dvJSyYIg8N0lMWI1qHptatg5Sl6reybaNbZGE+xMpUW7tIKO5aHFUTLflpiqpHVAlkS7Ojg1xMHERvJ5lhWVwqscaWDrhae5HXnaQo7FS+/Ma+Pii7uFNZlF+eyPeiDrmP2qBWBnakZsdhaH9bCW6OjvR3UHe3IKC1l7I0j2+hJmFF8c9t56wIP4Jy/47X/Gy9GGscWdQHN3nCIrz3CCZWL/5gT6u5KTV8hnvx1AU0YWEwBuLjYsnD0EqyqmPHgUzwdfbic31zBNA6VBpVbyyvDmLF05kbr1vMjPL+KP308wccxSLl/Uz1S3kpcHQRA4fzaEiWOWsuiHw2Rm5OHj68gPi17l/Y/6YGtbNiakcsjKzue92du4cDUMY2M1X380gDbNy27Ie2GRhg9+3kNcUgbujtZ8O62PQUxSATJz8/lw9UG0OoGejQLo0SigVPs9TEjmjzNXAfikTwes9XCoB1h97SYRaek4WJjzRgvpEacSjkeGcyU+BhOVmneaSLNzKOFg1ANC0pOoYmTC+JrSxxIdj79PRE4yVYxMecVH2rq4vGTOJYk1bAM9Osg6z7KiUniVIwqFgn7FUa9d0dIL1lVKJcP9xXXrHskrdDdVGzGqtljYv/TWVdmpOeUzUa+V126QVaCfyKnj7kKPwOoIAsw7eKbUKcLxXZri5WhDUkYOPxrQ0V6tVjFnck8szU24GxbPr9vKZpB2CX7ejiyY/QqWFibceRDL+19ueynEF4CHpx3f/zSKDz7qg42tBTHRqXwyczMfvb+RqEj5nbKVVDz378XyzrS1zPpkG1FRKVhbmzPt7W78vnw8gfWkd6OVJckp2Uz7eCO37sVgYW7M918MpkXjsulehP90MAY9jMXCzJgF7/THxtLMYHvP2nCUuNRMPOyt+eSVjqXar0ir5eMdh9FodXSqWZVutfUTowlZ2Sy6INrnvN+2NVVkTmYp0mr55pIYLRsb2BA3S+kRPI1Ox8LbYtRqfEBTrI2lvdc6Qccfj04BMMKnORZqaee8Nfo4OgSa2NXEz1J6DVpZUim8ypm+Hg1RouB6agQR2dJvXq9UrYexUsWtlDhupcTJOuartRtgrFJx60kCVxPkO7/3DKiOn50tGfkFrL2hv/nnu11bY6xWcTk8mtMhj/XeB8DUWM3nwzoDsO38Ha6HGm7YtZujNZ+N7wrAuoPXOXW9bKM8Nao6s/AlFV9KpYKuPeqyesMUXhneHLVaydXL4Uwc8wc/LjhY2f34LyEkOI5PP9zM9CmruHs7GhMTNSNebcnqjVPoN7CxwaI7pSU6NpU3PtzwdAzQom+GU7922Q7eXrLjAgcvPEClVPDdm33wczdcXduGM0GcuB2KWqVk3tieWJqVrqh7+dlr3I97gpWZCZ/37aR3KvS7k2fILSqiobsrA/Swj9j04Dbh6anYmZrxRgN50bKdj+/wOCsVOxMzxgVIj3adSgzmYVYiFmoTRvlKi7ClFGRwNEFs6hrm1UXWeZYllcKrnHE2s6KVk/iUsjNa+hxDB1MLehYPDl33UN78Q0dzCwZVF1tul966KmstiBG3qcWh6BVXr5NdoJ8ocLe15tUWYuTu+8NnKZI5zuivNKnmyaCWYsPC7E3HKCjSlGq/Z+nQuBrDu4m1dbOXHiIyXv7AcTkEVHP5f+LrZaj5KsHCwoRJUzqxbPXrtGhVDa1Wx77dNxg97FeW/nacjPTSGeRWUjaUCK6pk1Zy6UIoSqWC7j3rsXrDFMZN7IClZfkPCP477ofE8caHG0h4koG7qw2/zh2Bv2/ZONKXsOPkbVbsEWuvPhzTmWZ15Hf1/R33ohJYuEuM7Lzbvy21vUrn9P8oMZlfT4pRqo97dcCxin4p4QuRUewLDkGpUPBF544oZYq3zIICfrgmDuN+p3FLrGREywq0Gn66I2YoJtdqiaWRtLWCILDk4SlAjHZZSYyS7Yg5RZGgpbaVH3Wsyy5qKpdK4VUBDPQSC973RN+kSCddLLxaXVy3N/I+yfny7B0m1GuMAjgWEUZoWoqstQC9a9bA19aW9Px8Vl/Xr8MRYFK7ptiamxGelPp0tlhpeLtvGxytLIh8ksavB0pXuP9Xpr3ShgY13MnJL+T9n/aQbcBasufxV/H19qebSUsvnfeZofHwtGPOt6+w8OdXqR3oQWGhhi0bLzFq6GJW/HGK9JfsfP8XEQSBG9cf89H7G/8kuLp0C2TF2sm892FvHBwNM2/QUBw/84Dpn24mIzOPGlWd+fW7Ebg525TpMU9ee8S81WJn4MT+LejXLtBge2fm5vP+yv1otDo61vVnRNv6pdqvSKvlo+1iirFDgB996ulXJ1ag0fD5EfHvPLJBPWo5yxe2i29eIjU/j6o2dgyrKW8Y98bQm8TlZuJsZinLpf5k4gOCM+MxVxlLHg+UWZTD/nhRIA736izrPMuaSuFVAbRxqoGjSRVSC3M4niC9WL6+vRuBdq4U6rRskmktUdXGji4+oi3Fbzfl+2mplEqmtxJHAP1x5RppeXmy9wCoYmrCtM6iqeovJy6SnqvfPiVYmZvy6VDReX7NievcjjCcG7xareLrN3rjZGtJRHwqn/9+0GBzIv+OgGou/DBnKNZWZoSEJTL1o43EJ5Zdd6W+1K3vxY+/jObruUPxr+ZMXl4hG9aeZ+SQX/hp4UFiY8o2QljJ/6ewUMPhg7d4fdwyPnhnA1cvh6NU/UdwzfykLx6epTPsNDSCILBi43lmL9hHYaGGlk2q8tPXw7A1kGHp33H9QTSf/X4AnSDQr10dJvRvbrC9dTqBT9cdJjYlE3d7K2aP6FLq7silp688TTHOKkWK8deLV4hIS8fJwoJ328griAeIyEhjxW0x4/Jxi3ayXPezigr45a5YMzs9sI3kmYxaQcfiEFEsjvBtjo2xtA7InTGnydMW4G/pQWMJ44F0go5HmWVnI/QslcKrAjBSqp5GvbZGSBdBCoWCscXuvuse3aBQZqquJBe/O/QBMVnyb+a9atagppMj2YWFLL0sP2VZwpDGgdRwcSAzr6DU9hIA7QOr0rNxADpB4PP1RwyacnSwsWDeW30xMVJxLiicJTsuGGzvv6Pkid/FyYqYuDTemLmesIiXb46iQqGgWQt/fls2ni++GkT1AFcKCjTs3XWDMSN/Y/Zn23lwX35NYSXySE7OYu2qs4x85Rfmf7uP8LAnmJoa0W9AI1atm/JSCi4Q7SJmf7+PVZvE79TQ/o35+qP+mJsZl+lxH0Y+4b2fdlNYpKVdw6rMfK2zQccgLT96hdN3wzFWq1gwrjdW5qVL596NTWDJKfE+8XmfTjjpORboUXLK0+v25507yC6oB5hz4SRFOh1tPX3o6CUvdbfk/kVSC/Lws7JjiF89yeuOxN0lNOsJVdSmvOYnzTojW5PLrlgxzTvcS5rwvZF2lUWhCyWfV2moFF4VxCCvxqgUSq6lRhCalSh5XU+vmjiZWfIkL5v9UfKGRdd3dqWVuxcanY6lQfKFk1KhePqUtOZGEAlZ+jmuq5RKPu4ltvVuvnKb4PjSi4oPB3XAvoo5jxNTWbTvfKn3e5Zavi58Mk4stl+593KZmquW4Olux6/fjcTX24GUtBymfbyR2/cN10BgSBQKBa3bBrB4yVi+/2kUTZtXRRDg7Olgpk1exdRJKzi4L4i8l6Rh4L8BrUbHxfMP+fzjrYwYsojVK86QlpqDo2MVJk7uyMbt05j2Tnfc3CtuzM8/kZSSxfRPNnPiXDAqlZIP3uzG1LEdytw7LDoxjekLdpCTV0iDGu4GncEIcP5+BIsPiELyo8EdqOnpXKr9cguLmLn1EBqdju51qtMjUL8xSTpB4LMjxyjS6ehY1Y9u1f1l73EyMpzjkeGolUo+b9lBllhNyM1iRbAoHj+o1wG1xLFEGp2WXx+eAGB01VaSa7v2xJ4jV5uPt7kLLR1enEIWBIGDCfsl7W0IKoVXBeFsZk07Z9EMcIuMqJexSvW01uuPB5dl2zJMbSiG1DcF3yEhW35HWns/Xxp7uFGg0fLzef2jVU18Pehepzo6QeDLPcdLncKztjBl1nCxa2XtyRtcCoks1X5/pXvLmozqKXqHfbnsMPfCyn7AtYO9Jb98M5zAmu5k5xTw7udbOH5Gno9beaJQKKjfwJtv5g3jj1UT6dajLmq1kpDgeBbM288rA37ih/kHCH4QVzmKSE8ehz9h2ZKTjBiyiM8+2sqFcw/RaQXq1PXkk1n9Wbt5KkNHtKBKFcPYIZQFN25HMeGdNTx4FI9VFVMWzh5C7y7yaoX0ITYpgze+20ZqRi7+ng58/1Y/TIzVBts/4kkaM1eLrveDWwUysGXpa8bmHjjN4+Q0nK0sS9XFuDHoNtdi4jA3MuKLLvJEE0C+RsMX50UBNDawIf628jo/F9w6Rb5WQ2NHD7p4SBePe2KCiMpJwcbInJG+LSStydHksyPmFCB2MkoZhn038zbRuZEYK8s22lpCpfCqQIb5iCJoT0wQWUXSXeFH+jfEXG1EcPoTziXIs2Vo4eZJU1cPCrVafg+SX+ulUCj4oJ04cmHbnXs8TNbfz2lmz3aYGxsRFB3PtuvyRxr9lXZ1/BjcSrzYfbr2MOk5pasf+ytTh7SmVT1fCgo1vPvDLmIS0w26//OoYmnKgtlDaN3Mn8IiLbMX7GPFhnNlXmtWWnz9nHj/oz5s3D6diZM74u5hR15eIfv33uTN11cy7tUlrFl5hugo+Y0e/2vERKeybvU5Jry2lIlj/mDT+gukpGRjbW3O4FeasXzNJH78ZTQdOtV+aWwhnocgCGzYcZl3Z20hLSOXqj6OLJk/igaBZe8flpCSyRvfbSUxNQsfVzsWvT+IKhaG6+jMzivg7T/2kJVXQH1fV2YObF/qPY/ee8TWa3dQKODbQd2w0TNlGZeZxbxTYifhe21b4WYlv7Hij1tXicxMx8ncgrcayasNu5Maz/bH4vX9kwbS07oF2iJ+L452ja/WVrJv157Ys2RpcvEwc6Sd04vnYQqCwIG4PQC0cmgr6RilpVJ4VSBN7X2pWsWJPG0hu2UYqtqYmDG0an0Alty/JOuYCoWCtxuLX5wND27rFfVq6O5Gt+r+6ASB+af1Nxh1trLkreI5jgsPnyM5u/Qdce8NaIevsx1JmTl8sfGoQSMrKqWSr6b0ooa3E2lZeby1YAfpWYYVd8/D1MSIOTP7May/WN+3avNFvpi/h/wC6eOjKgpbWwuGjmjBqvWT+f6nUXTsXBsjYxXRUSmsWXmWsaN+Z/L4ZWzecJGY6EoRBuKN4NHDBNatPsuUCcsZM/I3Vi0/TcTjJIyMVLRoVY3PvxzEph3TmfxmZ7x9pI9qqSiycwr49Ntd/L76DDqdQPeOtflt3kjcXcs+FfokNYs3vttKfHImns42LJ45GHtrwxXva3U6PlpzkMeJqThZW7JgfB+MjUoXSYtPz+KzXUcBGN+mCc2r6idOBUFg1pHj5BR7do1sIL22qoTozAx+uVE87qhFeyyNpUeFBEHgmxtiYXw/n9rUc5BuYLo58gqJ+Zk4m1ox1Fua31eOJv/peKCR3t1QSYh2PcwKJiwnFLXCiA5O5eP1VSm8KhCFQsHw4qjXpojL6ATpsxTHBTRFrVByITGC2yny0l7PRr1+0yPqBfBe29aoFApOhj3mcpT+tUfDm9WnlpsTmfkFzDt4Ru99SjAzNuLb0T1Qq5ScvB3Gtgulj6Q9i4WZMT+82x9XByuiE9OZ8eOuchFAKpWSN8a258Np3VGrlZy68JA3P9pIYlJmmR/bEJSkIT/+vD/bdr/DzE/60rRZVVQqJaGPEvnj9xOMGfk7rw3/lV9/PsK1K+EUFhiuSeJlJysrj/NnQ1g4fz/DBy9iyoTlrFp+hkcPE1CqFDRu6sf7H/Vm6663mfPtK7RtH4CR0csb3XqWkLBEJs5Yw9nLoRipVcyY0oWPpvfA1ERaV1tpSE7PZuq8bcQ8ycDN0ZpfZw7B0Va/4vS/Y/H+C5y59xgTIxU/TuyDg1XpRJ1Wp+PDbYfIzCsg0N2ZaZ2kpdiex677DzgZ/hgjlYpvundBJbG26llmXzhBgVZDczdP+vrLs7E4EvOQy0+iMFGpea9ee8nrsovyWf5IvB9Mrt4RE4kzGXfFni6OdjnRzkmaXcWB+L0AtHZoi42xjeRzLA0KobLYwqBkZmZibW1NRkYGVhJCurmaQroen09WUT4/NR5Be5cXt72WMOPCHnZG3KW7Zw1+bTNI1nleiI1ixN4tGCtVnBw+Hvcq8sPPs46eYP3NW9R2dmLn6BGyjfhKuBubwLDfN6ETBJaMHkCb6j567fMsa05cZ8GuM5gYqVg/YwTV3BxKveezPI5LYcKcTWTlFtC6vh/zDDjb7UXcvh/DJ9/uIiMzDxtrc754rw8N674c417kkpGey9kzwZw5FcztoEg0mv88fJiYqKlVx4O69bwIrOdFzVpumJTDzbo8yMzM486tKG4FRXE7KJKw0ESevRKbmhrRqIkvzVr407J1dWzK2F6hLNDpBDbtusKy9efQaHQ4OVRhzof9qFnNtVyOn5SWzdS524iIT8XZrgpLPn4FN0drgx5jz+V7fLb+CABfv9qd3k2kX7//jsUnLrL4xCXMjY3YPnUU3vY2eu0Tn5VFzxVrySoo4N02LfWax3jkcSiTDu9CrVRyYPBoqttJv44WaDV027+UqOx03qjdUpbw+iX4GH+EnsbHwoHt7d5ErXzxtTWzKIfXLs8hV5vPRzVH016C8ArLfsTc4K9QKlR8XWceRgXGsu7f+lIpvAxMifC6HnOXhu61Ja354cFhVoWdo7G9L8tbjJN8rIfpSXQ/8AcK4HCvSfhbyxMXw/ds5mJcNMMCAvmufTdZawFScnLp9MdKsgsL+a5HVwYHSvv7Po+5B06z+sIN3Gys2D3tVSxMSlfkqNMJTFu6i3P3I/BztmP9eyMwN/BNO+hhLNPmbaOgSEvv1rX5bEJXg7al/xMJTzL45JtdPHr8BKVSwdjhrXh1cHOUyvI5flmQk1PAzeuPuXwpjCuXQklJ/nPXrJGRiuoBrtQIcKNadReq13DBw9O+zDvhSkteXiGhjxIJCY7jYXA8IcHxz/U58/C0o3FTP5q18KdePW+MTQxX+F3eJKVk8c2PB7h+OwqAti2q8f4b3bC2Kp+i//jkTKbO3UrMkwyc7arw24dD8DCwIeuVh9FM+W0HGq2O8V2aML2PNKuDf+JSWBQTVu1AJwjMHdydPvX1E3KCIDB2607ORURSz9WFzSOHSu4kLCGnqJCum1cSm53F5PpN+bC5vPqn3+9fZF7QSZzMLDneezIWRtKu6Yl5mfQ9+SP5uiIWNhpOJ1dpI42Wh+9lS/RxfC3c+LXRe5KK6n96+D33Mu/Q2qEdo33GyQ6c6Mu/95v9knMg/qJk4TXcpzlrwy9wLeUxDzLiqGktLQ9e3caRrh7VORLzkCX3LzK/RR9Z5/he09YM2rWRrSF3mdygKT7W8uot7C3MebNlM747dZbvz5yjW3V/vbxhAKZ1bsmx+6HEpmey6PgFPuzZXq99SlAqFcwZ2Y1X5q4jPDGVrzYf4+tXuxtUGNWv7s43U3vzwc972HfuHlaWprw1rG25iC8XJ2sWzx3Bj0uOceD4XZavP8ed+zF8+m4vbKykGQy+bFhYmNC6bQCt2wYgCAIRj5O4czuaO7eiuB0URUpKNvfuxHDvzn9S26amRvhVdcLL2wEPTzs8vezx8LTD1c0WYwN2rL0InU4gLTWbxMRMoqOSiYxIJipS/DMhPp3nPd56eTtQt74X9ep7U7eeJ/YOVcrtfMuSs5ceMfeXQ2Rm5WNqYsT0CR3p1SWw3B5KohPTmDp3GwkpWbg5WrN45mDcDRzpCk9I4d3le9FodXRrWJ03e7Uq9Z5PMrN5f8tBdILAgIa19RZdAJtu3eFcRCQmahXzenaTLboAfrh6ntjsLNwtrZjeSJ7B7JO8bBbfFW19ZtbvIFl0Afz68Dj5uiLq23rRUWIGKKUgg93Fvl1jfHtJEl3h2WHcy7yDEiU9XHtLPj9DUCm8yoizSbdIL8zGxvjF9QQuZtZ0da3Nwbg7rA2/wDcNBks+zpTaLTkS85BdEXeZHtgGT0sbyWsbubjTwcuXk1GP+eHqBX7q3Evy2hJGN2rA5lt3eZyWxi8XLvNRB/26QsyNjZjVrxOTVu9k7cWbdK9TnfpepZskb1fFnLljejLxl23svxZMfV83Xmkjv7j0n2jToCqfjOvKl8sOs+HQdcxM1Lw+sPQXYSmYmhjx4fQe1K3lwQ9LjnHlZgTj317NZzN6l/lg4bJGoVDg6+eEr58Tffs3QhAE4uPSuXsnmkchCTx6lEDoowTy84q4fy+W+/f+v1GrrZ0F9vaW2DtUwd7BEnt7SywsTbGwMMHCwhQLSxMszI1RG6lQKpWoVOJLqVRQVKSlqEhDYaH4Z0GBhuysfLIy88jMzCMrM4+MjDySkjJ5kphJclLmn9Kkf8XewZIaAW5Ur+FKjZquVK/hirX1v1Mg/x2ZWXksWnaCw6dEf8EaVZ357N3eeHmUn3lrWEwy0+ZvJzk9By8XWxbPHIyznWEFbXJmDlN/3yV2MPq5MWdkt1JHmou0WmZsPkBKTi7VnR34tHcHvfeKTEvn25OiCHmvbWuq2st//28/SWDFHbHh66u2nTGXIZwAvr15nBxNIfXt3ejnU0fyupDMeHZHi1NZZtSS/qC8MeooBboialbxppmdtAjZvvjdADS3b4WjSdnOBP0rlcKrjNAIGg7EX2CEd1dJv/+qXysOxt3hcNwdpgd0wcVM2hNaPXs3Wrv4ci7hMb/du8A3zXrKOs8ZTVtzMuoxe0IfMKl+E2o7yPsAGqtUfNqpHeO37WL19ZsMCqxFdQf96qlaV/OhX/2a7A56wEfbD7N96ijMjUuXHmzk78H0Pq35YfdZ5u44RXV3R+r7lU7Q/ZXebWqTk1/IgnUnWb77MmqVivH9DDeC5EX07BxIDX8XZs3bQ1RsKm9/upmRA5sxZljLf00B9otQKBS4udvi5m5L1+6i55NWqyMuNo3QRwnERKcSHZVCTHQKMdGpFBZqSEvNIS01h9BH0g2KS4NSqcDe3hIPL3u8vB3w8rbH28cRb297bO0MW9D9snH64kN++P0oqem5KJUKhvZvwoQRrcv183c3LJ63F+wgM6cAfw8HFn0wyKDdiwA5+YW8+fsu4lIz8XK04ccJfTEpZQcjwMIj57geGYuFiTE/Du+NmZ7XPY1Ox3v7D5FbVEQzTw9ea/RiO4W/UqTV8sHpw+gEgb7+AXSQ6VB/KTGS3RH3UACzGneVXPsrCALz7x1EQKCrax3q2kp7eIzLS+ZA8UzGMb69JYm1sOxH3M24hRIlPV3lZYoMQaXwKkP2xZ1niGdHjJQvfptr27jTxN6XqymPWRt+nvdrSxdQ0+q05lzCY7aF32ZqnVa4W0gPq9dxcKaPfwB7Q4P57tJp1vYeInltCe38fOnsX5VjoWHMPnqSdcMG651W+KhXey6HRxOZks7CI+dK9eRXwmsdG3E3MoGjQY94b8U+Nr4/Akdrw94Ih3ZpgEaj5adNZ1iy4wJqlZLXektrgTYEVX0cWbrgVX5aepyDJ+6ydtslLl0P55N3euLn/fLbDeiDSqXE08seT68/mzkKgkBmRh7JyVkkJ2WRkpJFSnI2KSnZ5GTnk5NdQE5uATnZBeTmFqDV6tBqBXQ6HVqtDp1WQG2kwthIhZGxWvzTRE0VS1OqWJlhZWVGFSszqliZ4uhohZOzFY5OVjjYV0GlfrnrzQxNWnoOPy49zsnz4jQHbw97Ppzendo1DPtw8yIu3Ylg5qK95BUUUaeqKz+82x9rS8PWkxVptby/cj8PYp5ga2nGr5MHYGuAYxy6+5DV58Xo0jcDu+LjoL/FxpJLV7kZF4+lsTHzenbTq+FpSdBVglOSsDU1Y1arjrLWFum0zLp2GIDh/g2oZy/9c3AqMZirKY8xVqp5u6a0gAXA6ogDaAUdjW0DqG9bTdKa3bE7AGjp0Bon09JNF9CHSuFVRtgaW5FSmMHZpFt0dG4kac04/7ZcTXnMtqhrTKzWXvIw0CZOnrRw9uZiYiSL756XHfX6oGlrDoU/5GxMJKejH9PO01fWeoBPO7XjbEQEl6Nj2PcghD615LUdl2BlZspXA7syYdUONlwKomOAHy39vfXaqwSFQsHsEV0JS0ghPCGV91buZ9mbgzEycBfiyB6N0Wh1LN56jsVbz6FSKp+63ZcH5mbGfPRWD1o08WPBr0d59PgJE99dy4RRrXmlb+OXvgjdUCgUCqxtzLG2Maeqf/lfVP8XEASBQyfv8euKU2Rk5aFSKhgxsBmjh7YwqBu8FA6ev8+Xy4+g1epoWtuLedP7Ym5qWAdynU7giw1HOf8gAlMjNYte74+no02p9w17ksKnO8SuyPFtGtOltjTh8DxuxSew6ILo6/hFl464W8svDg9NS+Hn6+JEklktO2BvJi8dvirkKo8ykrEzMZPVxVik07Dw/iEARvm2wN1cmvh8lBXNqSeiaB3nJ61OKzjzPsFZ91EpVPRy7Sf5HA3J/8aVuALo5ixGO3bGnpZs4tnCoSoBVq7ka4vY+FieMepbgcVu8uG3icpOk7XW08qG0XXEkPQ3F0+j0Un3EyvBw9qaKc3Fv/M3J0+TVVAge48SWvp7M7yZWIv16Y4jZORJd/X/OyxMjflhQl8sTY0JCo9j7vZTpd7zebzWuymvDxRNYX/efIZVe/XzSSsN7VvWYNWiMbRsUpUijZbfVp1m2scbiag0KK3EAIRFPGHaxxv59qeDZGTlUdXHkd+/f5WJr7YpV9ElCAKr9l5h1tJDaLU6ujavwQ/vDjC46BIEgXk7TrHv6gNUSgXzx/Ui0Nul1Ptm5Rfw1sZ95BYW0czXk7c6618bmlVQwNt7D6DR6ehZozr99Hjw1ep0fHDqMIU6LR28fOlXTV5xf1xOJj/dER3yZ9bviI2J9GjghseXicpNxd7EkvH+0uuEVz7eB0AHp0ZUtfR44e8LgsCu2O0AtHFoj72JYW2GpFIpvMqIbq4tMFKoeZgVxd2McElrFAoF4/xFAbUh4hLZMsYINXXyoo2LLxpBx0+3z8o+32kNm2NtYkpIajKbg/UzHZ3YtDE+tjYk5eSy8OwFvfYoYUa3Nnjb25CQmc3s3ccN4kDv42TLN6N7oFDA1vO32XQmqNR7Po/x/Zozob9Y4/XrtnP8suVsuc8mtLe15NtPBvDBm90wNzPmbnAc495exR/rzlLwL3C8r+TlIzungJ+XnWDCO2u4fT8WM1MjJr/Wlj8WvEqNquUbWdRodXy36hi/bhMnZ4zs3ogvX+9p8Cg2wG8HL7Kx+Frx5chutK0tr+bpeWh1Ot7fcpDwpFRcrCz5fmhPvYd1C4LA50eOE52egbuVFXO66TfTceWdG9xIjMPSyJiv23aRvceX14+QqymikaMHg/ykz95MKchm6SPRbf7NGp2xNJI2Gulq6gOup4WgVqh4zaeHpDW3M4IIzwnFSGlMT9e+ks/R0FQKrzLCxtiSzi7iiJeSEQZS6OxaGx8LBzKL8tgSKS9aMqM4tLsr4i6PMpJkrbUxNXs6SmjhlXNk6hGxMlGrmd1FrAlYdyOIW/EJsvcowdzYiHlDeqBSKjh09yF7gwwzHLpdHT+m9xb9duZuP8X5+xEG2fevTBrQkulDxSe3NfuvMm/NiXKfr6hQKOjdpS6rF42lZZOqaDQ61m69xJjpq7gaFFGu51LJvxetVse+o7cZ9cYytu29jlYn0KFVDdYuHs+Igc3KfT5kTl4h7/+0m52nxDmG743qwFvD25WJh92aE9dZckgcl/PxkI4GMUgF+OHIOc48fIypkZpfRvXF3lL/Dtftd++z90EIKoWCH/r0wNpU/kzHsPRU5l8RReynLdvjZikvTXks5iFHYh6iVij5qkl3WbVlPwcfJVtTQG1rd/p7SmsG0Apa/ggTuxL7urfB1ezFkSudoGNn7DYAOjl1KTeX+udRKbzKkIEe7QG4lHKPmNwnktaoFMqnoda14RfI0xZKPl5de1e6elRHAH64LX/8zqha9fCzsSMlP4/FN+WlOkto5eNNv1oBCMDHh45SqNXqtQ9AoIcLUzuI4zLm7DtJTGqG3ns9y9jOjenXrDY6QeD9lft5FKf/oO9/YlTPxnw0pjMKBWw/cYsvlh5Eo9H//dAXZ0crvv1kAHM+7IejvSWxCenMmLWVLxfsIylF/qzOSv53uBoUwYR31zDvl8Okpufi6WbLgtlDmP1BX5wqwHcsLimDiV9t4vytx5gYq5k3vS+vdJHfuSeFHRfvsmCXeB2d3rsVQw1kRbP75n1WnLsOwNcDu1LLTf9oYVhKKrOPiYOk32nTkobu8psaNDodM04cpECroY2HD0MDAmWtzykq5ItrxXVqNZtRw0Z6Z/zd9Jin9hEz6/SU5L8FcDj+MpG5CVRRmzPCS1oh/pXUi8TlxWCuMqebi3zrJENSKbzKEC9zZ5ra1UJAYHvMKcnrerjXxc3MhtTCHLZHXpN1zHfrtkMBHIoO4VZynKy1RioVn7RoB8DK2zeIyJBXK1bCxx3bYWtmSkhSMksvX9VrjxImtmtCQy83cgoKmbF5P4UGEC4KhYLPhnaisb8HOQWFTP19J4np2S9eqAcDOtTly9d7olIpOXQxmPd/3kNeBaT6FAoF7VpUZ80v4xjUuyFKpYJjZx4wYvIyVmw4R26edIFfyX8/oY+fMGPWVmbM2kpYRBKWFiZMHdeelT+PoUl9nwo5pxvB0YyZvYHQmGTsrM35/cMhtGvoXybH2nvlPl9uEodUj+nUmHFdmhhk3+sRsXy+6xgAk9s3o0dgDb33yisqYtrufeQVaWjl7cWkZvqd4683LxP0JJ4qxibMbS9/+saCW6eIy83Ew8Ka6XWku/drBR3f3NmHgEAv93rUs5U29ixHk8eqiAOAOAi7itGLo4VFuqKnnYzdXHpioa7YEVyVwquMecWzEwBHE66QWihtoLGRUsUE/2IBFHaWfK30G3V1G0cGFufX5wadkF1b1NHLj7aePhTqtHx14ZSstSXYm5vzWSfRBmLxhcuEJOkfUVIplcx7pQfWZqbciU3k+8OlH6QNYKRWsXB8H3ycbElMz2bakl3k5JeN+OjWIoD50/tiYqzm/K3HTPl2CykZOWVyrBdhYW7CWxM7sWT+KAJrulNQqGHV5ouMnLKM/cfuoNXKb6yo5L+HqJhUvlywj/HvrOZqUARqtZIhfRqx8feJDO3XBGMDeFbpw/YTt5g6bzvpWXkEeDuxetZIalctm5mPe6/c57P1hxEEeKV1Xd7u29ogrvvRqelM37CXIq2WrrX9ebOj/sOvAWYfO8nD5BQcLcxZ0Fteeq+EW0/i+emaWI87p3Un2SnG60kxrH4oBge+btoTM7V0/7Htkde4lxGLpdqEd2tKH1m3MfIoGUXZeJg50cdNmtA7k3SSlMJkrI1s6Ogk3aqirKgUXmVMHWs/alr5UCRo2BlzWvK6vp71cTOzIbkgW3bU6+3ANhgrVVx6EsWZeGmF/SUoFAo+b9kBtVLJscgwTkbKW19Cn5o16OTvR5FOx4cHj+jVKVmCm40V3w4Sv5jrLgZx9N4jvfd6FmsLUxZPGYBdFXNCYpN4b8U+ikqRGv0nWtf3Y/EHg7G2NOX+40TGfbmRx3EV12VYw9+FX74dzpcf9MXNxZqUtBzmLjrExBlruHgtvNybASqpWGLj0/jmpwOMnraCY2ceIAiIdVy/jGPahI7lNmPxrxRptHy36hhzVx8XOxeb1WDpJ0Nxti+bNOe+qw+eiq4hrery0eCOBhFdmXn5vLFuN2m5edR2c+KbQd1LVZO27c49tt25h1KhYGHvnjhYyI/g5BUV8c6Jg2gFgV5Va8juYizQavjw8n4EYLBfXdq4SrchSinI5ucQMaI4tUZnHEyl/XvG5iWxM1a8j06q2k/S8OxcTe5Tl/q+bgMwUek31s6QVAqvMkahUDDUszMA++LOkVWUK2mdkVL9NOq1IuyMrFovdwtrRlcX/aPmBp1EK1P0+NvaMy5QnOz+xfkT5Gvkp8YUCgVfdumElYkJdxISWXZFnnj8K+0D/BjXWvRD+3TnUaJS0ku1Xwke9tb88no/TI3VXAiO5IsNR8usCL5uNTeWfzYcDydr4pMzmTBnE9ceRJXJsaSgUCho36oGa34Zxxtj22NpYULo4yRmztnOGzM3cDUoolKA/ZcTHZvK3EWHGDV1BYdO3EOnE2jV1J/lP4xm9gd9cXfV38yztCSmZDH52y3sOHkbhQKmDmnNnCk9MTXwsPsS9l19wGfrRNE1uFUgHw/paJCC/UKNlrc27iPsSSpOVSz4ZVS/Uk3kuJ/4hFlHjwMwvVVzWnjrNx7s20unCU9Pxdnckq/bdJYtMH+5e46wzBQcTS34pGEnWWt/fHCErKJ8AqxcecVbeop0WdgeNIKWRrY1aCpxNNChhH3kaLJxMXWlpUMbWedZVlQKr3KgmX0tfCxcydUWPB3kKYVno15bIuR1OE6p3YIqRiYEpz9h+2P59hDTG7XE2dySyMx0fr2pnxeVcxVLPukoisefzl/iYSlSjgBvdWlFAy/Xp/43eYWGqZWq7eXC/LG9UCkV7Lv6gHk7TpWZ4PBysWX5Z8MJ9HclK7eAafN3sPu0fvYdhsLYSM2w/k3Y+PtEhvVvgrGxmnshccyYtZU3P9rItUoB9l/H/ZA4Pv1uF6OmLn+aYm7W0Jcl34/i208GUM2vYo1nL96JYNTna7kTGo+luQnfv92f13o3LbNB27su3ePTdYfQCQKDWgbyyZBOBhFdOp3ApzuPcDk8GnNjI359tT/OVvpPzUjPy+eNXXsp0Ghp7+fLGy2a6bXPicgw1twLAmB+h+7YmMqLaN5NTeD3+6LR6heNu2FtLH391eTH7Im5iQIFnwT2kRS1AriRFsKFFHGo9aSq/SV9FpILkjiWKBb+D/R4BZXi5RihVim8ygGlQslwry4A7Iw9Q45Gmj+XkVLN69XFWqnloWfIkuHrZWtizrTiQscFt06RXSTPHsLS2JhZrcRj/37zCmHpqbLWlzCwTi06VPUVx20cOFyqVJ6RSsXCYb2xszAjJCGJOXvl17D9HW1r+zFnZDcUCth4JohfD1w0yL7Pw9bKnMUzB9O1WQ20Wh1frzjKwvUnK6Tj8Vmsrcx4Y2x7Ni2ZyOA+jTA2UnHnQSzvztrK6++v49T5kMoasH8xOp3AxWvhTP9kE5M/WM+Zi48QBGjZpCqLvxvB/FmDqVmtbOqmpKLV6Viy4zxvL9hBRnY+Ad5OrJ09kjb1S++d9XdsOXuLWRuOPK3p+vQVw4gugB+OnmPfrWDUSiU/De9DLTf9hzFrdTre3nuAmIxMPG2s9a7repKbw/snRZf4cYGNaOvpI2t9oVbL+5f2iilKr5r08JJu1lqo1fDVnT0ADPZuLHkeo0an5bfQnQD0dW+Nj4W0z+nO2K1ohCICqtSinnXZdL/qw79WeKWmpjJy5EisrKywsbFh/PjxZGf/fWdaREQECoXiua+tW7c+/b3n/XzTpk2lPt82jvXxMHMiW5PLvrhzktf1dq+Hr6UDGUV5rA0/L+uYr1ZvhLelLUn5OSy5L19I9PCrTntPXwp1Wj47e0wvkaNQKPi6W2esTU24l/iExRcuy97jWZytLPn+lZ4oFQp23bzP5iu3S7Xfs/RqUpOPBos+ZEsPX2b1iesG2/uvmBobMWdKz6dGq5uO3GTa/O2kZUpLRZclDnaWTJ/QkU1LJjGod0OMjdUEP0rg83l7GPXGcnYeuEl+pQnrv4bsnAK27r3OqKnLmTlnO0F3o1GrlfTsVIc1i8by3acDCazpXtGnSXJ6DtPn72D57ssIAgzsUJc/Ph2Gu5NNmR1zxdGrfL1VtGMY0a6+wdKLAOsu3mT5WbHE4qsBXWhVrXSjz348d5FzEZGYGan5rX8fvfy6dILAjBMHSMnPI8DOgQ+ayU+9Lb53npD0JOxMzPiisbxC9ZVhZ4nIScbexJLpAV0kr9sde4ao3ASsjSwY5d1d0pqw7FCupl5GgYIhnsMkRch0Qvk8/P5rhdfIkSO5d+8eR48eZd++fZw5c4ZJkyb97e97enoSHx//p9fs2bOxtLSkR48/u96uXLnyT7/Xv3//Up+vSqFkmJdY67U95iT5WmkRKLVSxZs1xHVrwy+QUiDd9sBEpeajBqKQWBZ8hZjsdFnnrFAomNOmEyYqNRdio9jx8L6s9SU4WVryZVexBuDXS1e4HhOr1z4lNK/qxTtdxfEa3+w/xbXHMaXa71mGtqnH9N7i3gt3nWHrecMJu7+iUCiYNKAlc6f1wdzUiOvBMYyetZ57YfFldkw5ONhb8tbETmz9YxJjhrbAqoopsQnp/LDkGEPGL+G31aeJjdfPcqSSsudReCLzFx9m4NjfWLTsBDFxaViYGzOsfxM2L53Eh9N74ONVMSNT/srZm2GM+HQNV+9HYWqs5svXe/DhmM5lNoJIEAR+2nOOn/aKD8ETuzblg4HtDZbKPHT3Id8eOAXA211a0beBtHqkv+Pww0f8dkks+fimWxcCnPQbfP970BXOxkRiqlbzS5c+mKrlvb93UuP57Z7YBfllk+7Ym0ov6o/ITmJZqFhq836tHlgZSUtPphRksC6yOELn20eSfYRO0LE1egMALR3a4Gn+YtGbkPeIVeFvSjqn0vKvFF4PHjzg0KFDLFu2jGbNmtG6dWsWLVrEpk2biIt7vneVSqXCxcXlT6+dO3fyyiuvYGn555y7jY3Nn37PVI8ni+fR0bkRrqYOZBTlsDdOevSqk0stalu7k6stZOmjU7KO2cWjOi2cvSnQavjm5nGZZyzOcXyrsdj2/NXFU6Tk6ReR6RVQg/61a6ITBN7dd4jM/NLNXxzXujE9Aquj0el4a+M+YtMMY64KMK5LE8Z0EpsTvtp8nB0X7xps7+fRoXE1Vnw+Ai8XWxJTs5j0zRa2n7j10tRV2dpYMG5Ea7Yue523JnbCxcmajKw8Nu64wvDJy3h31hZOX3xY4anSSiAjM4/t+28w4d01jH9nDXuP3Ca/oAhfLwdmTO7C9hVTeGNsexzLqCtQLvkFRXy36hgzftxNelYe/p4OrPpiJN1bGsYh/nlodTq+3HSMFcdEj8G3+7bmzd6tDCa6LoRGMnPrIQQBhjerx8S2pfMAC36SxPv7DwMwtnFD+ugxhxHganwMC4rd6We36oS/rb2s9fmaIt69sAeNoKOHZwA9vaT/G+kEHV/c3k2hTkNLR3+6u0k3aV0StotcbQEBVbzp6tJU0porqRcJzwnDRGlKP7dBL/x9QRA4mbiMzCJpRuel5V8pvC5evIiNjQ2NGzd++v86d+6MUqnk8mVpqazr168TFBTE+PHj/9/Ppk6dioODA02bNmXFihX/eAMsKCggMzPzT6+/Q6VQMdJbDM1ujT5OnsSol0Kh4K2a4rptkVeJzpFeb6VQKPisURdUCgWHokM4n/BY8toSJtZtTIC9I2n5eXp7ewHM6twBTxtrYjMz+exI6eYvKhQKvhrQldpuTqTl5jF13R5yCgzjw6VQKHi7b2tGtKsPwOyNR9lxoWwL4P3c7Vn1xQjaN/KnSKNl7urjfL7kINl5+g8bNzRmpsYM6t2Qjb9P4JuPB9CskS8KBVwLiuSz73YzZIIYBQuPlDeuqpLSodFouXgtjM/n7mbg2N/4aelxHoYlolYr6dCqBj9/M4xVP4+hX4/6mJsZdoB0aQiOSGT0rPXsOClGlUd0b8SqWSPwc5cnCORQWKRh5qoD7Lh4F6VCwaxhnRnb2TDmqAA3ImOZtn4PRVot3epU4+NepYuipeTkMmnHbnKLimjp7cnM9vp15aXl5zH92H60gkD/ajV5JaCO7D3m3TpFWGYKTmaWfNVUWrqvhC2RV7mZGomZypjPAvtJfk+up4ZwOukmShRMqzZEkrN9gbaAHTFi+VBP196SRgOFZV8mOvc2KkX5+NT9K4VXQkICTk5/LlJUq9XY2dmRkCBtPuDy5cupWbMmLVu2/NP///LLL9myZQtHjx5l0KBBvPHGGyxatOhv9/n222+xtrZ++vL0/OdiwY7OjXAzK456xUqv9Wrm4Ecrx2poBB2Liv1PpBJg48SoaqIVw5zrRynSyYtMGKlUfNe2Kwpg56P7nIzSz9uriokJP/TugUqhYH/wQ3bc1S91WYKZsRGLRvbFwdKch4nJzNx2yGBWEAqFgg8GtmdkO7Egc/amY2wrw7QjgKWZCXOn9eHNV9qgUio4fDGY12at58HjxDI9rlxUKiWtm/kz//PBbFwykVGDm2FrbU5KWg4bd1xhzPRVjH9nNVt2XyM5pWwmAvyvo9HquBoUwbxfDtN/zK/MnLODUxceUqTRUs3PiekTOrJj5RRmf9CX+rU9y6wbUB80Gi0r9lxm3JcbiYhPxcHGgkXvD+Lt4e3K1KA1MzefKb/t5GjQI4xUKuaP7cXAlvLG4/wTD+KfMGXtbvKKNLSu5sPcwT1QKfW/xRZoNLyxay9xmVn42NqwqF9v1HrsJ9Z1HSQ+Jws/a1u+aiN/APa5hMesChEjhHOb9cLWRPpsyfi8dH56IHYWvhXQBTdzG0nrCnUaFoeKsxX7urfBv4qHpHWHEvaTXpSGg7EjnZ1fbMyqFTScSlwOQAPbPpKOUVoUwsuSzwA+/PBD5s6d+4+/8+DBA3bs2MHq1asJCQn508+cnJyYPXs2U6ZM+cc98vLycHV15bPPPmPGjBn/+Luff/45K1euJDo6+rk/LygooOCZgdKZmZl4enqSkZGBldXzXYCPJlzh+5ANWKktWNXsMyzU0lKZIZnxDD3zGwIC61q9TqCttA8iQEZhHh33/k5aQR6fNuzMuABpIdtnmXPhJMtvX8fFwpLDr4zB2kS/FOyvF6+w8Ox5zI2M2DV6BH72dnrtU8Kt6HheW76VQo2WCW0a8243w3m1CILA9ztPs+6UOE/so8EdGNa2vsH2/ztuP4rj09/2k5CShVqlZMrgVozs3rhMBgEbgqIiLReuhXHk5D0uXg9HoxG7HxUKCKzpTutm1WjbvBpuLjYVe6L/YvLyC7l+K4rzV0I5dzmUjKy8pz+ztTanU9ua9OxUB39f/TvnypqHkU+Ys/wIIZFiSqd9I38+HtcFG8uyNWiNTcngzd93EZ6YiqWpMQvH96FZDWkjaqQQ+iSF15ZtJS03j4bebvzx2kDMSuHVJQgC7+0/xO77wViZmLBt1DC9r5O/3bzM3MtnMVap2DVgJLUc5H0+0gpy6XVgOQl5WYyq1pAvm0iPdgmCwJQra7iYFEp9Wy9WthwveR7juohDrI08hJ2xFcuafISF+sWfkaSCJ8y6+zEaoYjJVafR0LbxC9fcSN3DsYTfMFdZM9TpB5zs3P7x/m0IXirhlZSURErKP7t5+/n5sW7dOmbMmEFa2n8KezUaDaampmzdupUBAwb84x5r165l/PjxxMbG4uj4z0WK+/fvp3fv3uTn52Ni8mLH28zMTKytrf/xH04raJl0dS4xeU8Y5d2NV316PPf3nsenQdvZGxNEAztvVrYYL+vJZVPoTT6+chBLtTFHe7+Os7m8Oo+8oiJ6bF1NRGY6g2vU5vsO0s/7WbQ6HWO27OBiVDQBjg5sf3U4JjKLPP/K3qAHzNwmFmDO7teZIU0M9yQrCAILd59lTXGX47v92vBapxd/oUtLZk4+X684wslroQA0qeXF5xO74Wz3ctTn/B0ZmXmcOBfM0dP3uRv855rLqj6OtGlejeYNfanh74JK9a8MupcbCU8yuHgtnAvXwrh5O4rCov9Eq22szWnbvBodWtegfm3Pl/q9LNJoWbHnEqv2XUWr1WFlYcKMkR3o3rJmmUfj7kUlMG3JblKycnGytuSXyf2p4a5fcfrziExJZ/SyLSRl5VDbzYkV4wZTxbR07uiLL1zmh3MXUCkULB8ygNY++nVEXoyNYtS+rWgFgW/bdmV4rbqy1guCwNRzOzgUHYKflR17uo/DXC09Xb0j6jqzb+/CWKlma9s38LGU9r7H5D5h8rW5FAlaPqo5mvZODSWt++XRD9zOCCKgSi3eqf7BCz9b+dosloaOJ1+bRReXqVRVt33h/dsQvFTCSyoPHjygVq1aXLt2jUaNxBTakSNH6N69OzExMbi5/fOE9vbt2+Pg4MC2bdteeKyvv/6aBQsWkJoqra5KivACOJMUxNf3V2GmMmFV08+wMZZmqpeYl0Gfkz9SoNOwoNEwOrvWlrQOxJDzoCOruZUSR2+vmvzc+p8F6vO4Fh/LkN0bEYDlPQbQybuq7D0AnmRn03vVOlJz8xhWL5CvunXWa59n+eX4RX49eQmVUsEvI/vRrob0ERYvQhAEFh+4yB+HxRrCSd2a8UbPFmV+0xAEgd2n77Jw/UnyCzVYmos3rJ6tyv6GZQgSkzI5dzmUM5cecfteNNpnUsFVLE1pXM+bJg18aFLfB2fHsrvQ/VtIz8jlxp0ort+O5MbtKGLj0//0cxcna1o09qNti2rUq+2J+iUWWyXcDo3j25VHCYsRH6o7NPbn/Vc74WBT9oOKT90JY+bqA+QXaqju5sAvr/fH2dZwDy6xaRmMXraV+Iwsqjnbs3r8EGzMSxe92/8ghLf2ikOgv+raiWH15YmlEuKzs+i9bQ0p+XkMrF6LBR16yL5mbAm7xYeX92OkVLK96xjq2LlIXpuYl8HA04vI1hTwbs1uvFZV2lxFQRCYeftXbqU/orFtAF8Fvi7pvG+l32Rx6I8oFSpm1foKV7N/1gEAJxKWci11Jw4m3ozxW0x2Vk6l8PonevToQWJiIr///jtFRUWMHTuWxo0bs2GD2EIaGxtLp06dWLNmDU2b/ietFhoaSvXq1Tlw4ADdu/85ZLr3/9o777Aqji4Ov5feewdBQLEX7L333muMGktiYoo1mmKJMTGJMVVNYo2Jvfeu2LugCKiACIL03m+b7w8Cn9i4FxA12fd57qPszuzO3Lm7e3bmnN/Zu5f4+HiaNWuGkZERR48eZfr06UyfPp358+dr1C5NDS+1UPP+9SWEZUXT37Ut71TR3Ahaeuc4f4T64Wpizc6272Ooq/mUdlBKHH0Pr0EtBGvaDaWti/aG08ILfqy4cRV7E1OODhmjtepxIWfvRzJ2yw4E8F2PrvSvXbaQayEEn+44wi7/YIz19fhz/GBqu2p+o9CElUcu88u+gojUIa3qMmtQ+zL5cWhKZGwK8/44RNC9Ah/GNr7ezBrTETur0qtgVzTpGbmcvxLOuSthXL8ZRVZ28cABZ0dL6tRwpU51V2rXcMXT3e6VXVotD9RqQVRMCsF3HhJ8N5Zbt2O4F1k8u4OOjoza1V1p0diL5o28qVzJ9rUwuKFgxnbp1rPs8ruJEGBtbsyMNzvSsXHVCnlh+dvPnyW7TqMWgubVPVg8tidmxuWXpy8mNYMxq7YSk5ZBZTtr1o0fjJ1Z2YzJ6zEPeWPTNuQqFW81asAn/2T+0JZ8lZJhezbjHx9LDVt7dvQbgbG+dkufERkp9D60ihylgpn12/NOTc2TegshmHz5L84mhlLXqhJrW45HV8MlxiNxl/j+zkYMdPT5o9HHOBuXLHkiV8uZd+sTkuSJdHHswaBKQ0usk5Ifw+rwd1CjZLD7l3iaNdT4+V1WXlvDKyUlhcmTJ7N37150dHQYOHAgP//8c5E0xP379/H09OTkyZO0a9euqN4nn3zC33//zf3799F57IF56NAhZs+eTVhYGEIIqlSpwqRJk5gwYcITZZ+FNgN3LeU2nwT+hr5Ml5VNPsHJSLNonhxlPn1O/kRifiYfVO/EuCraXZwLrh1lzZ0ruJlacqjnBK2mjqEgrLjntr8IT0uhl3c1fu1ceofEn89d4OdzFzHS02PrG8OoUUp9mkIUKhWT1u3ifHgUNqbG/D1hKJXtyjff3JYzN/hq2wmEgE71qvDVm90xfIFOwYUoVWr+PnCVP3aeR6lSY25iyJSR7ejZsuZr8zAuRKlSE3I3lisB97niH0FIaNwTgRFmpoZU9XSgqpcDVb0cqerlgLub7Wsxy/M4CoWKqJhkwu8nEhaRSFhEArfD4p4wPqFgObZBHXca1HWnXq1KmJm+/KS+2iCEYP+5YH7ZdJrUf/zQerWqxQfD2mBl/uKTbecrlHy5+Th7LhcE7wxoXptPhnRAX7f80sVEp6QzZvU2HqZl4G5rxZ/jBpcpFRBAWHIyQ9dvJj0vn45VvFjWr3epX+pmnzrCxpCbWBgYsm/QKNwtrLSqn69SMvDInwSnxtPMwZ2/OozQqi3bIq+wIHAPBjp6bG49CS9zzfzKUuQZTLiyiCxlDuM8ezPEXbMckLtjdrA/djdW+lZ8UXsRRrol/862R80jPOsSXmaNGOS+ANDu+V0WXlvD61VFm4ETQjDr5nIC0u7SwaEhH9cYpfF59kff4JOAbRjp6rOn3Yc4GltqXDdbIafr/j94mJPBhBpNme2rXYJTgBsJsQzYuQGVEPzUsafWme0LUQvBhO27OHXvPpWsLNn15ohSKTI/SlZePmNWbyP4YQJu1hasnzgMe/PyXdY44n+XT9YdQqFS0aiKGz+M742FSfnovZVE2INEFqw6UhTt2LimOzNHd8TD6eUlNC4r2Tn5BN15yK2QGAJDYgi+G0tu3pPq+Ab6uri5WOPuakMlVxs83Gxwc7HB2cECK0uTl2qAqtWC1PRsYmLTiH6YSnRsKtEPU4mKSSEqJqUo4OBRDA30qFbFiVrVnKnh40y9mm5YV8AS3IvibmQCi/8+ScDdApFkTxdbPh7dgQbVS5fIWVsS07OYsnIvgZFx6MhkTO/fhhFtfcv1dxGVnMaY1duIS8+ksp01a94aVGajKz4zi8HrN/EwI5N6zk78NXRQqRNpbwi+wSenjyID1vQYSDt37V0u5l09zLq717AxNGZ/9/Fa+QNHZScz+PRS8lQKptXsxpteLTWuuyBoDWeTblDFzI2fG0zRKLdifF4c84M+RSmUTPR6j0Y2JQeO3cu8wrYHc9BBl7Hey7E1LPh9SobXa4q2Axea+YDJ178HYGmD6RqHzAohGHN+JQGpUfRwqcvXDQZr1c4TMWGMP7WlIPVO17Fard0X8uPV8/x49TwWBoYcGjIaF7PS/VDTcvPov249D9IzaOflyR8D+5YqB9mjJGVlM/KPzTxISae6sz1/jhtcZofXx7l89wFTVu4hK09OVRc7lpaz/8jzUKrUrD90lZU7L5CvUKGvp8voXo0Z3bPJC1P7rkiUKjURkYmE3kso+ETEE3ov4anGWCEG+rrY25njaG+Bva051pYmWFoY//9jboyxkT5GhvoYGupjbKSPgb4uMh0ZMgp+b4U/O7lChVyuJF+uJD9fSZ5cQWZWHpmZeaRn5pKZlUdaRi7JKVkkJmeSkJRFUkrmU42rQsxMDfHysMe7sj1eHnbU8HHGy90OPb1XI3FvWUjJyOG3befYfToQIcDIQI/x/ZozvGsD9Cuof7ci4/ho5R4S07OxMDHku7E9aVatbGl6Hud+UipjV28jPiMLTztr1o4bhL152YyuzPx8hm/Ywu3EJCpbW7Fl5DBsSukndi3uIcP2bEKhVjOjSWvea6B9Eu1DD27z7pkdAFq7oyjVKt66sIobqQ9oZOvJimZjNI5iPJN4gy+D16Ar0+GXBtPwNis5jZUQgh/vfkdIZhC1LOrwQdVpJRrZKqFgdfgkUuUxNLYZQHunCUX7JMPrNaVw4O4lhONpr1li169D1uGXcB1fKx++rjtJ47ezkPSHDD/zGwLBmubjaGBbWau2fnB2J/uiQqht7cSOrmO01ohRqFQM2r2RGwlxNHV2Y0PvIaWeGg+OT2Dw+k3kK1VMbt6Uj1q3KLlSCUQlpzHyj80kZ+fQwN2FP8YMKPVb5LO4E5PIu8t3kJSRg72lKT9P6EtNd8dyPcfziElI49t1J7gQeB+ASo5WTBvZnhb1yi+w4FVBrRbExqcVzSBFxaTwICaVBzEppKRl8yrcyWQycLS3xM3FCjdna9xcrKnkYo2nux2O9hav3ZJwSeTLlWw55s/qPZfIzi0QMO7ctBrvD22Nk23FBEsIIdh5MYivt55ArlTh5WTDTxP64m5vVa7nCUtIZtya7SRmZuNlb8OatwaVeSY9X6lk3LZdXIx6gJ2pCVtHDqOSlearF48Sl5VJnx1/k5CTTXevqizr3Efr39uDrDR6HVxFpiKft2s25+P67bWqvyLUj1/vHMdMz5CtbSZrrNmVocjm7avfkCLPYLh7Z8Z49tSo3pWUS6y4tww9mT7zai3Ewajke++lpC2cSliDqZ41471XYKj7/zGUDK/XlMKBW3rjR96t+6FGdeJykxl/5SsUQsWXtSfS2FZzJ/Mvbu5me9RVqpo7sqn1JPR0NH+7TMzNovO+P8hQ5GntPFnI/fRUem5bR7ZCwdTGLfmgofbHKGRnUHBRaoxf+/aiW7WqpT5WISGxCYxZtY3MvHyaelVi+ah+GJWzP1ZMcjqTf9/FvbgUjPT1+PKNrnT29SnXczwPIQTHr4SyZP1JktKyAWhZz5MPhrXB0+XFqYC/SigUKhJTMklIyiQhMYOEpCzSM3NIz8j9/yczl7w8BflyJXn5CpRKNbo6smKRlo9joK+LgYEehgZ6mJsZYWFuhIW5MRZmRpibG2FvY469nTl2NmY42Jlja236r5jBKgm1WnDk4m1+23Geh4kF6bqqezgw9Y321PepuITbuXIFX209wZ5LBf5cbWt78dWobuXqRA8QGB3HxD93kp6bR1VHW1aPHYStmeYiok9DpVbzwZ79HL4bhqm+PuuHD6a2U+le2nIVCgbv3sStpHh8rG3Z0X8kZgba+e7mq5QMPrqOWylxNLBzZWOnN9DX4nlyKy2a0edWoBRqvqw/gN5uvhrX/fb23xyPv0olEweWNZyBgU7JL8jZymzm3ppNhjKdPi796eXSr8Q6GYpEVoVNQCHy6eEyjdpWxaPpJcPrNaVw4MacHM6XTb/F1VizpcM/wnezPfok7iZO/NZohkZr2wBp8hz6nPyRdEUuM2v2YKSXdobPtns3mXlxHwY6uuzvPg5vS+2T5u64G8TUEwfRkcnY1GcoTZw1F3Z9nC+P+7H2mj9GenpsGjGk1DeiR7nxIJZxa7aTI1fQxseTn0f0xqCcH46Zufl8vPYA50LuA/BezxZM6NKkQmc4snLzWbnrIpuP+qNSFRgVAzrUY0K/5hXi1Py6oVCokCuUCMET6av09XUx0Nf7V0dVlgYhBGdvRLB861nCogsiMO2tTHl3cGu6t6hRod9XZEIq01fv4+7DJHRkMib3bMHYTo3LvQ2X7j3gvb93kyNXUMfNid/f7FdmyQghBLMPHWVbYBD6urqsHtSP5h6lE3RVC8F7R/dw8F4oNkbG7B4wkkpaOtMDzL1ymL9Cr2FtaMzebuNwMdXc8MhR5jP0zHKispPp4lyLbxsM1fjedzHpFnODVqKDjCW+H1LDorJG9dbdX83ZpFM4GTnzec0F6GtgrO1+sJA7mWdxM67F8MrfPdHGijK8Xr/woNcEgWDnP/miNGGER2cs9EyJyonjQOwFjetZGZjwYfWCPI5L7x4nMS9Tq3YO9KxDG2cv5GoVMy/uR6V+to/KsxjgU4sBPjVRC8FHx/eTlpdbcqVnMKt9G1p7epCnVPL2jj0kZJU95Uy9Ss789s9M1+m7EUzfcgCFqnwTOpsbG/LzxL680a7gLW/p/vPMXneQPLmyXM/zPMyMDfloeFs2fTWaNr7eqNSCrccCGDBzNesPXiW/AtvyOqCvr4upiSFmpoaYmxkV+xgZ6ktG12P434lm4sLNTPthF2HRSZiZGPLuoFZs+/YteraqWaHf17GAUIZ/t4G7D5OwMTfht/cGMK5Lk3Jvw4mQcN5et5McuYKmXpVYPXZguRhdX508zbbAIHRkMn7o1b3URhfAkivnOHgvFAMdXX7v2rdURtfu+0H8FVogEP198z5aGV0Ai4MPEZWdjIORBZ/V0XyJM1ORw0+hWwAY6NZeY6PrTuZtziadAmCUx1saGV0RWde4k3kWGTp0cn7vpS77S4bXC0IHHW6mBxCaeVej8mZ6JoyqXKArti7iIBmKbI3P1d+9AbWt3MhW5vNt0H6t2imTyfiqSQ/M9A3xT45hxW3Nkow/zhetOlHZwoqHWZlM9ztU6gTYejo6/NynJ942NsRnZfH2jj3kKp7tUK0pjTzd+HVkHwz0dDkWHMasbYdQqrQ3Mp+Hnq4OMwa047OhHdHT0eHgtTuM/nEz0Ulp5XqekvBwsmbxR31Z+vEgqrrbk5WTz0+bTjPw49VsP3EDhbJ8jU6Jfy9CCK4ERzHp6y28/dUWboQ+xNBAjzd7Nmbnd28xpncTjA3L12/yeeTJlXy15QTTVu8jO1+Or5cLm2eOpKlP+aX/KWTn9SA+3LgXuVJFxxre/DaqH6aGZU8y/tO5C6y5eh2Ar7t1LpNLxY67Qfx6/WLBsdp2oXEpVhtupyXwyaUCwdZ3a7WgnZbajsdig9gedRUZMr6sPxBLA82XYH8N20aKPAM3Y4ei519JyNVy/rq/GoC29u2pal6yW4dSLedY3HIAGtj0wcHo5frASobXC6KZbYFz+PboTRobIT1dWuBh4kSGMpu/7h/S+Fw6Mh0+r9MHXZkOR2KDOBV/p+RKj+BiasHnDQrWun+4eYqQ1ASt6gOYGRjwa+feGOjocux+OKtuXtP6GIWYGxry+8C+WBsbERgXz/T9h1CXw4p4iyoe/DisF3q6OhwMvPtCZr4ABresy/J3B2Btaszt6ASGfbeBM0ER5X6ekmhc051180fy6VudcbA2IyEli2/+PM6gj9ew9/Stcjc8Jf49CCE4d+Me47/cxHvfbOPa7Wj0dHUY0L4uO759i8lDWmP5gvMrPs7dmESGL17P5rM3ABjTsSEr3h+Eg2X5iggLIfjj1GU+3XEElVrQz7cmPwzrVS5afb9fusKv5wtebj/v2I6BdTTPPPI4Fx8+4GO/Ap/YSb5NGFhN+2Oly3OZdHo7uSoFrZw8mVKnjVb1o3NSmXdjFwBjvFvR1E6zgDIAv4Tr+CVcRwcdZlQfgaGuZkbt3oc7SciPx0rfmv6uQzSqcyl5K6nyGEz1rGll/4bGbXxRSIbXC6Kbcy8MdAy4lx2Of5pmRoiuTJd3qwwAYN/Ds0RkPSyhxv+pbunMKM8CY++rwL3kKJ8UZnweg7zq0sm1Kgq1mmkX9pCv0n5Zqra9I5+3aAfAokunuRanefsfp7K1Fcv790FfV5fDd8P47tSZUh/rUdpV9+LHYb3Q19XlSFAoH23ch1xZ/ktwTXwqsWnmSOp4OJGZm8/k33ex7MD5Ui3llgVdHR36tq3D9m/fYtob7bG1NCU2KYMFq44wdPZa9py+Jc2ASRShVKk5cvE2o+euZ8qSXQSGxWKor8uQzvXZ+d04Zo3phL11xWZLEEKw/pQ/I7/fyL24FGzNTVg+aQBT+rYpV1FUKOj/F3tP8OPRguwUb7VqyMIBXcpFtHfdNX++O3UWgOltWjK6oebO548TnpbCO4d3o1Cr6enlw4wmrbU+hloIppzfQ2RWKm6mlvzUsq9WUekKtYpZ17eQqcyjnnUl3qumuR5kUn4av4QWpOwb5t6J6houMd7PjuBI3EEARnqMxkSv5Nm1lPwYLiZtBqCD48RiUYwvC8nwekFYGVjT2bEgifSO6C0o1Zo93Otb+9Darh5qBMvCtmu1ZPe2T3tcTayJy0vn1zvHtWqvTCZjYZPu2BgaczstgR8DS2fovFGrPj29q6FUq3nv6B6ScjVfMn2cRm6uLOrWGYAVl6+x3v9GqY/1KB1qeBctO568fY/3N+wlT1H+xpeTtTmrPxjM0Fb1APj90CUm/7aLlMyccj9XSRga6DG0sy87v3uLD/9REH8Qn8aXq47Qf8YqNh6+Tk6evMLbJfFqkJWTz/pD1xgwYxWfLT/A7cgEjA31eaN7Q3YuHs/0NzrgaFvxydmTMrJ5//fdfLvdD7lSRetanmydNYoWNcpXnwsgR67gw4172Xz5JjIZfNqrPdO7tSkXX6CNATf54rgfAJObN+WdZiWLfD6LxJxsxuzfTlp+HvUdnPm+Q/dS6R7+FHgav4fhGOrqsbz1QKwNtYvS/PX2MQLTojHXN2KR7xCNIyCFECy5s4ksZQ5VzSox0qOrRvWUaiV/3l+JQNDEphn1rEo2XIUQHI37FZVQUNnUl+oWpUvBVN5IhtcLpKtTd8z1LEjIj+d00kmN603w7ouBjj4308M5leivcT0TPQM+rV2QvmdDxEVupj7Qqr32xmYsbNIDgD+CL3A5IUqr+lBgwH3TtiveVjbEZWfx3pG9ZVrO61urBh+2LIjUnH/sJIfvhpb6WI/S2qdykbTEmbv3eWfdTrLzy9/wMNDX45MhHVg4qhtG+nqcvx3JkG/+5uKdyHI/lyYYGeozsnsjdi0ex4fD2mBnZUpCShY/bPCjz9QV/Lb9HElpZQ9okHg9iIpLZcl6P3pPWcFPG08Rl5yJtbkxE/s3Z/f34/lgWNsKSWb9OEIIDl67zYCv1nEmOAIDPV1mDWrPLxP7YmteNhmHp5GYmc3olVs4efsehnq6/DS8NyOb1S+XY6/3v8HnRwpehMc3bsiHrUovuZMllzP2wA4eZKbjYWHFqu79MdLT3sfu0IPb/HKrYFbv6yY9qKWlgPbp+DusvVcwezevbj+N9boA9j48y7XU2xjo6DOz+kiNJZAOxu0lJjcaMz1zhlYaqVGdoPRjRGYHoCczoLPz5FdGR0+SkyhnHg9HPZVwgvVRf2KqZ8aXtb/FVE+zm9j6yMOsu38QGwMLVjX+BBM9zdPRfOq/jX0xN/Ays2dz63cx0NXON2HGxX1sv3cTV1NL9ncfh4WB9qlwwlKT6bvjb7IVCt6q05A5LbUT4nsUIQSfHT7G5pu3MNDVZc3gATR1L71kxaNcvR/NpL92k50v/ydUvD9WLyj1T+jDJGau3c+9uBSgwEdlcs+WFabs/TTy5UoOnAvm74NXeRCfBhQECXRoXJUhnX2p4+38ytysJMoHpVLFaf9wtp+4yZXg/79cebrYMLxrA7q1qIFROQsNa0NyZg4Ltxzn+I0wAGq4ObDgja5UddFe6kYT7sQl8u5fu4lNz8TaxJilb/ShvrtLuRz7r+sBzD9W8NL9VqMGzG5f+hk0uUrFuIM7OBMdia2RMdv6jcDTSvs0YbfTEhh8ZB3ZSjljfBoxp1EXrerH5qYx9PQy0hW5DKvclNm1e2lcNzI7jsnXv0euVvBulQH0ddXMp+xBTiQLQ+ajFirGe02iiU2zEutkK9NYFT6RPFUmbR3G0tSuZH8wScfrNeXxgVMJFV8EfUZs3kM6OnRhqLtmlrpcrWDilW+IzUtigFs73vbup3Eb0uQ59Pf7mRR5Nm9Xbce7Wqy9A2Qp8ul1cBVRWWn0cq/BTy37lepmcSgilHcO7wbgxw496OejuTDs4yjVat7fvY+joeGYGRiwccSQMifULuRRcUQvextWjB6As9WLWVbJlSv4fudptp67CUDNSg58PboHlR1ebp5FlVrNqWthbDx8nRuh//fNq17ZkSGd69Opic9LfRhLlJ2YxHT2nwli16nAIqFdmQxa1PVkSKf6NKtT+aUb2Uf977JwywlSs3PR09FhQtemjOvSuNx9uQo5ERLOzK0HyZErqGxnzW+j+uFua1Uux153zb9oeXFCk4bMbNu61N+vWgimnjjArtAQTPT02dhnCPUcnLU+TnJeNv0OryUmO53mjh6sbT9MK5FUhVrFuH9SAtWydGVti/Eav9jL1Uqm+P9IWFY0jayr82WdtzX6PhRqBV+FzCMmNxpfq0a8463ZzNXe6G8IyfDDwciLUZ4/oSt7fjuz5JFcvL+AztVWSYbX68bTLOag9EB+Cl2MjkyXuTW/xNlYs7epK8nBfHbrD3TQYVnD6Xiaaf4WduThLWZc34yeTIf1rd6huqV2F2lAUgxDjv6FUqj5umkPhnrX16p+IYsvn+XX6xcx0tNjW7/h1LYrvSBqvlLJmC07uBIdg72pCZtHDsXdyqrUx3uU0PgkJv65k/iMLJwszPh9dH+qOr6YN2yAEzfDmLfhKOk5eRgb6DO1b2sGtaz7SmhH3b4fz9ZjARy+eBu5omCZ2MzEkC5Nq9G7dS1qejm99Ae0hGZk58o5eTWU/WeDuHY7umi7jYUJfdrUpl+7OrjYly5FTXkSn5rJ19tPcvJmOAA+LnYseKMr1d0cXsj5hBCsOnOVH46eRQho5lWJJcN6ldts99qr1/nyRIHO1MSmjZjRplWprxkhBF9fPMUfN66ip6PDym79S5X4Ol+lZNSJDVxNjMbDzJqdXcdgZahdZOp3QQf4O+IC5npGbGo9CTdTG43r/h6+ix3RfljomfJbo5nYGmr2u9sZvY2DcXsx0zNnXq2vsNAv2SAKz7zM9gdzkaHDKM8fcTJ+vmSHEIILce8QmXCeEfVvSYbX68azpip/CV1CYPoNjRN5FvJF0GrOJd2khrkHS3w/1DjhqBCCadc2cTwumKrmjmxo9Y7WS46/BV/g24CTGOnqsavrWHystJ9hUqnVjDu4E78HEbiambN74BvYGZfeZyQjL4/hG7dyJzGJSpYWbBwxFKcyJqkt5GFaBhPW7iAiKRULI0N+HdmHRp7ls6T5NOJTM/n078NcCS3wxWviU4l5wzvjavvyH4QAaZm57D4VyI6TN4lNyija7uVqS+/WtejctBoONhXvcC3xfBRKFZduRXLk4m38roUVifjKZAUSI33a1KZ9o6ovdYm7EJVazeYzN/h133my8+Xo6egwtnNj3u7a9IW1L1euYM6uo+y/WSC7M6xJXWb3bFcus2pCCJZfvMySM+cBeKdZY6a1blmmF5Wl1y/y3eUCf6rv23cvlWyEEIIZF/exIyIQM31DdnYZrXWWkoMxN5nlXyAK/mOjEbR3qqFx3UvJQcy5tQKA+bXG08yutkb1wrPC+Pb2lwgEb3tPpqF14xLr5KuyWR3+DpnKJBrZDKDDI0mwn8WDzP1cT/yUvCxdhtW7LhlerxvPMrzi8+KYH/QpSqHk3SofUt+qgUbHS8xPY+KVr8lR5TO5yiB6u7bSuC3J+VkMPPULqfIc3vJuzYc1tFvLVwvB2JObOBMXQVVLO3Z1HYtxKRw50/Pz6LdjPRHpqTRwdGFD7yEY6ZVeEychK4uhG7bwIC0dbxsbNgwfjK1p+TjcpuXk8u5fuwl4EIu+ri7fDO5Gt9ovLu+iWi3YeCaAn/ecJU+hfOVmv6CgjVdDoth7Jgi/q6Hk/zMLJpOBbzU3OjetRsfGPlJaopeIUqniclAUxy7f5dT1MDJz/i8nU8nRip6tatGjZY0KS1ytCbejE/hi0zGCouIBqFvZmTnDOr0wXy4oeLn6cMNegh4moKejwyc92zGsab1yObYQgm/8zrDySoF80Actm/F+i2ZlMrr+vHWduWdPAPBp87ZMqFey4fE0lgWdZ/ENP3RlMla3G0prZ831tgBCM+J449wf5KkUjKvShg+qd9a4blJ+Gu9e+450RTb9XNsw6R/JpJLIV+WzIPhzEvLjaWrTgnFeb2tU70jsrwSk7sdK34mx3svR13n+LKZclc7xB/2Qq1OppDuOhpU/kAyv143nOeftiN7Cobj92BnaM7/WV+jraCYYtyfmDEvDtmOia8iKxrOxM7TSuD3HYoOYdm0TOshY02I89W20U3hOysum54GVJOZlM8S7HouaapY1/nHC01Lov2M9GfJ8+lWtwQ8depTphhSdns6wDVuIy8yiur0dfw8bjJVx+SwT5CmUzNhygOMh4chkMLVLa95q1fCFLq9FJaYxZ/1h/O8V+Fc18anE3GGdcLOzemHnLA2Z2XkcuXSHg+dCuBn2f18wXR0ZjWu5075hVVr7emFnVbFaT/9FsnLzuRgYyRn/cM7duEdG9v+NLVtLUzo0rkq35tWp/YoFSGTk5LH84AU2n7mBSi0wNzbkg94tGdTixb5sXAiPYvrmA6Tm5GJtYsyPw3vRuJxmtFVqNXOPnmDTjUAAPmnflrcaa/Zy/Sy23wli2skCzaoPGjZjamPNX7of5WDUbd47uwOALxp35Y2qDbWqn6HIZeSZ34jKSaGZnTfLmr6JroYrLyqhZtaNZdxMD6OKmRs/+H6EgY5mL93rI9dyKvEk1vo2zK31JSYaBKZFZd9kU+THAAz1WISHaclGtX/iPKIyd2Gu700Diz+wtrKTDK/XjecZXnmqPObc+pg0RRp9XQbS06WPRsdUCTXT/H8iJDOS5ra1mVtrnFY30k/8t7E/5gbuJjZsbvMuJnqGWvXpQvx93ji+AQEsad6Hfp6aTRM/ztnoSEbv34ZKCKY2bskHDUsfVg1wPyWV4Ru3kJidQ21HB9YNHYiFUfkYXyq1mq/3+7HhUoF22IAGtZjTp2O5J9d+FLVasPG0Pz/vPUeeQomhvi4TuzZjdIeGr8Sy0OPEJWdw9NIdjl68w+3I4tkOano60trXm9b1vajqbv9KPfhfV4QQRDxM4dKtSM7duMf129HFsg/YWJjQoXFVOjWpRj0fF63EMCsCtVqw61IQv+w7V6Rl16V+VWYObId9OavPP37elWeu8POx86iFoKaLAz8N74Wrdfks6ctVKmbsP8T+23eRAQu7dWZI3dLdIws5dO8u7x3di0oIxtRuwNyW7Ut1DQUkxTDi+HryVMpSRTCqhZoPr2zgdMIdnI0t2dh6EtYGmruK/H3/EH9FHsJIx4ClDafjZqKZz15g+g1+CV0CwBSfmdSwKHl5Va7OZU34u6Qr4qhn1Z2uLh+UWCcp9yrnYscD0MplDfpybymq8XWkpHDUy8kXWBnxG/o6BnxR62tsDTWbVo/Iesh71xejEmo+rTmGNvb1NW+TIpdBp34lPi+Dge6NmFO3r8Z1C/kp8Aw/BZ7BWFefHV1HU82qdE6v64Nv8OnpowXH7NiTvlU19xN4GqFJyYzctJWUnFzqOjny59CBmBtqZ1g+CyEEf18M4JsDp1ALQUMPV34a0QubclrWfBZRiWks2HyMy3cLfL88HW34dEgHGlet9ELPWxYi41I5ceUuZ/zDuRUeV2yfjaUJjWu606SmO01qebwUIc7XlcTULK4ER3E5KIorQZEkphUXJHZ3sqaNrxet6nu/ksZWITciHvLNdr+iZcXKDtbMGtSe5tXLXwj1UdJz85i97RB+dwpSdvXzrcmcPh0xKof0PwDZcjmTd+/jTEQk+jo6LO7VjZ7Vq5XpmCcj7zHx8C4UajWDqtXi23bdSiWQej8zhUFH/iQlP5e2zt6saDsYPS1/H8vuHOf3UD8MdPRY22I8taxcNa57Iy2UWTeWoUYwvdoIOjtpJhqbqchgfvBnZCjS6eDQmWHumqX4KVxitNB3YKzXshIV6lXqfE7GDCZbEYWH+UDq238uyUm8rpQ0cEIIvr+7iLuZt6lv1YB3q3yo8bHX3T/I+sjDWOmbsaLxbCz0NX/zuJR0j4kX1wDwU6MRtNPCMRIKZoDG+m3mbFwElc1t2NV1TKn0vQAWXvBjxY2rGOjo8nfvwTQpRWLXR7mTmMQbm7aSmptHPWcn1g4ZUG7GF8DpuxFM33yArHw5rlYWLBvV94VGPELB7+TA1dss3nW6aHagV+MaTOnbGjuLl5/y4nkkpWVz7sY9zvjf43JQZJFzdyHuTtbU93Glvo8rdau6UMnRSpoRo2DMI2NTCbgbw43QGG6GPizSVivEQF+XelVdaVHPk1b1vfBwerkyJCURnZzOL3vPceh6gSO7mZEBb3drxvA29V/4LG5gdBzTNu8nOjUDAz1dPuvVnoENa5fbby05O4fx23cRGBePsb4eS/v1po1n5TId82x0JOMO7iRfpaSndzV+7tizVMZ0cl42g46sIzIrldrWTmzs9Aam+tol+C50UwFYUG8AfSppnuIoVZ7Ju9e+I0WeQRenJkyrNkKjekIIfg37gcD0G7gYufJJzXkYaOCScz/Lny1RnwAw1P0rPMxKbmtwyi+Epq3CUNeejpV2oK9jLhleryuaDNzD3Gi+CJ6DWqiYXGUKda3qa3RsuVrJe9cWE5UTR2fHxkyvrpkmWCHfBx9i3b1zWBuYsq3Ne9gZaTfzkJKXQ59Dq3mYk0En16r81mZQqd7E1ELw7pE9HIoIxcrQiO39R+BtpXlY8tMISUhk1KZtpOXlUdfJkTVDBmBZTsuOAOEJybz7924epKRjYqDPokHd6FSzSrkd/1lk5OTxy75zbD13EyHA1NCACV2bMLKtLwbl9Nb+IpErlNwKj+VyUMGsTfC9uCcSnttYmFC3qgs1PB2pXtmRah4O2Fi82FnFl40QgrjkTG7fj+f2/QRC7scREhFPelZesXIyWYGWWpOa7jSu5UHdqs6vhZ5aRk4eK45cZuOpABQqFTIZ9G1aiw96tcT2Bb84CCH464I/iw+fQalS42ZtwY/De1HTpfRSNo9zPzWNt7buICotHWtjI1YM7Ed9F+11tR7lfEwUYw/sIF+lpJOHN8u79ClVpGWuUsGI4+u5kfwQN1NLtncZjb2xdku5dzJiefPcCvJUCkZUbsbHtTX37VUJFbNv/saNtFDcTZz4pcEUjHQ1exE+kXCUTVF/oyfT55Mac3EzKXmWvyCKcRKZykR8rXvT2fndEuuk59/mVMwbCJQ0dlyCi2kHQBJQfW3RdOC2PdjMkfgD2BrYMa/WVxhq+MMMTo9gasDPCATza0+gma3mocVylZKRZ3/jbmY8ze2rsKzJKI3lKQq5mRzLkKPrkKtVTKnThvfrlM7hM1ehYNjezdxIiMPVzIId/UfgaFo2P4/g+ARGb9lOam4eNRzsWTtkALYm5fcAT8vJZcrG/VyKKFgCHN+6ER90alkuCXRLIjAyjkXbTnIrsmAZz83Wkin9WtOxbpXXarYoMzsP/zv/n9EJjoh/apJuB2szfDwc8HSxwdPFlsouNlR2scHMuPxmMisCIQQpGTlEPEwmIiaFezHJRDxMJjw66QkjC8BQX5da3s7Uq+pKfR8X6lRxwczk9elznlzJpjMBrDxymczcAmf/pj6VmNqvzQvT5HqUlOwcPt1xhFP/LC12rlmFL/p3xrKcAm8AAh7GMmH7blJzc3GztGDN4AF42pRt5vF8TBRvHdxBnlJJB3cvlnftg6GW8j9QIDT9zultnHgYhpWBMdu6vImXha1Wx0jOz2Lk2d+IzU2nmZ03S5uM0jitD8Dqe3vZ/OA4RjoG/NJwGu4mmhm80TlRfBXyBUqhYFilN+jgqFnk5MGHSwhMO4qVvjNjvJdhUEIUo1ooOB0zinT5bZxNO9HEcXHRPsnwek3RdODyVfnMC/qEZHkSnR27MbjScI3PUShEZ2Ngwe+NPtZqyTE8M4ERZ34jT63gw+qdeauKZikbHmVL+A1mXdqPDPijzWA6uj1fnO5ZJOVmM3jXJiLSU6luY8fmvsOwNCzbDfJOYhKjt2wnKTsHb1sb/hwysNx0vgAUKhXfHz7DuvMFOTSbelZi8dAe2Jq9+BkatVqw70owP+89R2JGga9PoypufNS3NXU8tMu19qqQL1dy+348N8Mecvt+AnciE3gQn8qz7kr2Vqa4OFjhYmeBi70FznaWONtZYG9lhq2lCWYmhhVqiCpValLSs0lKyyYxLYuElCweJqYTk5hOdEIaDxPTyclTPLWurq4O3q62VKvsQI3KTtSo7ICPh8MrGUhREnKFku0XbrHqyOWi32YVZ1um9G1NyxoVo4h/PiySWdsOkZSVg4GeLh93b8uwJnXL9dxHQ8OYsvcgeUoltRwdWDmwH/ZmZZvBOxcdybhDO8lTKmlXyZPfu/UtldElhGDWpQNsvXcDQ109/u4wgob22rlxyFVKJlxcQ0BqFO6mtvzdciKWBprf284nBTI/aBUAs2u8STsHzSI781X5fBUyj9i8h9SxrMfkKlM0GrfQzAvsfPAFIGNE5W9xMyk5qOFO6gpupy5FX8eSDm7bMdL7v9uIZHi9pmgzcIFpN/glbAkyZHxSYx4eppU1Oke+Ss571xfzICeBdva+zK45Wqs27oi6yvybu9GV6bCmxTjqWWsnMQEw58oh/g69jpm+Ibu6jtH6raqQBxlpDNi1kcScbJo4u7Gu58BSJX19lIiUVEZt3kZcZhaVrCz5a+hA3CzLV5T0YOAdPtt5lFy5AkcLM34Y1rPc8ruVRE6+nDXHrvLniatFmlod6lbh/V4t8HIq3Ti8SmTnygl9kEhoVCL3HyYTEZvC/YcpRWlunoeBvi42FibYWJhgbmqEuYkhZsaGmJkW/Guor4u+ni4G+rro6+mhr1cwWykECARCLVCLAkMiT64kX64kT64gN19BZnY+GTl5ZGTlkZGdR3pWHqkZOU8snT6OTAau9pZ4utji5WqLp6tt0f8NDV795eLnoVCp2HMpmD8OXyIuNRMAFxsL3unejF6Na1SIs3++QsmPx87x57nrAHg72PD9kJ74OJWfH6YQgtVXr7Po5GkE0M7Lk5/69MDUQDu/qcd51KerLDNdAN8EnOT34AvoyGT81nogndy00x8UQvD5jR3sjQ7AXN+Iv1tOpLKZ5qLZMTmJTL7+PTmqPPq7tuWdKv01rrvu/irOJp3GUt+KOTUXYK6BOn22MpU14ZPIUaXTxHYQ7RzHlVgnQx6KX/RwBEoa2C+kknnxJVTJ8HpN0Xbg/ghfxtXUS7ibeDC7xlx0ZZq97d7JiOIj/x9Ro+aTGqNp66C546MQgln+Wzn0MBAXYys2t34XCwPtxC/lKhWjTmzgSuIDvCxs2NGl9M72IcmJDNm9iUx5Pp0rV2F5lz5aR988TnR6OqM2b+dBWjpO5masHTKAKrbla5SEJSTz0cZ93EtMQU9Hh4+6tGRMi4YVJnwam5LB8oMX2Xs5GLUQ6Mhk9GpSg0ndm+Ni8+oIZZYXmdl5RMalEpuUwcOkdB4mZhCblE5cUibJ6dnFREMrEl0dGbZWpgWzblamuNhZ4uZgiauDJW4OVjjZWrz2BtbjyBVK9l4JYfXRK0QnpwNgb2nKxC5N6d+8doXN2oXEJjBr2yFC45MBGNK4Dh93b4txOfrBKVQqvjh2ko3/aHQNr1eHuZ07lPke5RcVwduHd5OvUtLRw4tlXUpvdP0RfJFFAQVCq6VN8bY67DQ/3T6KrkyHZU3epJm9t8Z181T5fOj/I/ezY6ll4cW39d7TeHnySsolVtxbhgwZU3w+prpFyYFfQgi2P5jHvazL2BtWZpTnT+iV4IRfsMT4JunyEJxM2tHE8YcnZtUkw+s1pXDg0tJSsbS0KrF8uiKNubdmk6PKYZDbULo49dD4XH9GHGBD1BHM9Uz4vdHHGue+AshS5DH0zDKic1Jp71idHxqN0HpKPjE3i36H1xCbk0lrJ09WtRta6pvRpYcPGLV/G3KVioE+tfiufelCqB8lPjOLN7dsJzw5BUsjQ1YM7EcD1/KdlcrOl/P5zqMcunUXgJZVPPhqYFfszSsu8jA8Nplf9p8rynOnp6tD36a1eKtTo1dOgPVFki9XkpKRQ3J6NinpOWTm5JOVk0dWrpzMnHyyc/ORK1T/fJTIlSqUShXIZMhkIEOGjkyGTAcM9PUwMtDD0EAPIwN9jAz0sDA1KviYFfxraWqErZUpVubGr6yMQ3mTky9n67lA/jp5jcT0ghlIG3MTxnVqzKCWdTGqIANTqVKz8swVlp28iFKlxtbUhAX9O9OuunaK7CWRmpvL5F37uPQgGhkwu31bxjbyLfPy5cF7d/ng2D4UajWdPLxZ2qV3qY2ujWH+fHq5QGh1Vv0OTKzZTOtjFOb2Bfikdi+GVm6qcV0hBItC1uGX6I+NgQW/Npim8bMoIS+eL4PnkKfOo4dzb/q5DtKo3vWUvRyLW4auTJ83PX/C3qjk3JX/X2I0p4PbDoz0npzNkwyv15TCgTsfuYPm7ppNtZ5NPMW6yNXo6xgwt+aXOBhp5oyoUCv56J9s7w2tq7NQw2zvhQSnxfDm+RUo1Cqm1+zOKK8WGtctJCgljiFH/yJXpWBk1QZ80ahrqW9KR++H8c7h3aiE4M1a9ZnfqmOZb3ApOblM2L6LG7FxGOrp8lPvnnSqqvmbnCYIIdhyJZBFB/zIV6qwNTXhq4Fdae1TuVzPUxI3I2L5df85Lv2j/6WrI6NHo+qM79yEyo5lixqV+G+TnJnD5jMBbDwdQMY/M4sOlmaM7tCQAS3qYGJYcZGW4QnJfLrjCDejCwJNOtWswry+HctdXy8sOZmJ23cTlZaOqb4+P/TuQYcqZTfstt8JYobfIdRC0NPLhx869sSglHki99wPYsr53QjgnZrNmVm/vdbH8E+JZOLFtcjVSoZXbsYsLSIYAbZEHWdVxF50ZTp8W28ytS01+47kajmLQhYQnRtFVTMfplabpdGKT1JeJOsiPkAp5HRwfJtGtv1KrJOef4dTMSOfucRYiGR4vaYUDtw3V/szud4aTPRKtvyFEPxw91tuZwZTzbwGU30+1tjgiMyOY/L175GrFbxXZSB9XFtr1d5N9y/x9a196Ml0WNV8nNYphQCOPLjDpDPbEcCchp0ZU610+cQAdt4NZuqJAwhgYr1GzG7WtszGV45cwYd79nPyXgQ6MhlfdOnIsHp1ynTMpxEan8SMLQe5G58EwOgWDZjSpSUGZchLWRquh8ew4vAlzt+OBAp8jDrX9+GtTo2oUan8Quol/v2EPkxivZ8/+6+GIP8n+tTDwZqxHRvRq3GNCg0EUKhUrD5zjWUnL6JQqTA3MuTTXu3pXa96uTvvnwy/x5S9B8mSy3GztOCPAX3xsS+7z9hft/z5/OxxAIZUr83XbbqUerb0eEwok05vRynUvFG1AfNL8dJ7PyuJ0edWkKbIob1jdb5vNFzjdEAAl5ODmXNrBQKhdS7hv+6v5kzSKcz1zPm85gKsDEqODFWq5fwV8SGJ+ffxNG3EIPcvSuyzWig4FTOSDPldnEza08RxyTPrSIbXa0rhwM2/1InGbt3p7jJVo3qJ+QnMC/oUhVrOSI8xtLXX/M1lV/QplofvxFBHn18bTMPdVPMINyEEM69v4UjsLRyMLNjUehK2htpHARb6GOjIZPzRZjAdXEuvcbUx+CazTx8B4P0GzZjWpHSSFY+iVKv57PAxtgUGFRy3RTM+aFm2BLZPI1+h5LvDZ9hwMQCAqo62fD2wa7lqCGnKrcg4Vh65zMnA8KJtjaq4Map9A9rU8nplknBLvFqo1YJzIff52+86F+9EFW2v7eHE6A4N6VivSoUvrQY/jOfznccIiS1ITdW2midz+3TEybJ8syCohWD5hcv8ePY8Amjk5sLSfr3LLEsjhOC3gMt8c+kMAGNqN2BOy/aldqc4GxfBeL8tyNUq+lWuzeLmvbU+VnJ+FqPPreBBTgq1rdxY2XwsxrqaBws8yInnw+s/kK3Ko4dzcz6oOkTj++mFpLOsub8CGTI+9JlBTQ1SAgEcj/uNaym7MdG1Yqz3Mkz1SjbWglN+JjRtNQY6VrR3246R3rN9fSXD6zXlUcPLyEyPYR7f4G5aV6O6x+IPs+XBBgx1DJlbayF2hppFlKiFms8Cf+da6h08TV34ucEUDHQ0n/rPVuYz8uxvRGQl0dCmMr83G4O+FrotUHBj+eTyQTaHB2Cip8/mTqOoZVN6iYO1gdeZd67AWXRKoxZ82Ej7ZdCntfHHsxdYeuESAH1qVufrbp0xfAEzUn637/H5zqMkZ+egp6PDxLZNmNi2yQvN9fgs7sYksub4VQ5fv4NKXXC5u9tbMbKtL72b1MTUqGyRWRL/DpIzstl1MYjtFwKJSc4AQEcmo2O9KrzRrgH1PCs+2XauXMGykxdZe+4aKrXA0tiIT3q2o9cLmOXKyMtj+v7DnAi/B8CI+nX5rGO7Ui8DFqIWgoUX/Fh18xoAkxs0Y1rjlqVu//m4+4w7tYV8lZLObj4sbTVAa9/aHKWc8RdWE5Qeg6uJNX+1nKjVC3emIocP/X8gJjeRWhaefFPvPfQ1TH4dnRPF17cXoFDL6e3Sj94umrnkhGdeZvuDuQAMrDQfb/OSUxAl517nbOw4QNDY8XtcTDs+t7xkeL2mFA7c9jvfEKY8iY2BG2O8lpYYcQEFBtT3d74mNOsuPmbVmVrtY40FTlPkGUy6+i1piix6u7RiclXNnBQLichKZOTZ3wuMMM/mzKyluZN/IQq1irf8NnMu7j4OxmZs7zIaV9PSyzisvHGVLy/4ATC9cSsmN9TeafRpbLoRyLyjJ1Cq1TRwdWZ5vz7YvoD8iynZOXyx5wRHgkIBqO5sz9cDu1LNSfMQ7fIkLjWTjacD2H4+sEjc0sRQn56NajC4VV2qub6cdkm8PNRqwZWwB2w7F8iJm2FFSbfNjQ3p16wWw9vUx9W2fKVYNOXk7XAW7vPjYVqBEdijTjVm9WyLXRl1s57G3cQkJu3cS2RaGga6uizo0pGBdTQXp34WcpWK6ScPsifsNgCfNW/H+HqNSn28S/GRvOW3hVyVgvYuVVjWeoDWTvlKtYopVzdyOuEOVvom/NlyApXNNF9GVQkVnwX+wfXUOzgYWvNLg6lYGWg285ijzOGrkHkk5MdTy6IO71edqtEzLlORxNp775GryqChTT86Or1dYh2FOouT0YPJVcZSyawPDRy+KLGOZHi9phQOXHxKDFsTp5OtTKWF3UhaOWiW6DMhL54FwZ+Tr85naKWRdHTUPJv81ZQQPg38HYC5td6ihZ1mM22FnIgLZsrVjQAsrD+QXm71taoPkCHPY8jRv7ibnkgVC1u2dH4TK0PtpCoe5Tf/yyy6dBqAqY1b8kHD5qU+1qOcj4xi8q59ZOTnl6sPx9M4GHiHL/acID03Dz1dHSa2acLEto0r3PerkJx8ObsvBbPpdAD3E1KLtter7MzgVnXpVL9quYbjS7x6RCens+9yMHsuBxfNbgHUrezM4JZ16OJbrcIiFB8nJjWDr/af5OTtgpknZ0tzPu/dodwjFgvZFRTC50eOkatQ4mJhzrJ+vantVHbXgCy5nHcO7+ZsTCR6OjosbteNfj41S328KwkPGOu3iRylgrbOXvzWZpDWRpcQgrk3d7H7wXUMdfRY0Xys1jqOy8N2sCvmNIY6Bvzg+wHeZpqJtAoh+C38F/zTrmFjYMtnNb/ATK/kWTa1ULEpchbRObdwMPLmjcpLNJrIuJ7wOQ+y9mKi50I7ty3o6zz/XPmKO4RHzaJWlV2S4fW68ajFHMsNdkd/hQ56jPH+FTtDD42O4ZdwnA1R69CX6fNZzS9wNtZcAmFF+G62RZ/ETM+E5Q1n4GCkXSqLX28fY0XYKQx19Piz5QRqWGovvxCbk8GgI38Sm5NJQzs31nUYjnEZRFGXXr/Ed5cLfCPKOk3/KOHJKUzYvqsgasnAgB96dS+XqKWnkZiZzRd7jnM8pMDfysvehnl9OtLIs2wJwsuCEIIrodFsPXeTEzfCUKoLZjtMDQ3oVL8qfZrUpIG3q+QL9i8hIyePYzfC2Hc5mGvhMUXbTQ0N6N6oGoNb1q2QtD7PQq5UsvbcdX7zu0SeQomejg5jWjbgnfbNMHkBLwK5CgULjvux5eYtAFp6uPND7x7YmJT+RbGQhJxs3jqwg1tJ8Zjo6bO8ax/aVipZ8uBZXE18wNiTm8lWymnl5MmKtoNLJT/xQ8hh1oafRVemw5KGw2jnVLJm1qPse3iOX0K3AvB5zbG0sq+ncd0DsXvZFbMNPZkeM6t/SmVTze61ZxLWcSFpI/o6xoz2/AUbQ9cS68RkHeFqwkxAh1Yuq7A1er7OpRAKIuN7kZxyg0a14iXD63XjUcPL3NycHQ/mE551CRfjGoyo/B06GoTLCiH4MfQ7QjKC8DDx5OPqn6Gn4fq5Qq1kasDP3M2MooZFZRbXe1+rPFsqoeaDy39zNjEUJyNLNrR+p1TO9nfSEhh69G8yFHm0d6nCb20Gau039ih/BFzhq4unABhXtyGfNW9XLsZXam4u7+3ax+V/dHqmtG7BO82alFlD7GkIITgcFMrCfSdJzsoBYGDD2kzr2hork/LLJVcakv7x79nxiH8PFKiQ92xUnW4Nq1HF+cXMCEq8OLJy8zkZGM5h/7tcuB1ZtJQok0FTH3f6Nq1F+7reL3WGUwjB8ZBwvjt4mgepBWKsjSq78nnvDlR1fDG/ubDkZD7YvZ+7ScnIgPdaNOX9Fs3KJWggLDWZMQe2E52Zga2RMat7DKCeQ+kTaF9OiGKc3xaylXJaOFZmZdvBpcrusSbsDD/eLghamle3H/3dG2pV/8o/EYxqBKMr92CEh+arMTfTAlga9iMCwSiPsbS2b6dRvYisa2yN+hwQ9HL9mJqWJdfLVcZxMnowCnUmVa3GUdPm/RLrJKV/R3LGD+RkW9Cgxh3J8HrdeHyNOFORyKrwt5Grc+ngOJFGtpo5EqbKU5gf9Bk5qmx6Ofejj6vm6RficpN599p3ZKvyGOzWgfHefbTrgyKXN87+TmR2MvWt3fmj2RgMdbW/0K8kPODNkxvJVykZ4FmHb5v1KpNBs+6WP3P+CcUeUbMeX7buVC4Gklyl4svjfmwIuAlA56refNujK+aGLyY5cXpuHj8cOcuWKwVK2Damxkzt0pp+vjVf+uySWi0IiIhh7+UQjvjfJStPXrTPy8mGrr4+dPH1+VekJvq3kpady5mgCI7fDONc8P0iGQgoyJ/Yo1F1ejWqgaN1+UYEloY7cYks2n+qKPG8g7kpU7u2fiESEYXsvBXMnKPHyVUosTM1YUmv7rTw0F5G52mci47knSN7yJTn42FhxZ89B1LZsvQJtM/GRTDx1FbyVEpaOFZmRdvBpVo9KEwTBzC1RldGe2sXKR6eFcO0gJ/JVeXTxakJU32Gazw+cXmxfBUynzxVLm3tOzDSQ7MUd5mKRNbem0yuKoN61j3o6lyyASWEivOxb5OUdxUrw1q0dlmLjuz531duvj9RCX0AFab6S6jkPFwyvF43nuacF5B6gCOxv6AnM2Ss9zKsDTRbvruccpGV95ajgw4zq3+Kl5nmEg1nE2+wIHgNAPNqjae5XcnJQx/lflYSb5z7nUxFHr1c6/Fl/YGluhEejw7lnTPbUAnB+OpNme3boUw31C23A/nY7zACGOBTk2/bdStz6o5CNt8IZN6xkyhUKrxsrFnWv3e5pxl6lOuRMczbfZywhIJ0J3XdnPisd3tqu74aCa/z5Er8boVz4OptzodEolD9/wHu7WxL+zretK3lRS0Px/+McvurSnRSGqdu3ePEzXD878UURa8CVHawpmsDH7r6VsPb+dUwmBMzs1l64gLbrt5CLQSGerqMbdWIca0bYWr4YqJsM/PzmXvkBHtCChzdW3hU4vue3cuc5LqQLbcD+eT0UZRqNY2cXPmja19sjEsftOP3MJx3Tm9DrlbR1tmb5a0HlGqm61hsEDOubUaN4C3v1nxYQ/OZKoCk/DQ+vP4DSfJ06ltV5cs6b2scwZiryuXrkPnE5cVSxcyHqT4fa7R6oxJKNt+fRXRuEA5GXrxR+QeN/LoK1el1Zca0c9uEmf7z3XvU6hwi47siV4ZjbtIPM/1FknP9s1i4cCH79+8nICAAAwMD0tLSSqwjhGDu3LmsWLGCtLQ0WrZsyfLly6latWpRmZSUFN5//3327t2Ljo4OAwcO5KeffsLMTPOltqcZXkIINkfOJirnBm4mtRnu8Q0yDaMVV95bzuWUi9gZ2vN5zQUY62ruf1DoBGmqa8QvDafhaqxd1NrFxHDevbwOlVAzuVpHJlRtp1X9Qrbfu8mMi/sAmFq3DZNrl02Xa3doCFNPHEAlBJ0qe/NLx14Y65fPUsmN2Dje27WXuMwsTPT1+bp7Z3pWr1Yux34acqWK9RcDWHriAjlyBTIZ9POtxUedW1Zo2qGSyMzNxy8wnCP+dzn/yJIVgLWZMa1redKmpidNq7lj8ZKXTf8L5OTLuRIazfnbkZwPuU9UYlqx/VVd7GhXx5vO9avi42JX4TIQzyIrL5/VZ6/x57lr5CqUAHSr7cO0rq1xtX5xD7orD6KZvv8wMRkZ6MpkvN+yGZOaNSmXFwa1EHx76Qy/BVwGoHeV6nzXrhtGZQieOfTgNh+e24VCraazmw8/t+xXKp+uswl3+fDKBpRCxUD3Rnxep49Wv4VsZR7TA37mXvZD3E0c+cH3Q8z0NDMm1ULNsrCfuJkegJW+NZ/VnI+FvmYRsifjV3IleTsGOsaM9vpVo8mK5Dx/zj0cj0CFr/0C3M17l1gnPvVT0rLWoKfrRGXH42Rn60qG17OYO3cuVlZWREdHs2rVKo0Mr2+++Yavv/6aP//8E09PTz7//HMCAwMJDg7GyKjgQdG9e3diY2P5/fffUSgUjB07lsaNG7NhwwaN2/ascNR0eTyr701CoeWSY44ymwXBc0iWJ9HEpjnjPDVPC6RQK5l5YynBGRF4mrrwo+9HGGkhkAewJfIyCwP3AvBNgyF0cymd4vuq25dZeP0YAJ/4dmR8Dc1zgT2No/fDmHx0H/kqJY2cXFnZrR9WRmV3igVIzs7hw70HuBhVsPzxhm89Zrdv80L0vgpJyMji+8Nn2Huj4G3c1NCA8a0b82YL31cuwjAjJ4/TQRGcCgzn/O3IYsuROjIZNd0daVbNnaY+7tT3dMZA/9+VIPplkK9QcvN+LNfCorkSGk1AxMNixq+ujgxfL1fa1fGmfR2vVy5Hp1ypZOOlm/x+6hJpOXlAwQzv9G6taVT5xQWYKFQqfj53kd8vXUEtBJUsLfi+V/dyy9marZAz9cRBDkcUSMa836AZUxq3LJMLxK6IW8y4uBeVEPR0r8GSFn1K5R97KSmcyZf/Rq5W0sW5NosaDNZKlV6pVjHn1h9cS72Dlb4ZP/lOwclY8xnTndFbORi3Dz2ZPjOrf6KxM/2djLPsjl4IQF+3T6hmUXI2FrkqHb/ooeSq4nAz60ED+4UlPiezc/2IThoBgJvdBkyN20lyEpqwdu1aPvrooxINLyEELi4uTJs2jenTpwOQnp6Oo6Mja9euZdiwYYSEhFCzZk2uXLlCo0YFOiuHDh2iR48eREdH4+Ki2YX6vIH7/5KjAaO9lmJrqNkNJzwrlO9uf4UaNWMrT6C5neYzRsn56bx3bTGpikw6ODRkZvU3tH77/S7oIH9HnMdAR4+VpQg/LmTprXN8f7PAQX5+o66M8tHOufNxLsdGM/7gTjLk+VS1tmVdz0E4m5WP34pSreaHM+f5/dIVAGo42PNzn5542pTeX0MTAqIe8vV+PwJj4gFwtDDj/Y4t6Otb45VczlOoVPiHP+R00D3OBt8nIj6l2H5DfV3qeDjj6+2Kr5cL9So7Y2b8Ynzn/k2kZedyKzKOGxEFxtbN+3HFlnoBXG0taFG9Ms2re9DEpxLmr+D3qlCp2OMfwrKTF4lNzwQKIno/6tySjjW8X+hMXFhyMjP2HyYwruBaGlSnFp91aIdZOS1lPshIZ8LhXdxOTsRAR5dv23Utk1wEwLq7V5l/9QgCGOhVl0VNepTqur+efJ9Jl9aRp1bQ3rE63zUcppXxJoTguzvrOR5/FUMdAxbXn4yPueb3/YvJ51gd8QcA4zzfpqmtZgLYyflRrIv4CIU6l0Y2A+jgNEGjtl6On0Jcjh+m+u60dd2Ivs7zVwuUqmTux3VCpY7HymwsjtYFhp5keGmApobXvXv38Pb2xt/fn/r16xdtb9u2LfXr1+enn35i9erVTJs2jdTU/+saKZVKjIyM2Lp1K/37P32GKj8/n/z8/KK/09PTcXd358GDB08MnBCCnQ8WEJVzAw8TX/q7f6ZxXw/HHmB/7G6MdI2ZW2shpnqaL0PdSgtn7q2VqFEzs/obNLfTbtZKJdTMvr6Vs4mhOBpasLnNuxiUYtob4OfAM6wMKVCOX9dhOPXtSg4Nfh6hKUm8fXg3CTnZeFvZsKP/iHI1UM5GRPL5kWOk5uZhYqDPvtFvlHsy3sdRqwVHgkKLPaza+niyeKj2orYVTUJaVsGsTNgDroZGk5SZU2y/DjJqujvw+3ul8xn8t5OSkc2k33bxICntiX225sb4erlR38uZxlUr4WZr+Up/h0IIxq7aSlBsIlDgOD+hTWN61auBnu6LfYmITEll0PrNKFQqLIwM+LxjezpXLX0as8fJUyrosW0dCdnZ2Bob82PHnvg6lm0W7dTDcN4/uxOA4VXq87Fvx1LNnGXIcxl0+leylPk0s/Nmke9gre/XR+MusyxsOzroMLvmaBrZVNe4bqo8hQVBc1AKBZ0cu9LHdYBG9QpccmYRlxeGq3FNBrrP00gF4GHWMfwT56KDPs1d/sDK0KfEOvEpn5GRswV9PS/cHXago1NwT8/IyKBSpUqkpaVhafkChYPFa8yaNWuEpaVlieXOnTsnAPHw4cNi2wcPHiyGDBkihBBi4cKFwsfH54m69vb2YtmyZc889ty5cwUgfaSP9JE+0kf6SJ9/wSc8PFw7Y0RLXhnni1mzZvHNN988t0xISAjVq2tueVcEs2fPZurU/yfCTktLw8PDg6ioqBdrMb9iFL4pPG2m79+M1G+p3/8FpH5L/f4vULhiZWNj80LP88oYXtOmTWPMmDHPLePlVTpVcSengvD8+Ph4nJ3/L2QXHx9ftPTo5OREQkJCsXpKpZKUlJSi+k/D0NAQw6foPVlaWv6nfrCFWFhYSP3+DyH1+7+F1O//Fv/Vfuu8YH/aV8bwsre3x97+xSTp9fT0xMnJiePHjxcZWhkZGVy6dIlJkyYB0Lx5c9LS0rh27RoNGxY4fZ84cQK1Wk3TpmWLwJOQkJCQkJCQAHj1wqQ0ICoqioCAAKKiolCpVAQEBBAQEEBWVlZRmerVq7Nz504AZDIZH330EV9++SV79uwhMDCQN998ExcXF/r16wdAjRo16NatGxMmTODy5cucO3eOyZMnM2zYMI0jGiUkJCQkJCQknscrM+OlDXPmzOHPP/8s+tvXtyAB5smTJ2nXrh0Ad+4U5FsqZObMmWRnZzNx4kTS0tJo1aoVhw4dKtLwAli/fj2TJ0+mY8eORQKqP//8s1ZtMzQ0ZO7cuU9dfvw3I/Vb6vd/AanfUr//C0j9frH9fq3lJCQkJCQkJCQkXidey6VGCQkJCQkJCYnXEcnwkpCQkJCQkJCoICTDS0JCQkJCQkKigpAMLwkJCQkJCQmJCkIyvLRk4cKFtGjRAhMTE6ysrDSqI4Rgzpw5ODs7Y2xsTKdOnQgNDS1WJiUlhZEjR2JhYYGVlRXjxo0rJo/xstG2fffv30cmkz31s3Xr1qJyT9u/adOmiuiSRpRmXNq1a/dEn955551iZaKioujZsycmJiY4ODgwY8YMlErli+yKVmjb75SUFN5//32qVauGsbEx7u7ufPDBB8Uii+HVHO+lS5dSuXJljIyMaNq0KZcvX35u+a1bt1K9enWMjIyoU6cOBw4cKLZfk+v9VUCbfq9YsYLWrVtjbW2NtbU1nTp1eqL8mDFjnhjbbt26vehuaI02/V67du0TfXo0Eh7+neP9tHuYTCajZ8+eRWVe9fE+ffo0vXv3xsXFBZlMxq5du0qs4+fnR4MGDTA0NKRKlSqsXbv2iTLa3i+eygtNSPQvZM6cOWLJkiVi6tSpGuWJFEKIRYsWCUtLS7Fr1y5x48YN0adPH+Hp6Slyc3OLynTr1k3Uq1dPXLx4UZw5c0ZUqVJFDB8+/AX1Qnu0bZ9SqRSxsbHFPvPnzxdmZmYiMzOzqBwg1qxZU6zco9/Ly6Y049K2bVsxYcKEYn1KT08v2q9UKkXt2rVFp06dhL+/vzhw4ICws7MTs2fPftHd0Rht+x0YGCgGDBgg9uzZI8LCwsTx48dF1apVxcCBA4uVe9XGe9OmTcLAwECsXr1aBAUFiQkTJggrKysRHx//1PLnzp0Turq64ttvvxXBwcHis88+E/r6+iIwMLCojCbX+8tG236PGDFCLF26VPj7+4uQkBAxZswYYWlpKaKjo4vKjB49WnTr1q3Y2KakpFRUlzRC236vWbNGWFhYFOtTXFxcsTL/xvFOTk4u1udbt24JXV1dsWbNmqIyr/p4HzhwQHz66adix44dAhA7d+58bvl79+4JExMTMXXqVBEcHCx++eUXoaurKw4dOlRURtvv8VlIhlcp0TRBt1qtFk5OTuK7774r2paWliYMDQ3Fxo0bhRBCBAcHC0BcuXKlqMzBgweFTCYTMTEx5d52bSmv9tWvX1+89dZbxbZpckG8LErb77Zt24oPP/zwmfsPHDggdHR0it3Aly9fLiwsLER+fn65tL0slNd4b9myRRgYGAiFQlG07VUb7yZNmoj33nuv6G+VSiVcXFzE119//dTyQ4YMET179iy2rWnTpuLtt98WQmh2vb8KaNvvx1EqlcLc3Fz8+eefRdtGjx4t+vbtW95NLVe07XdJ9/n/ynj/8MMPwtzcXGRlZRVtex3GuxBN7jszZ84UtWrVKrZt6NChomvXrkV/l/V7LERaanzBREREEBcXR6dOnYq2WVpa0rRpUy5cuADAhQsXsLKyolGjRkVlOnXqhI6ODpcuXarwNj9OebTv2rVrBAQEMG7cuCf2vffee9jZ2dGkSRNWr16NeEWk5crS7/Xr12NnZ0ft2rWZPXs2OTk5xY5bp04dHB0di7Z17dqVjIwMgoKCyr8jWlJev8f09HQsLCzQ0yuu0/yqjLdcLufatWvFrk0dHR06depUdG0+zoULF4qVh4KxKyyvyfX+silNvx8nJycHhULxRDJhPz8/HBwcqFatGpMmTSI5Oblc214WStvvrKwsPDw8qFSpEn379i12jf5XxnvVqlUMGzYMU1PTYttf5fHWlpKu7fL4Hgt5LZXrXyfi4uIAij1kC/8u3BcXF4eDg0Ox/Xp6etjY2BSVeZmUR/tWrVpFjRo1aNGiRbHtX3zxBR06dMDExIQjR47w7rvvkpWVxQcffFBu7S8tpe33iBEj8PDwwMXFhZs3b/Lxxx9z584dduzYUXTcp/0eCve9bMpjvJOSkliwYAETJ04stv1VGu+kpCRUKtVTx+L27dtPrfOssXv0Wi7c9qwyL5vS9PtxPv74Y1xcXIo9hLp168aAAQPw9PQkPDycTz75hO7du3PhwgV0dXXLtQ+loTT9rlatGqtXr6Zu3bqkp6ezePFiWrRoQVBQEG5ubv+J8b58+TK3bt1i1apVxba/6uOtLc+6tjMyMsjNzSU1NbXM100hkuEFzJo1i2+++ea5ZUJCQqhevXoFtahi0LTfZSU3N5cNGzbw+eefP7Hv0W2+vr5kZ2fz3XffvdAH8Yvu96PGRp06dXB2dqZjx46Eh4fj7e1d6uOWlYoa74yMDHr27EnNmjWZN29esX0vY7wlypdFixaxadMm/Pz8ijmaDxs2rOj/derUoW7dunh7e+Pn50fHjh1fRlPLTPPmzWnevHnR3y1atKBGjRr8/vvvLFiw4CW2rOJYtWoVderUoUmTJsW2/xvHu6KQDC9g2rRpjBkz5rllvLy8SnVsJycnAOLj43F2di7aHh8fT/369YvKJCQkFKunVCpJSUkpqv8i0LTfZW3ftm3byMnJ4c033yyxbNOmTVmwYAH5+fkvLF9WRfW7kKZNmwIQFhaGt7c3Tk5OT0TCxMfHA7z2452ZmUm3bt0wNzdn586d6OvrP7d8RYz3s7Czs0NXV7fouy8kPj7+mf10cnJ6bnlNrveXTWn6XcjixYtZtGgRx44do27dus8t6+XlhZ2dHWFhYa/Eg7gs/S5EX18fX19fwsLCgH//eGdnZ7Np0ya++OKLEs/zqo23tjzr2rawsMDY2BhdXd0y/36K0MojTKIIbZ3rFy9eXLQtPT39qc71V69eLSpz+PDhV865vrTta9u27RPRbc/iyy+/FNbW1qVua3lSXuNy9uxZAYgbN24IIf7vXP9oJMzvv/8uLCwsRF5eXvl1oJSUtt/p6emiWbNmom3btiI7O1ujc73s8W7SpImYPHly0d8qlUq4uro+17m+V69exbY1b978Cef6513vrwLa9lsIIb755hthYWEhLly4oNE5Hjx4IGQymdi9e7aK/pQAAAiJSURBVHeZ21telKbfj6JUKkW1atXElClThBD/7vEWouA5Z2hoKJKSkko8x6s43oWgoXN97dq1i20bPnz4E871Zfn9FLVHq9ISIjIyUvj7+xdJI/j7+wt/f/9iEgnVqlUTO3bsKPp70aJFwsrKSuzevVvcvHlT9O3b96lyEr6+vuLSpUvi7NmzomrVqq+cnMTz2hcdHS2qVasmLl26VKxeaGiokMlk4uDBg08cc8+ePWLFihUiMDBQhIaGimXLlgkTExMxZ86cF94fTdG232FhYeKLL74QV69eFREREWL37t3Cy8tLtGnTpqhOoZxEly5dREBAgDh06JCwt7d/5eQktOl3enq6aNq0qahTp44ICwsrFmKuVCqFEK/meG/atEkYGhqKtWvXiuDgYDFx4kRhZWVVFHE6atQoMWvWrKLy586dE3p6emLx4sUiJCREzJ0796lyEiVd7y8bbfu9aNEiYWBgILZt21ZsbAvve5mZmWL69OniwoULIiIiQhw7dkw0aNBAVK1a9ZV4mShE237Pnz9fHD58WISHh4tr166JYcOGCSMjIxEUFFRU5t843oW0atVKDB069Intr8N4Z2ZmFj2fAbFkyRLh7+8vIiMjhRBCzJo1S4waNaqofKGcxIwZM0RISIhYunTpU+Uknvc9aopkeGnJ6NGjBfDE5+TJk0Vl+EerqBC1Wi0+//xz4ejoKAwNDUXHjh3FnTt3ih03OTlZDB8+XJiZmQkLCwsxduzYYsbcy6ak9kVERDzxPQghxOzZs0WlSpWESqV64pgHDx4U9evXF2ZmZsLU1FTUq1dP/Pbbb08t+7LQtt9RUVGiTZs2wsbGRhgaGooqVaqIGTNmFNPxEkKI+/fvi+7duwtjY2NhZ2cnpk2bVkx24WWjbb9Pnjz51OsCEBEREUKIV3e8f/nlF+Hu7i4MDAxEkyZNxMWLF4v2tW3bVowePbpY+S1btggfHx9hYGAgatWqJfbv319svybX+6uANv328PB46tjOnTtXCCFETk6O6NKli7C3txf6+vrCw8NDTJgwQesHUkWgTb8/+uijorKOjo6iR48e4vr168WO928cbyGEuH37tgDEkSNHnjjW6zDez7onFfZz9OjRom3btk/UqV+/vjAwMBBeXl7FnuOFPO971BSZEK9I7L6EhISEhISExL8cScdLQkJCQkJCQqKCkAwvCQkJCQkJCYkKQjK8JCQkJCQkJCQqCMnwkpCQkJCQkJCoICTDS0JCQkJCQkKigpAMLwkJCQkJCQmJCkIyvCQkJCQkJCQkKgjJ8JKQkJCQkJCQqCAkw0tCQkJCQkLilef06dP07t0bFxcXZDIZu3bt0qr+vHnzkMlkT3xMTU1fTIOfgWR4SUhISDwDIQRLlizB09MTExMT+vXrR3p6+stuloTEf5Ls7Gzq1avH0qVLS1V/+vTpxMbGFvvUrFmTwYMHl3NLn49keElISEg8gxkzZrB8+XL+/PNPzpw5w7Vr15g3b97LbpaExH+S7t278+WXX9K/f/+n7s/Pz2f69Om4urpiampK06ZN8fPzK9pvZmaGk5NT0Sc+Pp7g4GDGjRtXQT0oQDK8JCQkJJ7CpUuXWLJkCZs3b6ZNmzY0bNiQCRMmcODAgZfdNAkJiacwefJkLly4wKZNm7h58yaDBw+mW7duhIaGPrX8ypUr8fHxoXXr1hXaTsnwkpCQkHgKixcvpmPHjjRo0KBom6OjI0lJSS+xVRISEk8jKiqKNWvWsHXrVlq3bo23tzfTp0+nVatWrFmz5onyeXl5rF+/vsJnuwD0KvyMEhISEq84+fn57N+/n8WLFxfbnpeXh6Wl5UtqlYSExLMIDAxEpVLh4+NTbHt+fj62trZPlN+5cyeZmZmMHj26oppYhGR4SUhISDzG9evXyc3NZdq0acycObNou0KhoH379gDs27ePadOmoVar+fjjjxk/fvzLaq6ExH+erKwsdHV1uXbtGrq6usX2mZmZPVF+5cqV9OrVC0dHx4pqYhGS4SUhISHxGHfv3sXU1JSAgIBi23v27EnLli1RKpVMnTqVkydPYmlpScOGDenfv/9T36wlJCRePL6+vqhUKhISEkr02YqIiODkyZPs2bOnglpXHMnwkpCQkHiMjIwM7OzsqFKlStG2yMhIQkNDGThwIJcvX6ZWrVq4uroCBdFWR44cYfjw4S+ryRIS/3qysrIICwsr+jsiIoKAgABsbGzw8fFh5MiRvPnmm3z//ff4+vqSmJjI8ePHqVu3Lj179iyqt3r1apydnenevfvL6IbkXC8hISHxOHZ2dqSnpyOEKNq2cOFCevToQc2aNXn48GGR0QXg6upKTEzMy2iqhMR/hqtXr+Lr64uvry8AU6dOxdfXlzlz5gCwZs0a3nzzTaZNm0a1atXo168fV65cwd3dvegYarWatWvXMmbMmCeWJCsKacZLQkJC4jE6dOhAXl4eixYtYtiwYaxfv569e/dy+fLll900CYn/LO3atSv2MvQ4+vr6zJ8/n/nz5z+zjI6ODg8ePHgRzdMYacZLQkJC4jEcHR1Zu3Yty5cvp1atWly8eJGzZ89SqVIlAFxcXIrNcMXExODi4vKymishIfEaIRPPMx8lJCQkJJ5AqVRSo0YN/Pz8ipzrz58/LznXS0hIlIi01CghISGhJXp6enz//fe0b98etVrNzJkzJaNLQkJCI6QZLwkJCQkJCQmJCkLy8ZKQkJCQkJCQqCAkw0tCQkJCQkJCooKQDC8JCQkJCQkJiQpCMrwkJCQkJCQkJCoIyfCSkJCQkJCQkKggJMNLQkJCQkJCQqKCkAwvCQkJCQkJCYkKQjK8JCQkJCQkJCQqCMnwkpCQkJCQkJCoICTDS0JCQkJCQkKigpAMLwkJCQkJCQmJCkIyvCQkJCQkJCQkKoj/ASmmWY3GouGUAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 640x480 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"contour_plot(X_normalized[:, [0, 2, 3]], y)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "notes"
|
||
}
|
||
},
|
||
"source": [
|
||
"Teraz funkcja kosztu ma wykres o bardzo regularnym kształcie – algorytm gradientu prostego zastosowany w takim przypadku bardzo szybko znajdzie minimum funkcji kosztu."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Liczba kroków: 9511\n",
|
||
"Koszt: 80221516127.09409\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"theta_start = np.zeros((n + 1, 1))\n",
|
||
"theta_best, history = gradient_descent(\n",
|
||
" J, dJ, theta_start, X_normalized, y, alpha=0.1, eps=0.1\n",
|
||
")\n",
|
||
"print(f\"Liczba kroków: {len(history)}\")\n",
|
||
"print(f\"Koszt: {history[-1][0]}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 29,
|
||
"metadata": {
|
||
"slideshow": {
|
||
"slide_type": "subslide"
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAH+CAYAAABN3JWZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaIElEQVR4nO3dd3hUZeL28XsyqaSSSgJJCKEEQq8CKigoILL2gogU14oi6voTdhddX2WRVVlddbEhRRREXWQVC0g19JLQIfRACAQIaYS0mfP+ER3JEspIkjNJvp/rmmud55yZ3OMew9w85zzHYhiGIQAAAABAOW5mBwAAAAAAV0RZAgAAAIAKUJYAAAAAoAKUJQAAAACoAGUJAAAAACpAWQIAAACAClCWAAAAAKAClCUAAAAAqABlCQAAAAAqQFkCAAAAgApQls6xYsUKDRo0SFFRUbJYLPr666+den1hYaGGDx+uNm3ayN3dXbfeemuF+y1btkwdO3aUl5eXmjZtqunTp19xdgAAAACVi7J0jjNnzqhdu3Z69913f9frbTabfHx8NHr0aPXt27fCfQ4cOKCBAwfquuuuU0pKisaMGaM//vGP+vHHH68kOgAAAIBKZjEMwzA7hCuyWCyaN29eudmhoqIi/eUvf9Hs2bOVnZ2t1q1ba9KkSerdu/d5rx8+fLiys7PPm516/vnntWDBAm3bts0xdu+99yo7O1s//PBDFX0aAAAAAM5iZskJTzzxhFavXq05c+Zoy5Ytuuuuu9S/f3/t2bPnst9j9erV58069evXT6tXr67suAAAAACuAGXpMqWlpWnatGn64osvdM011yg+Pl5/+tOfdPXVV2vatGmX/T7Hjh1TREREubGIiAjl5ubq7NmzlR0bAAAAwO/kbnaAmmLr1q2y2Wxq3rx5ufGioiKFhISYlAoAAABAVaEsXab8/HxZrVZt3LhRVqu13DY/P7/Lfp8GDRro+PHj5caOHz+ugIAA+fj4VEpWAAAAAFeOsnSZOnToIJvNpszMTF1zzTW/+326d++u7777rtzYokWL1L179yuNCAAAAKASUZbOkZ+fr7179zqeHzhwQCkpKQoODlbz5s01ZMgQPfDAA3rjjTfUoUMHnThxQosXL1bbtm01cOBASdKOHTtUXFysrKws5eXlKSUlRZLUvn17SdKjjz6qd955R//3f/+nkSNHasmSJZo7d64WLFhQ3R8XAAAAwEWwdPg5li1bpuuuu+688WHDhmn69OkqKSnRK6+8opkzZyo9PV2hoaG66qqr9NJLL6lNmzaSpMaNG+vQoUPnvce5/5qXLVump59+Wjt27FCjRo00fvx4DR8+vMo+FwAAAADnUZYAAAAAoAIsHQ4AAAAAFaAsAQAAAEAF6vwCD3a7XUePHpW/v78sFovZcQAAAABUIcMwlJeXp6ioKLm5XXzuqM6XpaNHjyo6OtrsGAAAAACq0eHDh9WoUaOL7lPny5K/v7+ksn9ZAQEBJqcBAAAAUJVyc3MVHR3t6AEXU+fL0q+n3gUEBFCWAAAAgDrici7BYYEHAAAAAKgAZQkAAAAAKkBZAgAAAIAKUJYAAAAAoAKUJQAAAACoAGUJAAAAACpAWQIAAACAClCWAAAAAKAClCUAAAAAqABlCQAAAAAqQFkCAAAAgApQlgAAAACgApQlAAAAAKgAZQkAAAAAKkBZciElNrvmp6TLMAyzowAAAAB1nrvZAVDmRF6RRn26SesOZim/qFRDusWaHQkAAACo05hZchFrD5zSuoNZkqS//Xe7Nh7KMjkRAAAAULdRllzEzW2jNLJnnCSpxGbo0VmblJlbaHIqAAAAoO6iLLmQcTcl6KomwZLKTst77NNNKi61m5wKAAAAqJsoSy7Ew+qmd+7rqMhAb0nSxkOn9f++3W5yKgAAAKBuoiy5mFA/L713fyd5upf9XzNrTZrmrj9scioAAACg7qEsuaB20UF65dbWjud//XqbUg5nmxcIAAAAqIMoSy7q7s7RGnpV2fLhxTa7Hpu1USfzi0xOBQAAANQdlCUXNv7mVuocW1+SlJFTqFGfblKJjQUfAAAAgOpAWXJhnu5u+vf9HRXu7yVJWnsgS3//bqfJqQAAAIC6gbLk4sL9vTXl/k7ysFokSdNWHtS85CMmpwIAAABqP8pSDdAptr5e+sNvCz6M/WqrtqXnmJgIAAAAqP0oSzXEfd1idG+XaElSUaldj3yyUVlnik1OBQAAANRelKUa5KVbEtU+OkiSlJ59lgUfAAAAgCpEWapBvNyteu/+Tgr1K1vwYfX+U3r52x0mpwIAAABqJ8pSDdMg0FvvD+0kT2vZ/3UzVx/S7HVpJqcCAAAAah/KUg3UKba+XrnttwUfXpi/TesOZJmYCAAAAKh9KEs11N2dozWyZ5wkqcRm6LFZG3XkdIHJqQAAAIDag7JUg/35pgRd0yxUknTqTLEenrlRBcWlJqcCAAAAagfKUg3mbnXT24M7qHFIPUnSjoxcPffFFhmGYXIyAAAAoOajLNVwQfU89dGwzvLzcpckLdiaoXeW7DU5FQAAAFDzUZZqgabh/nrr3vayWMqev7EoVQu3HzM3FAAAAFDDuVRZstlsGj9+vOLi4uTj46P4+Hi9/PLLFz2tbNmyZbJYLOc9jh2rW2WhT8sIPdevheP505+naPexPBMTAQAAADWbu9kBzjVp0iRNmTJFM2bMUGJiojZs2KARI0YoMDBQo0ePvuhrd+/erYCAAMfz8PDwqo7rch7rFa9dGXn67+ajOlNs0x9nrtd/R12t+r6eZkcDAAAAahyXKkurVq3SLbfcooEDB0qSGjdurNmzZ2vdunWXfG14eLiCgoKqOKFrs1gsmnRHWx04eUZb03N0OOusRn22STNGdpWH1aUmEQEAAACX51LfoHv06KHFixcrNTVVkrR582YlJSVpwIABl3xt+/btFRkZqRtuuEErV6684H5FRUXKzc0t96hNfDyt+uCBTgr185Ikrdp3Sn/773ZWyAMAAACc5FJlaezYsbr33nuVkJAgDw8PdejQQWPGjNGQIUMu+JrIyEi99957+uqrr/TVV18pOjpavXv31qZNmyrcf+LEiQoMDHQ8oqOjq+rjmCYy0EfvD+0kz19mkz5dm6bpqw6aGwoAAACoYSyGC005zJkzR88995xee+01JSYmKiUlRWPGjNHkyZM1bNiwy36fXr16KSYmRp988sl524qKilRUVOR4npubq+joaOXk5JS75qk2mJd8RE9/vlmS5GaRpg7vouta1L1ruQAAAIBf5ebmKjAw8LK+/7vUNUvPPfecY3ZJktq0aaNDhw5p4sSJTpWlrl27KikpqcJtXl5e8vLyqpS8ru62Do20L/OM3lm6V3ZDevKzZH31WA+1aOBvdjQAAADA5bnUaXgFBQVycysfyWq1ym63O/U+KSkpioyMrMxoNdYzNzTXTW0aSJLyi0r14Iz1OplfdIlXAQAAAHCpmaVBgwZpwoQJiomJUWJiopKTkzV58mSNHDnSsc+4ceOUnp6umTNnSpLefPNNxcXFKTExUYWFhfroo4+0ZMkSLVy40KyP4VLc3Cx64672Opy1WlvTc3Tk9Fk9+slGffpQN3m5W82OBwAAALgsl5pZevvtt3XnnXfq8ccfV8uWLfWnP/1JjzzyiF5++WXHPhkZGUpLS3M8Ly4u1rPPPqs2bdqoV69e2rx5s3766Sf16dPHjI/gknw8rfrwgc6KCCg7/XDDodMa99VWVsgDAAAALsKlFngwgzMXeNV029JzdNd7q3W2xCZJeq5fC426rqnJqQAAAIDq48z3f5eaWULVat0wUP+8p53j+Ws/7tb3WzNMTAQAAAC4LspSHdO/daSe69fC8fzpuSnaeiTHxEQAAACAa6Is1UGP947X7R0bSpIKS+z648z1OpZTaHIqAAAAwLVQluogi8Wiibe3UefY+pKk47lF+uPM9SooLjU5GQAAAOA6KEt1lJe7Ve8P7aRG9X0kSdvSczV6drJs9jq93gcAAADgQFmqw0L8vDRteBf5e5fdbuunnZl6+dsdJqcCAAAAXANlqY5rFuGv9+7vJHc3iyRp+qqD+jjpgMmpAAAAAPNRlqCeTUM18fY2jucvL9ihhduPmZgIAAAAMB9lCZKkuzpHa/T1ZTeoNQxp9JxkbT6cbW4oAAAAwESUJTg8fUNz3do+SlLZkuIPztigw1kFJqcCAAAAzEFZgoPFYtGkO9uqa1ywJOlkfpFGTl+vnLMlJicDAAAAqh9lCeV4uVv1wdBOahLmK0nak5mvx2ZtVHGp3eRkAAAAQPWiLOE8QfU8NW14FwX7ekqSVu07pT/P2yrD4B5MAAAAqDsoS6hQbIivPnygszzdyw6RLzce0TtL9pqcCgAAAKg+lCVcUKfY+nrznvaO528sStXXyenmBQIAAACqEWUJF3VTm0iNG5DgeP7cl5u1au9JExMBAAAA1YOyhEt6+NomGtItRpJUYjP0yCcbtTMj1+RUAAAAQNWiLOGSLBaLXvpDovq2jJAk5RWVavi0dUrPPmtyMgAAAKDqUJZwWdytbnp7cAd1iAmSJB3PLdKwj9cpp4B7MAEAAKB2oizhsvl4WjV1WBfFhZbdg2lvZr4emrlBhSU2k5MBAAAAlY+yBKcE+3pqxoiuCvUruwfTuoNZemZuiux27sEEAACA2oWyBKfFhNTTtOFdVc/TKkn6busx/b9vd3DTWgAAANQqlCX8Lm0aBerfQzrK6maRJE1fdVAf/rzf5FQAAABA5aEs4Xfr3SJcr97exvH879/t0vwUbloLAACA2oGyhCtyV+doPXNDc8fzP33BTWsBAABQO1CWcMWevL6pBnflprUAAACoXShLuGIWi0Uv35Kovi3DJZXdtHbYx+t0OKvA5GQAAADA70dZQqVwt7rpX4M7qH10kCQpM69IQ6eu1cn8InODAQAAAL8TZQmVpp6nu6YN76Km4X6SpIOnCjR82jrlFZaYnAwAAABwHmUJlaq+r6dmjuyqyEBvSdK29Fw9PHOjCktsJicDAAAAnENZQqWLCvLRJw92VVA9D0nS6v2n9PTnKbLZuWktAAAAag7KEqpE03B/TRveRT4eVknS99uOafz8bTIMChMAAABqBsoSqkyHmPp6b2gnubtZJEmfrU3TP3/aY3IqAAAA4PJQllClejUP0xt3t3M8/9fiPZqx6qB5gQAAAIDLRFlClbulfUO9OKiV4/nfvtmu/24+amIiAAAA4NIoS6gWI3rG6cnrm0qSDEN6dm6KVqSeMDkVAAAAcGGUJVSbZ25orsFdYyRJJTZDj87aqOS00yanAgAAACpGWUK1sVgseuXW1uqf2ECSVFBs0/Bp67XrWK7JyQAAAIDzUZZQraxuFr15b3v1iA+RJOWcLdHQqet08OQZk5MBAAAA5VGWUO28Paz64IHOah8dJEk6kVekIR+tVUbOWXODAQAAAOegLMEUfl7umj6iixIa+EuS0rPP6v6P1upUfpHJyQAAAIAylCWYJqiep2Y+2FWxIfUkSftOnNEDH69TbmGJyckAAAAAyhJMFu7vrVkPdlODAG9J0vajuXpw+nqdLbaZnAwAAAB1HWUJposOrqdZf+ymYF9PSdL6g6f16KyNKi61m5wMAAAAdRllCS6habifZo7sKn8vd0nS8tQTGvN5smx2w+RkAAAAqKsoS3AZrRsG6uMRXeTtUXZYfrf1mMb9Z4vsFCYAAACYgLIEl9KlcbDeu7+TPKwWSdLcDUf0yoKdMgwKEwAAAKoXZQkup3eLcL15Twe5lfUlfbzygCYvSjU3FAAAAOocyhJc0sC2kXr19raO528v2at3luwxMREAAADqGsoSXNbdXaL10h8SHc9fX5iqD1fsNzERAAAA6hLKElzasB6N9ZebWjqeT/hup2auPmheIAAAANQZlCW4vIeubaJnb2jueP7C/O2asy7NxEQAAACoCyhLqBGe7NNMT1zX1PF83Lytmpd8xMREAAAAqO0oS6gxnr2xuR66Jk6SZBjSs3M3a8GWDJNTAQAAoLaiLKHGsFgs+vNNLfVA91hJkt2QnpqTrEU7jpucDAAAALURZQk1isVi0d8GJeqeztGSpFK7oVGfbtKy3ZkmJwMAAEBtQ1lCjePmZtHfb2+jW9tHSZKKbXY98slGrdp70uRkAAAAqE0oS6iRrG4WvX5XO93UpoEkqajUrgdnbND6g1kmJwMAAEBtQVlCjeVuddNb93ZQ35YRkqSzJTaNmLZeyWmnTU4GAACA2oCyhBrNw+qmd4d00LXNwyRJ+UWlemDqOgoTAAAArhhlCTWel7tVHwztpJ5NQyRJeRQmAAAAVALKEmoFbw+rPnqgi3rEly9MKYezzQ0GAACAGouyhFrDx9OqqcPKF6ahH62lMAEAAOB3oSyhVvm1MHVvck5hmkphAgAAgPMoS6h1fDyt+nj4OYWpkMIEAAAA51GWUCv5eFo1dXhnXdUkWNJvhWkzhQkAAACXibKEWquep7s+Ht6lXGG6n8IEAACAy0RZQq1GYQIAAMDvRVlCrfdrYeoWV74wbTmSbW4wAAAAuDTKEuqEep7umjaifGEa8hEzTAAAALgwyhLqjF8LU9dzZ5g+WquNh7JMTgYAAABXRFlCnVLP013Tz51hKirV0KnrtGb/KZOTAQAAwNVQllDnlBWmrrqmWagkqaDYpuHT1ilpz0mTkwEAAMCVUJZQJ/l4WvXhA511XYswSVJhiV0jZ6zX0l2ZJicDAACAq6Asoc7y9rDqvaGddGOrCElScaldD3+yQQu3HzM5GQAAAFwBZQl1mpe7Ve8O6aiBbSMlSSU2Q49/ukkLtmSYnAwAAABmoyyhzvOwuumte9rr9g4NJUmldkNPzt6keclHTE4GAAAAM1GWAEnuVje9dlc73dM5WpJkN6Rn5m7W3PWHTU4GAAAAs1CWgF9Y3SyaeHsbDb0qVpJkGNL/fbVFn6w5ZHIyAAAAmIGyBJzDzc2i/3dLoh68Os4xNv7rbZqadMDEVAAAADADZQn4HxaLRX8d2FKP9453jL387Q79e9leE1MBAACgurlUWbLZbBo/frzi4uLk4+Oj+Ph4vfzyyzIM47Jev3LlSrm7u6t9+/ZVGxS1nsVi0XP9WmhM32aOsX/8sFuTfth12ccjAAAAajZ3swOca9KkSZoyZYpmzJihxMREbdiwQSNGjFBgYKBGjx590ddmZ2frgQceUJ8+fXT8+PFqSozazGKxaEzf5vJyt2rSD7skSVOW7VN+Yale+kOi3NwsJicEAABAVXKpsrRq1SrdcsstGjhwoCSpcePGmj17ttatW3fJ1z766KO67777ZLVa9fXXX1dxUtQlj/WOl5+3u16Yv02GIX2y5pDyi0r12p1t5W51qclZAAAAVCKX+qbXo0cPLV68WKmpqZKkzZs3KykpSQMGDLjo66ZNm6b9+/frxRdfvOTPKCoqUm5ubrkHcClDr4rV5LvbyfrLbNK85HQ99ukmFZbYTE4GAACAquJSZWns2LG69957lZCQIA8PD3Xo0EFjxozRkCFDLviaPXv2aOzYsZo1a5bc3S89UTZx4kQFBgY6HtHR0ZX5EVCL3dahkaYM6SjPX2aTFu04rgdnrNeZolKTkwEAAKAquFRZmjt3rj799FN99tln2rRpk2bMmKHXX39dM2bMqHB/m82m++67Ty+99JKaN29+WT9j3LhxysnJcTwOH+amo7h8NyY20LQRXVTP0ypJWrn3lIZOXaucghKTkwEAAKCyWQwXWtorOjpaY8eO1ahRoxxjr7zyimbNmqVdu3adt392drbq168vq9XqGLPb7TIMQ1arVQsXLtT1119/0Z+Zm5urwMBA5eTkKCAgoPI+DGq1jYdOa8S0dcotLJtVahkZoJkjuyrM38vkZAAAALgYZ77/u9TMUkFBgdzcykeyWq2y2+0V7h8QEKCtW7cqJSXF8Xj00UfVokULpaSkqFu3btURG3VQp9j6mvNwd4X6eUqSdmbk6p73Vys9+6zJyQAAAFBZXGo1vEGDBmnChAmKiYlRYmKikpOTNXnyZI0cOdKxz7hx45Senq6ZM2fKzc1NrVu3Lvce4eHh8vb2Pm8cqGytogI095Huuv+jtTqaU6j9J8/orimrNOuP3dQkzM/seAAAALhCLjWz9Pbbb+vOO+/U448/rpYtW+pPf/qTHnnkEb388suOfTIyMpSWlmZiSuA3TcL89MVjPRQX6itJOppTqLvfX60dR1llEQAAoKZzqWuWzMA1S6gMJ/KKNHTqWu06lidJCvB219ThXdSlcbDJyQAAAHCuGnvNElBThfl76fOHu6tDTJAkKbewVPd/tFaLdhw3NxgAAAB+N8oSUEkC63no0z9207XNwyRJRaV2PTpro+ZuYHl6AACAmoiyBFSiep7u+uiBzrqlfZQkyWY39H9fbtGUZftUx894BQAAqHEoS0Al83R30z/vbq+RPeMcY5N+2KUJC3bKbqcwAQAA1BSUJaAKuLlZNP7mlvq//i0cYx8lHdCzX2xWia3i+4YBAADAtVCWgCpisVj0eO+mevX2NnKzlI3NS07XQzM3qKC41NxwAAAAuCTKElDF7u0aoyn3d5Kne9l/bst2n9CQj9bq9Jlik5MBAADgYihLQDXol9hAn4zsKn9vd0lSclq27np/tY5mnzU5GQAAAC6EsgRUk25NQvT5w90V5u8lSdqbma87pqzS3sw8k5MBAACgIpQloBq1igrQV4/2UOOQepKkjJxC3fneam08lGVyMgAAAPwvyhJQzWJC6umLR3soMSpAkpRdUKL7PlyrH7YdMzkZAAAAzkVZAkwQ5u+lOQ9fpaubhkqSikrteuzTjZqx6qC5wQAAAOBAWQJM4u/toY+Hd9HtHRpKkgxDevG/2zXxO25eCwAA4AooS4CJPN3d9Mbd7TTqunjH2Psr9uupz1NUVGozMRkAAAAoS4DJLBaLnuuXoFdube24ee03m49q2MfrlHO2xNxwAAAAdRhlCXAR918Vqw+Gdpa3R9l/lmv2Z+mu91ZxLyYAAACTUJYAF9K3VYRmP3SVgn09JUmpx/N1+79XaWdGrsnJAAAA6h7KEuBiOsTU138e66HYX+7FdCy3UHe/t1or9540ORkAAEDdQlkCXFDjUF999VgPtYsOkiTlFZVq+LR1+jo53dxgAAAAdQhlCXBRoX5emv1QN/VJCJckldgMjfk8RW8v3iPDYGlxAACAqkZZAlxYPU93vT+0k+7rFuMYe2NRqv70xRYVl9pNTAYAAFD7UZYAF+duddOEW1vr+f4JjrGvNh3R0KlrlV1QbGIyAACA2o2yBNQAFotFj/WO17+HdJSXe9l/tmsPZOn2f6/SwZNnTE4HAABQO1GWgBrkpjaRmv3wVQr1K1tafP/JM7rt3yu14WCWyckAAABqH8oSUMN0jKmveY/3VNNwP0nS6YIS3ffhWs1PYaU8AACAykRZAmqg6OB6+uqxHurZNESSVGyz66k5KfoXK+UBAABUGsoSUEMF+nho+oiuurdLtGNs8qJUPfvFZhWV2kxMBgAAUDtQloAazMPqpom3t9HYAb+tlPefTekaOnUdK+UBAABcIcoSUMNZLBY92iteU85ZKW/dgSzd9u9VOsBKeQAAAL8bZQmoJQa0idScc1bKO3DyjG59d6VW7j1pcjIAAICaibIE1CIdflkpr3lE2Up5OWdL9MDH6/TJ6oPmBgMAAKiBKEtALfPrSnnXJ4RLkmx2Q+Pnb9f4r7epxGY3OR0AAEDNQVkCaiF/bw99+EBnPXxtE8fYJ2sOafg0Fn4AAAC4XJQloJayuln055ta6rU728rDapEkrdx7Sre+u1J7M/NNTgcAAOD6KEtALXdX52jNfugqhfiWLfxw8FSBbvv3Sq1IPWFyMgAAANdGWQLqgM6Ng/X1qJ5KaOAvScorLNXwaes0beUBGYZhcjoAAADXRFkC6ohfF364oVWEJMluSC99s0N/nrdNxaUs/AAAAPC/KEtAHeLr5a737++kx3rHO8Zmr0vT0KlrlXWGhR8AAADORVkC6hg3N4ue75+gf97TTp7uZb8C1h7I0h/eSdKOo7kmpwMAAHAdlCWgjrqtQyPNefgqhfp5SZKOnD6rO6as0rdbjpqcDAAAwDVQloA6rGNMfX3zZE+1bRQoSTpbYtMTnyVr0g+7ZLOz8AMAAKjbKEtAHRcZ6KO5j3TXHR0bOcamLNunkdPXK6egxMRkAAAA5qIsAZC3h1Wv39VWLw5qJatb2Q1sl6ee0C3vJin1eJ7J6QAAAMxBWQIgSbJYLBrRM06fPNhV9et5SPrlBrbvrtSP24+ZnA4AAKD6UZYAlNMjPlT/feJqtYoMkCSdKbbpkU82avKiVNm5jgkAANQhlCUA5/n1BrZ/aBflGPvX4j16+JONyivkOiYAAFA3UJYAVMjH06q37m2vP9+UoF8uY9JPO4/r1ndXat+JfHPDAQAAVAPKEoALslgsevjaeE0f0VWBPmXXMe07cUa3vrNSP2zjOiYAAFC7UZYAXNK1zcP03yd6qkWEvyQpr6hUj87aqFe/36VSm93kdAAAAFWDsgTgssSG+Oo/j/fQzW0jHWPvLd+nBz5ep5P5RSYmAwAAqBqUJQCXzdfLXW8P7qAXbm4l918uZFq175QGvZ2k5LTTJqcDAACoXJQlAE6xWCwaeXWcPnvoKoX5e0mSMnIKdff7qzVrzSEZBsuLAwCA2oGyBOB36RoXrAVPXq0ujetLkkpshv769TY9+8VmnS22mZwOAADgylGWAPxu4QHe+uyhq/Tg1XGOsf9sStftU1bp0KkzJiYDAAC4cpQlAFfEw+qm8Te30tuDO6iep1WStDMjV4PeTtLincdNTgcAAPD7UZYAVIpB7aI0f1RPNQnzlSTlFpbqwRkb9MbC3bLZuY4JAADUPJQlAJWmWYS/5o/qqf6JDRxjby/Zq6FT1+pEHsuLAwCAmoWyBKBS+Xt7aMr9HTVuQIKs5ywvftO/ftbqfadMTgcAAHD5KEsAKp3FYtEjveL12R+7KfyX5cVP5BVpyEdr9O7SvbJzWh4AAKgBKEsAqky3JiH67qlrdHXTUEmS3ZBe+3G3Rkxfr6wzxSanAwAAuDjKEoAqFernpRkju+rpvs1lKTsrT8tTT+imt37WhoNZ5oYDAAC4iCsqSyUlJTp8+LB2796trCy+9AComNXNoqf6NtOsB7sp1M9TknQst1D3fLBGH6zYJ8PgtDwAAOB6nC5LeXl5mjJlinr16qWAgAA1btxYLVu2VFhYmGJjY/XQQw9p/fr1VZEVQA3Xs2movht9jbrFBUuSbHZDf/9ulx6auUHZBZyWBwAAXItTZWny5Mlq3Lixpk2bpr59++rrr79WSkqKUlNTtXr1ar344osqLS3VjTfeqP79+2vPnj1VlRtADRUe4K1P/9hNT1zX1DH2085MDfxXklIOZ5sXDAAA4H9YDCfOfxk8eLD++te/KjEx8aL7FRUVadq0afL09NTIkSOvOGRVys3NVWBgoHJychQQEGB2HKBOWbY7U09/nqLTBSWSJA+rRc/3T9DInnFy+2XZcQAAgMrkzPd/p8pSbURZAsx1NPusnpydrI2HTjvGercI0xt3tVOIn5eJyQAAQG3kzPd/VsMDYKqoIB/NefgqPdKriWNs2e4TGvDWz1q196SJyQAAQF3nVFnKy8vTs88+61jQoWnTprrppps0YcIE7dq1q6oyAqjlPKxuGjegpWaO7OpYLS8zr0hDpq7V6z/uVqnNbnJCAABQFzl1Gt5tt92mjRs36qGHHlJERITOnj2r559/Xo0bN9aePXt08803a8qUKYqKiqrKzJWK0/AA15KZV6hn527Wz3t+m1XqHFtfbw3uoIZBPiYmAwAAtUGVXbPk6+urpKQkdejQwTHm7++vzZs3y2q1asKECVqwYIGSkpIUFxf3+z9BNaIsAa7Hbjf0/or9en3hbtnsZb+iArzd9Y8726l/6wYmpwMAADVZlV2zFBERoYKCggq3xcbG6oMPPtBjjz2mp556ypm3BYBy3Nwseqx3vL54tLsa1S+bTcotLNWjszZq/NfbVFhiMzkhAACoC5wqS0888YRGjhypzZs3X3Cf+++/X0uWLLniYADQMaa+Foy+RgPbRDrGPllzSLe+u1J7M/NMTAYAAOoCp8rSM888o0GDBqljx47q37+/3nvvPdntdlksv90PZc6cOQoNDa30oADqpkAfD71zXwf9/bY28nIv+5W161ieBr29UrPXpamO3/0AAABUod91n6W1a9fq9ddf13fffaezZ8/Kz89PoaGhysnJUWFhoaZPn6677rqrKvJWOq5ZAmqO3cfy9OTsTUo9nu8Yu7FVhF69o62CfT1NTAYAAGqKarspbXFxsTZt2qTU1FTl5uYqNDRU119/vcLDw3/vW1Y7yhJQs5wttunlBTv02do0x1i4v5feuLudrmkWZmIyAABQE1RZWUpLS1NMTMxlB0lPT1fDhg0ve38zUJaAmmnh9mN6/qstOl1Q4hj749Vxeq5/C3m5W01MBgAAXFmVrYbXpUsXPfLII1q/fv0F98nJydGHH36o1q1b66uvvnLm7QHgst2Y2EA/jrlW1zT77RrJj5IO6NZ3Vyn1OIs/AACAK+fUzNKpU6c0YcIEffzxx/L29lanTp0UFRUlb29vnT59Wjt27ND27dvVsWNHjR8/XjfddFNVZq8UzCwBNZvdbmjaqoOa9P0uFdvskiQvdzf9ZWBLDb0qttwCNAAAAFV+zdLZs2cdN589dOiQzp49q9DQUHXo0EH9+vVT69atf3f46kZZAmqHnRm5empOcrnFH65rEaZ/3NlOYf5eJiYDAACupNoWeKgNKEtA7VFYYtOr3+/S9FUHHWOhfp567c52ui6h5iw8AwAAqk6VXbMkSaNGjdLUqVO1adMmlZSUXPoFAFBNvD2s+tsfEjVtRBeF+pXNJp3ML9aI6es1/uttKiguNTkhAACoSZwuSxs2bNDo0aPVuXNn+fn5qUOHDho5cqTefvttJSUlKT8//9JvcgE2m03jx49XXFycfHx8FB8fr5dffvmiN51MSkpSz549FRISIh8fHyUkJOif//zn784AoOa7rkW4fhhzjfqcM5v0yZpDuumtn7Xx0GkTkwEAgJrE3dkXrF27Vna7Xbt27VJycrLjMX/+fJ0+fVpubm5q2rSp+vbtqyeffFItWrS47PeeNGmSpkyZohkzZigxMVEbNmzQiBEjFBgYqNGjR1f4Gl9fXz3xxBNq27atfH19lZSUpEceeUS+vr56+OGHnf14AGqJUD8vfTSss2atTdOEBTtUWGLXwVMFuuu9VXqsd7ye6tNcnu5O/30RAACoQyr1mqVDhw4pOTlZGzdu1A8//KDt27dr4cKFuvrqqy/r9TfffLMiIiI0depUx9gdd9whHx8fzZo167Jz3H777fL19dUnn3xyyX25Zgmo/Q6cPKNn5qYoOS3bMdYqMkCT72mnhAb8dw8AQF1SpdcsXUxsbKxuvfVWvfzyy1q/fr3GjRun559//rJf36NHDy1evFipqamSpM2bNyspKUkDBgy47PdITk7WqlWr1KtXL6fzA6id4kJ99cUj3fVcvxbysJYtJb4jI1d/eHul3l++TzZ7nV7nBgAAXECVroZ36NAhJSYmXvZ1THa7XX/+85/1j3/8Q1arVTabTRMmTNC4ceMu+dpGjRrpxIkTKi0t1d/+9jeNHz++wv2KiopUVFTkeJ6bm6vo6GhmloA6YvvRHD3z+WbtPufGtV0a19cbd7VXTEg9E5MBAIDqYNrM0v+KjY3VmjVrLnv/uXPn6tNPP9Vnn32mTZs2acaMGXr99dc1Y8aMS772559/1oYNG/Tee+/pzTff1OzZsyvcb+LEiQoMDHQ8oqOjLzsfgJovMSpQ85/oqUeubaJf71e7/uBp9X9rhWavS7vogjIAAKBucan7LEVHR2vs2LEaNWqUY+yVV17RrFmztGvXrst+n1deeUWffPKJdu/efd42ZpYA/GrdgSw9+0WKDmeddYxd1yJMk+5oq/AAbxOTAQCAquIyM0vOKigokJtb+UhWq1V2u92p97Hb7eUK0bm8vLwUEBBQ7gGgbuoaF6zvn7pWg7v+NsO8dPcJ3fjmCi3YkmFiMgAA4AqcXjq8Kg0aNEgTJkxQTEyMEhMTlZycrMmTJ2vkyJGOfcaNG6f09HTNnDlTkvTuu+8qJiZGCQkJkqQVK1bo9ddfv+BS4wBwLj8vd028va1uaBWh//tyq07mFym7oESjPtuk77ZG6v/dkqiQX25wCwAA6haXKktvv/22xo8fr8cff1yZmZmKiorSI488ohdeeMGxT0ZGhtLS0hzP7Xa7xo0bpwMHDsjd3V3x8fGaNGmSHnnkETM+AoAa6vqECC18ur7++vVWfbf1mCRpwdYMrd5/Si/f0loD20aanBAAAFQ3l7pmyQzcZwnAuQzD0DdbMvTi/G06XVDiGL+pTQP9v1taK5RZJgAAarQae80SAJjNYrHoD+2itPDpXuqf2MAx/t3WY7ph8nJ9s/koK+YBAFBHUJYAoAJh/l6acn9HvXNfBwX7ekqSTheU6MnZyXps1iadyKt4ERkAAFB7UJYA4AIsFotubhulhU9fq4Ftfrtm6Yftx3TDP5drfko6s0wAANRilCUAuIRQPy+9O6Sj3r2vo0J+mWXKLijRU3NS9MgnG5WZV2hyQgAAUBUoSwBwmQa2jSybZTpnZbyFO47rhskr9HUys0wAANQ2lCUAcEKIn5feva+jpgzpqFC/slmmnLMlGvN5iv44Y4Mycs6anBAAAFQWyhIA/A4D2kRq4dO9NKhdlGNs8a5M3TB5hT5ZfVB2O7NMAADUdJQlAPidgn099fbgDnrv/k4K8y+7/1J+UanGz9+uu99frb2ZeSYnBAAAV4KyBABXqH/rBvrp6V66t0u0Y2zDodO66a0k/WvxHhWX2k1MBwAAfi/KEgBUgsB6Hnr1jrb67KFuahxST5JUbLNr8qJU3fz2z9qUdtrkhAAAwFmUJQCoRD3iQ/XDmGv1WO94Wd0skqTU4/m6Y8oq/e2/23WmqNTkhAAA4HJRlgCgknl7WPV8/wT994meat0wQJJkGNL0VQd14z9XaOnuTJMTAgCAy0FZAoAqkhgVqK8f76k/35Qgb4+yX7fp2Wc1Ytp6jZmTrFP5RSYnBAAAF0NZAoAq5G5108PXxuvHMdeqZ9MQx/jXKUfVd/JyfbHhMDezBQDARVGWAKAaxIb4ataD3fSPO9sq0MdDknS6oETPfblF936whmXGAQBwQZQlAKgmFotFd3eO1k/P9NLNbSMd42sPZGnAWz/r9R93q7DEZmJCAABwLsoSAFSzMH8vvXNfR00f0UUxwWXLjJfYDL2zdK/6vblCK1JPmJwQAABIlCUAME3vFuFa+PS1euK6pvKwli0zfuhUgR74eJ2e+GyTMnMLTU4IAEDdRlkCABN5e1j1p34t9N3oa9Q1Ltgx/u2WDPV5Y7k+WX1QNjsLQAAAYAbKEgC4gGYR/vr84av02p1tVb9e2QIQeUWlGj9/u26fskrb0nNMTggAQN1DWQIAF2GxWHRX52gtfra37u7cyDG++XC2/vBOkl7+dofyi0pNTAgAQN1CWQIAFxPs66l/3NlOnz98lZqG+0mS7IY0NemA+r6xXN9sPsq9mQAAqAaUJQBwUd2ahOi70dfouX4t5OVe9uv6WG6hnpydrCEfrdWe49ybCQCAqkRZAgAX5unuplHXNdWip3vp+oRwx/iqfac04K2f9ffvdnJqHgAAVYSyBAA1QExIPX08vIs+eqCzooN9JEmldkMfrNivPm8s0/yUdE7NAwCgklGWAKAG6dsqQoue7qUxfZvJ85dT847nFumpOSka/OEapXJqHgAAlcZi1PG/iszNzVVgYKBycnIUEBBgdhwAuGxppwr0/77drp92ZjrGrG4WjejRWE/1bSZ/bw8T0wEA4Jqc+f7PzBIA1FAxIfX00bAu+nh4Z8UE15Mk2eyGPko6oOvfWK6vkzk1DwCAK0FZAoAa7vqECC18+lo93be5Y9W8E3lFGvN5iu75YI12ZuSanBAAgJqJ0/A4DQ9ALXI4q0D/79sdWrTjuGPMzSIN7hqjZ29soWBfTxPTAQBgPme+/1OWKEsAaqGluzL10jfbdfBUgWMswNtdY/o219DusfKwcmIBAKBuoiw5gbIEoLYqKrXp46SDemfJHp0ptjnG48N89cKgRPVqHmZiOgAAzEFZcgJlCUBtl5lbqNd+3K0vNh4pN94nIVx/GdhSTcL8TEoGAED1oyw5gbIEoK7YfDhbL32zXZvSsh1jHlaLRvSM0xPXN1UAS40DAOoAypITKEsA6hLDMPTfzUc18btdOpZb6BgP9fPUc/1a6M5O0bK6WUxMCABA1aIsOYGyBKAuKigu1XvL9un9FftVVGp3jCdGBejFQYnqGhdsYjoAAKoOZckJlCUAddmR0wWa+P0uLdiSUW68f2IDjR2QoMahviYlAwCgalCWnEBZAgBp7f5TeumbHdpxzg1sPawWDb2qsUb3aaqgetyfCQBQO1CWnEBZAoAyNruhLzYc1usLU3Uyv8gxHujjoSevb6oHujeWpzv3ZwIA1GyUJSdQlgCgvPyiUn2wfJ8++Hm/Ckt+u54pNqSexvZPUP/WDWSxsAgEAKBmoiw5gbIEABXLyDmr139M1X+Sj+jcPym6NK6vvwxspfbRQaZlAwDg96IsOYGyBAAXty09R68s2KE1+7PKjf+hXZT+r38LNapfz6RkAAA4j7LkBMoSAFyaYRhavDNTf/9+p/afOOMY93R308iecXr8unhuagsAqBEoS06gLAHA5Sux2TV7XZre/GmPss4UO8br1/PQqOuaamj3WHm5W01MCADAxVGWnEBZAgDn5RaW6N2lezUt6aCKbb8tAtEwyEfP3thct7RvKKsbi0AAAFwPZckJlCUA+P0OZxXojYW79XXK0XLjCQ38NXZAgno1D2PlPACAS6EsOYGyBABXblt6jv7x426tSD1Rbrx7kxCNHZCgdqycBwBwEZQlJ1CWAKDyrNx7Uq9+v0tb03PKjQ9sE6k/9WuhuFBfk5IBAFCGsuQEyhIAVC673dB32zL02o+7dehUgWPc6mbR4K7RGt2nmcL9vU1MCACoyyhLTqAsAUDVKC616/P1aXpr8R6dzP9t5TwfD6seuiZOf7y2CcuNAwCqHWXJCZQlAKhaZ4pK9eHP+/Xhiv06U2xzjAfV89CjveI1rHtj+Xiy3DgAoHpQlpxAWQKA6nEir0jvLNmjT9emqdT+2x89Yf5eeuK6prq3azT3aAIAVDnKkhMoSwBQvdJOFejNn1I1LyVd5/4J1DDIR0/1babbOzSUu9XNvIAAgFqNsuQEyhIAmCP1eJ4mL0zVD9uPlRtvEuarZ25orptaR8qNG9sCACoZZckJlCUAMNfWIzl6feFuLf+fezS1jAzQc/2a67oW4dzYFgBQaShLTqAsAYBrWHcgS6//uFvrDmaVG+8YE6Tn+iWoe3yISckAALUJZckJlCUAcB2GYWjFnpN6/cfd593YtmfTEI3p21xdGgeblA4AUBtQlpxAWQIA12MYhn7cfkxvLEzVnsz8ctuubhqqp29opk6xlCYAgPMoS06gLAGA67LZDf13c7re/GmPDp0qKLftmmahGtO3uTrF1jcpHQCgJqIsOYGyBACur9Rm17zkdL29ZK/SssqXpmubh2lM32bqGENpAgBcGmXJCZQlAKg5Smx2zduUrreX7tHhrLPltvX6pTR1oDQBAC6CsuQEyhIA1DwlNrv+s+mI3l6yV0dOly9NvVuEaUzf5mofHWROOACAS6MsOYGyBAA1V3Hpb6UpPbt8abo+IVxP9WmmdpQmAMA5KEtOoCwBQM1XXGrXV5uO6J0KStN1LcL0xPXNWAgCACCJsuQUyhIA1B7FpXZ9ufGI3l16fmnqER+iJ65vqu5NQmSxWExKCAAwG2XJCZQlAKh9ikpt+nLjEf176b7zSlOn2Pp64rqm6t0ijNIEAHUQZckJlCUAqL2KS+36Ojld/162Vwf/5z5NiVEBevL6prqxVQO5uVGaAKCuoCw5gbIEALVfqc2uBVsz9O7SvUo9nl9uW7NwP426rqlubhspd6ubSQkBANWFsuQEyhIA1B12u6GFO47rnaV7tC09t9y22JB6erx3vG7r0Eie7pQmAKitKEtOoCwBQN1jGIaWpZ7QO0v2auOh0+W2RQV665Fe8bqnS7S8PawmJQQAVBXKkhMoSwBQdxmGoTX7s/TO0j1aufdUuW2hfp4a0TNO918Vq0AfD5MSAgAqG2XJCZQlAIAkbUo7rXeX7NXiXZnlxn09rbqvW4wevLqJGgR6m5QOAFBZKEtOoCwBAM61/WiO/r1sn77fmiH7OX9Celgtuq1DQz18bbyahvuZFxAAcEUoS06gLAEAKnLw5Bl98PN+fbnxiIpL7Y5xi0W6oWWEHu0dr44x9U1MCAD4PShLTqAsAQAuJjOvUNNXHtQnaw4pr7C03LauccF6rFc8N7gFgBqEsuQEyhIA4HLkFZZo9ro0TU06oOO5ReW2JTTw16O94rlXEwDUAJQlJ1CWAADOKCq1aX7yUb23Yp/2nzhTblvDIB/98Zo43d05Wr5e7iYlBABcDGXJCZQlAMDvYbcbWrTzuKYs26eUw9nltgV4u+u+brEa1iNWkYE+5gQEAFSIsuQEyhIA4EoYhqG1B7L03vJ9Wrb7RLlt7m4WDWoXpQevjlPrhoEmJQQAnIuy5ATKEgCgsuw+lqePft6v+SlHVWyzl9vWvUmI/nhNnK5rES43NxaDAACzUJacQFkCAFS2zLxCfbL6kD5Zc0jZBSXltsWH+erBq5vo9o4N5e1hNSkhANRdlCUnUJYAAFXlbLFNX246oo+TDujAyfKLQQT7eur+q2L1QPdYhfp5mZQQAOoeZ77/u9T6pjabTePHj1dcXJx8fHwUHx+vl19+WRfrc//5z390ww03KCwsTAEBAerevbt+/PHHakwNAEDFfDytGnpVrBY/00sfPtBZ3eKCHduyzhTrX4v3qMerS/T8l1uUejzPxKQAgIq41LqmkyZN0pQpUzRjxgwlJiZqw4YNGjFihAIDAzV69OgKX7NixQrdcMMN+vvf/66goCBNmzZNgwYN0tq1a9WhQ4dq/gQAAJzPzc2iG1pF6IZWEdpyJFtTkw7o2y0ZstkNFZfa9fmGw/p8w2H1bBqiET3idF1CuKxc1wQApnOp0/BuvvlmRUREaOrUqY6xO+64Qz4+Ppo1a9Zlv09iYqLuuecevfDCC5fcl9PwAABmOJp9VtNXHdTstWnKKyotty0muJ4e6B6ru7tEK8Dbw6SEAFA71djT8Hr06KHFixcrNTVVkrR582YlJSVpwIABl/0edrtdeXl5Cg4OrnB7UVGRcnNzyz0AAKhuUUE++vNNLbX6z330ws2t1DiknmNbWlaBXlmwU1f9fbFemL9N+07km5gUAOoulzoNb+zYscrNzVVCQoKsVqtsNpsmTJigIUOGXPZ7vP7668rPz9fdd99d4faJEyfqpZdeqqzIAABcET8vd428Ok7DezTWstRMTVt5UD/vOSlJKii2aebqQ5q5+pB6NQ/T8J6N1atZGEuPA0A1canT8ObMmaPnnntOr732mhITE5WSkqIxY8Zo8uTJGjZs2CVf/9lnn+mhhx7S/Pnz1bdv3wr3KSoqUlFRkeN5bm6uoqOjOQ0PAOAy9hzP04zVB/XVxnSdLbGV29Yk1FfDejTWHZ0ayc/Lpf7OEwBqhBq7dHh0dLTGjh2rUaNGOcZeeeUVzZo1S7t27broa+fMmaORI0fqiy++0MCBAy/7Z3LNEgDAVeUUlGjuhsOasfqgjpw+W26bv5e77uocrQe6x6pxqK9JCQGg5qmx1ywVFBTIza18JKvVKrvdfoFXlJk9e7ZGjBih2bNnO1WUAABwZYH1PPTQtU20/Lnr9P7QTureJMSxLa+oVB+vPKDery/TAx+v06Idx2Wzu8zffwJAreBS8/eDBg3ShAkTFBMTo8TERCUnJ2vy5MkaOXKkY59x48YpPT1dM2fOlFR26t2wYcP01ltvqVu3bjp27JgkycfHR4GBgaZ8DgAAKpPVzaJ+iQ3UL7GBdh3L1fSVBzUvOV1FpWV/mbgi9YRWpJ5QwyAf3dctRvd0ieZGtwBQCVzqNLy8vDyNHz9e8+bNU2ZmpqKiojR48GC98MIL8vT0lCQNHz5cBw8e1LJlyyRJvXv31vLly897r2HDhmn69OmX/JmchgcAqIlOnynW5xsOa9aaQ+edoudhteimNpEaelWsOsXWl8XCghAA8Ksae82SGShLAICazGY3tCL1hGauPqhlqSf0v3+qt4wM0NCrYnVL+yj5siAEAFCWnEFZAgDUFmmnCvTpukOau/6wTheUlNvm7+WuOzo10v1XxahpuL9JCQHAfJQlJ1CWAAC1TWGJTd9tzdDM1YeUcjj7vO094kM0pFusbmgVIU93l1rrCQCqHGXJCZQlAEBttvVIjmatOaT5m9NVWFJ+ddlQP0/d2Sla93aJZvlxAHUGZckJlCUAQF2QU1CiLzcd0aw1h3Tg5JnztvdsGqLBXWN0Y6sGzDYBqNUoS06gLAEA6hK73dCqfac0e32aFm4/phJb+a8BIb6eurNTI93bNUZxzDYBqIUoS06gLAEA6qqT+UX6cuMRzVmXpoOnCs7b3r1JiAZ3i1G/xAh5uVtNSAgAlY+y5ATKEgCgrrPbDa3Zf0qfrUvTjxXMNtWv5+GYbYoP8zMpJQBUDsqSEyhLAAD85lR+kb7adESz1x2u8NqmbnHBGtw1Rv1bN5C3B7NNAGoeypITKEsAAJzPMAyt2Z+l2evS9MO2Yyq2lV9Jz9/bXbe0j9LdnaPVpmGgLBaLSUkBwDmUJSdQlgAAuLisM8X6z6Yj+mxdmvafOH+2KaGBv+7qHK1b20cpxM/LhIQAcPkoS06gLAEAcHkMw9DaA1mau+Gwvtuacd59mzysFvVtGaG7O0frmmahcreyBDkA10NZcgJlCQAA5+UVlmjBlgzN3XBYm9Kyz9seEeClOzo20l2do1mCHIBLoSw5gbIEAMCV2ZuZpy82HNFXm9J1Mr/ovO1dGtfXXZ2jNbBNpHy93E1ICAC/oSw5gbIEAEDlKLHZtWz3Cc3dcFhLdmXKZi//FaOep1U3t43UnZ2i1Tm2vtzcWBQCQPWjLDmBsgQAQOU7kVekr5PT9fmGw9qbmX/e9uhgH93WvqFu69iI0/QAVCvKkhMoSwAAVB3DMJRyOFtzNxzRN5uPKr+o9Lx9OsYE6faOjXRz20gF1fM0ISWAuoSy5ATKEgAA1eNssU0LdxzTV5vSlbTnhP7nLD15Wt3Up2W4bu/YSL2ah8nTndX0AFQ+ypITKEsAAFS/47mFmp+Srq82pmv38bzzttev56E/tIvS7R0bqW0jbnoLoPJQlpxAWQIAwDyGYWhHRq7+syld81PSdTK/+Lx94sN8dXvHRrq1Q0M1DPIxISWA2oSy5ATKEgAArqHUZtfPe07qq01HtGjHcRWVlr/prcUidYsL1q3tG2pA60gF1vMwKSmAmoyy5ATKEgAArie3sETfb83QV5vSte5A1nnbPawW9W4RrlvaR6lPQoR8PK0mpARQE1GWnEBZAgDAtR3OKtC85HT9Z9MRHTxVcN52X0+r+rVuoFvaN1TP+BC5W1kYAsCFUZacQFkCAKBmMAxDW47kaH7KUX2z5ahO5BWdt0+Ir6dubhupP7RvqI4xQSwMAeA8lCUnUJYAAKh5bHZDa/af0vyUdH2/7ZjyCs+/f1Oj+j66pX2UbmnfUM0j/E1ICcAVUZacQFkCAKBmKyyxadnuE/rv5nT9tDNTxf+zMIQkJTTw1y3tG+rmtpGKDq5nQkoAroKy5ATKEgAAtUdeYYl+3H5c81PStXLvyfNufCtJ7aKDdHObSN3UNpKlyIE6iLLkBMoSAAC104m8Ii3YclTzNx9Vclp2hft0jAnSwLZRuqlNA0UGUpyAuoCy5ATKEgAAtV/aqQJ9u/Wovt2coR0ZuRXu0zm2vm5uG6kBbSIVEeBdzQkBVBfKkhMoSwAA1C37T+Tru60Z+nZLhnYdyztvu8UidWkcrEFtI9W/daTC/L1MSAmgqlCWnEBZAgCg7tqbmadvt5QVp72Z+edtd7NI3eJCdHO7SPVLbKBQP4oTUNNRlpxAWQIAAJK0+1ieFmw5qm+3ZGj/yTPnbXf7ZcZpQOsG6teaa5yAmoqy5ATKEgAAOJdhGNqZkacFW8uK06FTBRXu1z46SANaN1D/1g0UG+JbzSkB/F6UJSdQlgAAwIUYhqHtR3O1YGuGfth2TAcqmHGSpJaRAY7i1CzcTxaLpZqTArhclCUnUJYAAMDlMAxDqcfz9f22suJU0eIQktQkzLesOCVGqnXDAIoT4GIoS06gLAEAgN/jwMkz+mHbMf2wLUObj+RUuE+j+j7qn1g249Qxpr7c3ChOgNkoS06gLAEAgCuVnn1WP247ph+2HdP6Q1mq6NtVuL+X+raK0A2tItQjPkRe7tbqDwqAsuQMyhIAAKhMJ/KKtHBHWXFave+USu3nf9Xy9bSqV4sw3diqga5rEa7Aeh4mJAXqJsqSEyhLAACgqmQXFOunnZn6YVuGVuw5qeJS+3n7WN0s6hYXrBt+mXVqVL+eCUmBuoOy5ATKEgAAqA4FxaVakXpSi3Yc1+Jdx5VdUFLhfi0jA3RDqwjd2CpCiVEsEAFUNsqSEyhLAACgupXa7Npw6LQW7TiuRTuOKy2r4ns5RQV6O65z6hYXIk93t2pOCtQ+lCUnUJYAAICZfl2SfNGOY1q04/gFV9bz93ZX7xbh6pMQrl7Nw1Tf17OakwK1A2XJCZQlAADgSo7lFOqnnWUzTqv3nVKx7fzrnNwsUseY+rq+ZbiuTwhXiwh/TtcDLhNlyQmUJQAA4KryCku0PPWEFu04rqW7MpVbWFrhfg2DfHRdQpj6JESoe3yIvD1Ylhy4EMqSEyhLAACgJiix2bXh4Gkt3Z2pxTuPa9+JMxXu5+3hpp7xoY5Zp8hAn2pOCrg2ypITKEsAAKAmOnTqjJbsytSSXZlauz+rwtP1pLLV9a5PCNP1CRFqHx0kqxun66Fuoyw5gbIEAABquvyiUiXtOamluzK1ZHemTuQVVbhfsK+nejUPU+8WYbq6aahC/LyqOSlgPsqSEyhLAACgNrHbDW0/mqvFu8quc7rQ6noWi9S2YaB6NQ9TrxZhatcoSO5WliZH7UdZcgJlCQAA1GaZeYVatvuElu7K1IrUEzpTbKtwv0AfD13dLLSsPDUPU0SAdzUnBaoHZckJlCUAAFBXFJfatfHQaS1LzdTy3Se061jeBfdNaOCvXi3KilPn2GBuiItag7LkBMoSAACoq47nFmp56gktTz2hn1NPXHBpcl9Pq7rHh6r3L+UpOrheNScFKg9lyQmUJQAAAKnUZtfmI9lavrusPG1Jz9GFviXGhfrq6qahurpZqLrHhyjA26N6wwJXgLLkBMoSAADA+U7lFylp70kt231CK1JP6NSZ4gr3s7pZ1K5RoK5uFqZrmoWqfXSQPFgoAi6MsuQEyhIAAMDF/brC3vLUTC1PPaHktGyV2iv+Cunn5a6rmgQ7Zp7iw/xksXBvJ7gOypITKEsAAADOyS8q1Zp9p5S096R+3nNC+06cueC+kYHe6tk0VNc0C1XPpqEK5d5OMBllyQmUJQAAgCuTkXNWSXtOKmnvSa3ce1In8ys+ZU+SWkYG6Jpmobq6aai6NA6Wj6e1GpMClCWnUJYAAAAqj91uaNexPCXtPaGf95zUugNZKiq1V7ivp9VNHWKC1D0+RD3iy653YolyVDXKkhMoSwAAAFWnsMSmjYdOK2nvSSXtOaltRy+8yp63h5u6NA5W9/gQdW8SojYNA+XOYhGoZJQlJ1CWAAAAqk/WmWKt2ldWnFbtO6W0rIIL7uvn5a6uccHqER+i7vEhatkgQG5uLBaBK0NZcgJlCQAAwDxHThdo9b5TZY/9p5SRU3jBfYPqeeiquJBfTtsLUdNwVtqD8yhLTqAsAQAAuAbDMHTwVFl5WrXvpNbsP3XRxSJC/bwcp+x1axKsJqG+lCdcEmXJCZQlAAAA12QYhvZk5mvV3pNavf+U1uzPUs7ZkgvuH+rnpW5xwerWJFhd44LVPNyf0/ZwHsqSEyhLAAAANYPNbmhnRq5j5mndgSydKbZdcP+geh7q0ji4rEDFhahlpD8LRoCy5AzKEgAAQM1UYrNra3qO1u7P0toDp7Th4GnlF5VecH8/L3d1blxfXX8pT20aBrJUeR1EWXICZQkAAKB2KLXZtTMjT2sPnNLaA1lafzBL2QUXPm3P28NNnWLrq2vjEHWNC1aHmCB5e3CT3NqOsuQEyhIAAEDtZLcbSs3M07oDWVp7IEtr92fpZH7RBff3tLqpTaNAdY6tr06x9dW5cbCCfT2rMTGqA2XJCZQlAACAusEwDB04eUZrD2SVFaj9p3T0IkuVS1KTMF91iQ1Wp8b11Tm2vuJYca/Goyw5gbIEAABQNxmGoSOnz/5Snk5p3YEsHTx14ZvkSlKIr+cvs05lM0+to7juqaahLDmBsgQAAIBfncgr0sZDp7XxUJbWHzyt7UdzVGK78NdlL3c3tWsU9Et5qq9OMcEKrOdRjYnhLMqSEyhLAAAAuJDCEps2H87WhkOnteFgljYeOq3cwguvuCdJzSP81Ck2WJ1j66tDTBCn7rkYypITKEsAAAC4XHZ72Y1yNxzK0oaDp7XhUJYOZ5296GuC6nmoQ3SQOsTUV8eY+moXHSh/b2afzEJZcgJlCQAAAFfieG6hozhtOHhaOzJyZbNf+Cu2xSI1C/dTx5iymaeOMfUVH+YnNzdmn6oDZckJlCUAAABUpjNFpdp8OFub0k4rOS1byYezlXWm+KKv8fdyV/uYstmnDjFB6hAdpKB6LFteFShLTqAsAQAAoCoZhqFDpwqUfLisPG1KO62dGXkXnX2SypYt7xD92+xT8wg/uVtZee9KUZacQFkCAABAdTtbbNPW9JxfZp9Oa1Natk7kXfiGuZLk42FV64YBatsoSO2ig9SuUaBiguuxeISTKEtOoCwBAADAbIZhKD37bNlpe7/MPl1q2XKpbPGIto3KilO7RkFqGx2ocH/vakpdM1GWnEBZAgAAgCsqLLFpR0auNh06reTD2dpyJPuSK+9JUlSgd7nZpzaNWH3vXJQlJ1CWAAAAUFNknSnW5iPZ2nI4p+x/j2TrZP7FF4+wWKQmob6/lKeyEtUy0l9e7tZqSu1aKEtOoCwBAACgpjIMQ0dzCrX5cLY2H8nW5sPZ2nokR2eKbRd9nYfVouYR/modFajWjQLVpmGgEhr4y9uj9hcoypITKEsAAACoTWx2Q/tP5GvzkRxt/uX0vR0ZuZe8/snqZlGzcD+1blhWnlo3DFSryAD5eNauAkVZcgJlCQAAALVdUalNuzLytOVItlIO52hbeo72ZObpEquXy80iNf2lQLWOKrv+qVVkgHy93KsneBWgLDmBsgQAAIC66Gxx2QIS29LLytPW9Bztycy/5P2ffr0G6tfZp9YNA5UYFVBjFpGosWXJZrPpb3/7m2bNmqVjx44pKipKw4cP11//+tcLrh+fkZGhZ599Vhs2bNDevXs1evRovfnmm5f9MylLAAAAQJnCEpt2HcvT1vQcbTuSo21Hc5R6PO+Sp/BJUlyor1pFBahVZIASowKUGBWoMH+vakjtHGe+/7vU/NmkSZM0ZcoUzZgxQ4mJidqwYYNGjBihwMBAjR49usLXFBUVKSwsTH/961/1z3/+s5oTAwAAALWHt4dV7aOD1D46yDFWVGrT7mN52paeW1ai0nO0+1ieim32cq89cPKMDpw8owVbMhxjYf5evxSnALWKLJuBig2pOTfSdamZpZtvvlkRERGaOnWqY+yOO+6Qj4+PZs2adcnX9+7dW+3bt2dmCQAAAKhCxaV2pR7PKzuF72iOtqbnaldGropK7Rd9ndXNou0v9TN11b0aO7PUo0cPffDBB0pNTVXz5s21efNmJSUlafLkyZX2M4qKilRUVOR4npubW2nvDQAAANQFnu5ujuuVflVqs2v/yTPafjRH29NztSMjV9uP5irnbIljn/gw3xq1PLlLlaWxY8cqNzdXCQkJslqtstlsmjBhgoYMGVJpP2PixIl66aWXKu39AAAAAEjuVjc1j/BX8wh/3dahbMwwDKVnn9X2o7nacTRXAT41YxGIX7lUWZo7d64+/fRTffbZZ0pMTFRKSorGjBmjqKgoDRs2rFJ+xrhx4/TMM884nufm5io6OrpS3hsAAADAbywWixrVr6dG9eupX2IDs+M4zaXK0nPPPaexY8fq3nvvlSS1adNGhw4d0sSJEyutLHl5ecnLy/VW5QAAAADgWtzMDnCugoICubmVj2S1WmW3X/xCMQAAAACobC41szRo0CBNmDBBMTExSkxMVHJysiZPnqyRI0c69hk3bpzS09M1c+ZMx1hKSookKT8/XydOnFBKSoo8PT3VqlWr6v4IAAAAAGoJl1o6PC8vT+PHj9e8efOUmZmpqKgoDR48WC+88II8PT0lScOHD9fBgwe1bNkyx+sqWqc9NjZWBw8evOTPZOlwAAAAoO5w5vu/S5UlM1CWAAAAgLrDme//LnXNEgAAAAC4CsoSAAAAAFSAsgQAAAAAFaAsAQAAAEAFKEsAAAAAUAHKEgAAAABUgLIEAAAAABWgLAEAAABABShLAAAAAFAByhIAAAAAVICyBAAAAAAVcDc7gNkMw5Ak5ebmmpwEAAAAQFX79Xv/rz3gYup8WcrLy5MkRUdHm5wEAAAAQHXJy8tTYGDgRfexGJdTqWoxu92uo0ePyt/fXxaLxdQsubm5io6O1uHDhxUQEGBqFrg+jhc4g+MFzuB4gTM4XuAMVzheDMNQXl6eoqKi5OZ28auS6vzMkpubmxo1amR2jHICAgL4ZYPLxvECZ3C8wBkcL3AGxwucYfbxcqkZpV+xwAMAAAAAVICyBAAAAAAVoCy5EC8vL7344ovy8vIyOwpqAI4XOIPjBc7geIEzOF7gjJp2vNT5BR4AAAAAoCLMLAEAAABABShLAAAAAFAByhIAAAAAVICyBAAAAAAVoCy5kHfffVeNGzeWt7e3unXrpnXr1pkdCSZYsWKFBg0apKioKFksFn399dflthuGoRdeeEGRkZHy8fFR3759tWfPnnL7ZGVlaciQIQoICFBQUJAefPBB5efnV+OnQHWYOHGiunTpIn9/f4WHh+vWW2/V7t27y+1TWFioUaNGKSQkRH5+frrjjjt0/PjxcvukpaVp4MCBqlevnsLDw/Xcc8+ptLS0Oj8KqsGUKVPUtm1bx40gu3fvru+//96xnWMFF/Pqq6/KYrFozJgxjjGOGfzqb3/7mywWS7lHQkKCY3tNPlYoSy7i888/1zPPPKMXX3xRmzZtUrt27dSvXz9lZmaaHQ3V7MyZM2rXrp3efffdCrf/4x//0L/+9S+99957Wrt2rXx9fdWvXz8VFhY69hkyZIi2b9+uRYsW6dtvv9WKFSv08MMPV9dHQDVZvny5Ro0apTVr1mjRokUqKSnRjTfeqDNnzjj2efrpp/XNN9/oiy++0PLly3X06FHdfvvtju02m00DBw5UcXGxVq1apRkzZmj69Ol64YUXzPhIqEKNGjXSq6++qo0bN2rDhg26/vrrdcstt2j79u2SOFZwYevXr9f777+vtm3blhvnmMG5EhMTlZGR4XgkJSU5ttXoY8WAS+jatasxatQox3ObzWZERUUZEydONDEVzCbJmDdvnuO53W43GjRoYLz22muOsezsbMPLy8uYPXu2YRiGsWPHDkOSsX79esc+33//vWGxWIz09PRqy47ql5mZaUgyli9fbhhG2bHh4eFhfPHFF459du7caUgyVq9ebRiGYXz33XeGm5ubcezYMcc+U6ZMMQICAoyioqLq/QCodvXr1zc++ugjjhVcUF5entGsWTNj0aJFRq9evYynnnrKMAx+v6C8F1980WjXrl2F22r6scLMkgsoLi7Wxo0b1bdvX8eYm5ub+vbtq9WrV5uYDK7mwIEDOnbsWLljJTAwUN26dXMcK6tXr1ZQUJA6d+7s2Kdv375yc3PT2rVrqz0zqk9OTo4kKTg4WJK0ceNGlZSUlDteEhISFBMTU+54adOmjSIiIhz79OvXT7m5uY4ZB9Q+NptNc+bM0ZkzZ9S9e3eOFVzQqFGjNHDgwHLHhsTvF5xvz549ioqKUpMmTTRkyBClpaVJqvnHirupPx2SpJMnT8pms5U7QCQpIiJCu3btMikVXNGxY8ckqcJj5ddtx44dU3h4eLnt7u7uCg4OduyD2sdut2vMmDHq2bOnWrduLansWPD09FRQUFC5ff/3eKnoePp1G2qXrVu3qnv37iosLJSfn5/mzZunVq1aKSUlhWMF55kzZ442bdqk9evXn7eN3y84V7du3TR9+nS1aNFCGRkZeumll3TNNddo27ZtNf5YoSwBQC0watQobdu2rdw54sD/atGihVJSUpSTk6Mvv/xSw4YN0/Lly82OBRd0+PBhPfXUU1q0aJG8vb3NjgMXN2DAAMc/t23bVt26dVNsbKzmzp0rHx8fE5NdOU7DcwGhoaGyWq3nrQpy/PhxNWjQwKRUcEW/Hg8XO1YaNGhw3sIgpaWlysrK4niqpZ544gl9++23Wrp0qRo1auQYb9CggYqLi5WdnV1u//89Xio6nn7dhtrF09NTTZs2VadOnTRx4kS1a9dOb731FscKzrNx40ZlZmaqY8eOcnd3l7u7u5YvX65//etfcnd3V0REBMcMLigoKEjNmzfX3r17a/zvF8qSC/D09FSnTp20ePFix5jdbtfixYvVvXt3E5PB1cTFxalBgwbljpXc3FytXbvWcax0795d2dnZ2rhxo2OfJUuWyG63q1u3btWeGVXHMAw98cQTmjdvnpYsWaK4uLhy2zt16iQPD49yx8vu3buVlpZW7njZunVruYK9aNEiBQQEqFWrVtXzQWAau92uoqIijhWcp0+fPtq6datSUlIcj86dO2vIkCGOf+aYwYXk5+dr3759ioyMrPm/X0xdXgIOc+bMMby8vIzp06cbO3bsMB5++GEjKCio3KogqBvy8vKM5ORkIzk52ZBkTJ482UhOTjYOHTpkGIZhvPrqq0ZQUJAxf/58Y8uWLcYtt9xixMXFGWfPnnW8R//+/Y0OHToYa9euNZKSkoxmzZoZgwcPNusjoYo89thjRmBgoLFs2TIjIyPD8SgoKHDs8+ijjxoxMTHGkiVLjA0bNhjdu3c3unfv7theWlpqtG7d2rjxxhuNlJQU44cffjDCwsKMcePGmfGRUIXGjh1rLF++3Dhw4ICxZcsWY+zYsYbFYjEWLlxoGAbHCi7t3NXwDINjBr959tlnjWXLlhkHDhwwVq5cafTt29cIDQ01MjMzDcOo2ccKZcmFvP3220ZMTIzh6elpdO3a1VizZo3ZkWCCpUuXGpLOewwbNswwjLLlw8ePH29EREQYXl5eRp8+fYzdu3eXe49Tp04ZgwcPNvz8/IyAgABjxIgRRl5engmfBlWpouNEkjFt2jTHPmfPnjUef/xxo379+ka9evWM2267zcjIyCj3PgcPHjQGDBhg+Pj4GKGhocazzz5rlJSUVPOnQVUbOXKkERsba3h6ehphYWFGnz59HEXJMDhWcGn/W5Y4ZvCre+65x4iMjDQ8PT2Nhg0bGvfcc4+xd+9ex/aafKxYDMMwzJnTAgAAAADXxTVLAAAAAFAByhIAAAAAVICyBAAAAAAVoCwBAAAAQAUoSwAAAABQAcoSAAAAAFSAsgQAAAAAFaAsAQBqhd69e2vMmDGV+p7Dhw/XrbfeWqnvCQCoOShLAAAAAFAByhIAoM4pLi42OwIAoAagLAEAaqUFCxYoMDBQn376qeN0ugkTJigqKkotWrSQJG3dulXXX3+9fHx8FBISoocfflj5+fkXfM/169crLCxMkyZNqq6PAQAwEWUJAFDrfPbZZxo8eLA+/fRTDRkyRJK0ePFi7d69W4sWLdK3336rM2fOqF+/fqpfv77Wr1+vL774Qj/99JOeeOKJCt9zyZIluuGGGzRhwgQ9//zz1flxAAAmcTc7AAAAlendd9/VX/7yF33zzTfq1auXY9zX11cfffSRPD09JUkffvihCgsLNXPmTPn6+kqS3nnnHQ0aNEiTJk1SRESE47Xz5s3TAw88oI8++kj33HNP9X4gAIBpKEsAgFrjyy+/VGZmplauXKkuXbqU29amTRtHUZKknTt3ql27do6iJEk9e/aU3W7X7t27HWVp7dq1+vbbb/Xll1+yMh4A1DGchgcAqDU6dOigsLAwffzxxzIMo9y2c0uRM+Lj45WQkKCPP/5YJSUllRETAFBDUJYAALVGfHy8li5dqvnz5+vJJ5+86L4tW7bU5s2bdebMGcfYypUr5ebm5lgAQpJCQ0O1ZMkS7d27V3fffTeFCQDqEMoSAKBWad68uZYuXaqvvvrqojepHTJkiLy9vTVs2DBt27ZNS5cu1ZNPPqmhQ4eWu15JksLDw7VkyRLt2rVLgwcPVmlpaRV/CgCAK6AsAQBqnRYtWmjJkiWaPXu2nn322Qr3qVevnn788UdlZWWpS5cuuvPOO9WnTx+98847Fe7foEEDLVmyRFu3btWQIUNks9mq8iMAAFyAxfjfk7oBAAAAAMwsAQAAAEBFKEsAAAAAUAHKEgAAAABUgLIEAAAAABWgLAEAAABABShLAAAAAFAByhIAAAAAVICyBAAAAAAVoCwBAAAAQAUoSwAAAABQAcoSAAAAAFSAsgQAAAAAFfj/fcfzDUjlOm0AAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 960x540 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"costchangeplot(history)"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"celltoolbar": "Slideshow",
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.12"
|
||
},
|
||
"livereveal": {
|
||
"start_slideshow_at": "selected",
|
||
"theme": "white"
|
||
},
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|